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1. INTRODUCTION  

Nowadays, one of the most used mathematical branches in the engineering field is numerical 

analysis which is a branch of applied mathematics, the aim of which is to develop and study 

numerical resolution methods from physics, applied sciences or social and economic models. 

one of the most recent approaches in the numerical resolution of PDEs is the adaptive moving 

mesh method used under the different numerical methods what use a discretization of the 

problem solving domain. Namely the finite difference method, the finite element method and 

the most recent of all which is the finite volume method. the adaptive moving mesh method is 

used in the resolution of Ordinary Differential and Partial Differential Equations ODEs and 

PDEs) in order to improve the accuracy of the solution in areas where the gradient of this one 

has high values. The development of this technics began with the work of Harten and Hyman 

in 1983. With the same idea, Winslow also made a proposition in [15] on the finite element 

method. This proposition was taken up and improved by Dvinsky in [6] in 1991. Thus, Saleri 

and Steinberg proposed a variant in 1994. The technical leaders discussed in this document are 

T. TANG and T. Huazhong (Chinese). They were followed by other research teams such as 

Zegeling and A. VANDAM (Dutch). In order to better imbibe this new numerical 

mathematical problem solving technics,  we set out to experiment it for the resolution of two 

Riemann’s type hyperbolic problems by the finite volume method. This paper is organized as 

follows. Section 2 presents the test problems on which the experience will be focused. Section 

3 presents the adaptive moving mesh method used under the high-order finite volume method. 

Section 4 reports on the validation of the numerical results obtained through a series of 

comparisons 

*Corresponding Author: Diakalia Kone, USTTB, Université des Sciences, des Techniques et des 

Technologies de Bamako , B.P.E3206, Bamako 

Abstract: The purpose of this paper is to report once more on the benefits of using an adaptive moving 

mesh method with finite volume method through the numerical resolution of two test problems. This is 

Buckley-Levrett’s problem and a broadcast transport problem. The peculiarity of these problems is that 

they consist of hyperbolic Partial Derivative Equation (PDE) in  conservative  form  and solutions at the 

initial moment which are discontinuous. To reach the set objective, we presented the selected problems 

and the adaptive moving mesh method that will be used with finite volume method for their numerical 

resolution. The results obtained have been validated through several evaluations. Firstly, we 

determined and validated for each problem the numerical solution of the finite volume method with a 

static grid by evaluating it with respect to that determined by the finite difference method. then, in a 

second step, this solution of the finite volume method with a static grid served as a reference solution 

to evaluate the numerical solution of the finite volume method with a moving grid. 

Keywords: Hyperbolic conservation laws, Riemann problem, classical finite volume method, higher order 
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2. DESCRIPTION OF MODEL PROBLEMS 

2.1. Buckley-Leverett equation 

The equation provides a simplified model of the horizontal scanning of an oil test tube by water 

while neglecting capillarity [9]. The model is characteristic of the situations encountered in 

petroleum operations [5, 9]. There is water on the left and oil on the right. We search to drive 

the oil to the right thanks to the water which is injected by an injection tube. 

The problem considered is the following: let u be the water saturation in a mixture of water and 

oil, and we consider a 1D cut from the basement. Find the water saturation u in a mixture of 

water and petroleum such that: 

 

3. DESCRIPTION OF THE USED MOVING MESH FINITE VOLUME METHOD 

In recent years, much work has been done on the adaptive moving mesh. In general, the numerical 

resolution of a problem by a numerical method with a moving mesh is done in two steps: the setting 

up of the moving mesh and the resolution of the PDE of the problem (also called physical PDE) 

on this mesh. For this work, we use the technique proposed by T. TANG and Huazhong TANG in 

[19] where the numerical method chosen for the resolution of the PDE is finite volumes. 

3.1. Description of the Strategy Used to Obtain the Moving Mesh 

The space interval is subdivided into elementary intervals at the initial time according to the 

finite volume method to obtain the nodes of the moving mesh where the solution values will be 

computed. The nodes resulting from this subdivision form the components of a vector X. The 

position of the components of the vector X are updated according to the solution gradient values. 

The relationship between the mesh movement and the solution is established by a function 

called control or monitor function ω recalled in [17, 2]. The vector X is defined as: 

X :  [0, 1]  → [a, b] 
,
 

ξ → x(ξ) 

 

Where X is the solution of the moving mesh PDE defined by: 
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3.2. Description of the Physical PDE Integration by the Finite Volume Method 

This second step is devoted to the description of the establishment of the numerical scheme which will 

allow the calculation of the values of the unknown at the nodes defined by the discretization described 

above. Let us consider the hyperbolic conservation law with the following diffusion term: 

 

According to the experiences made on a number of problems tested in [14] by K. LAMIEN, L.SOME and 

M.OUEDRAOGO, it appears that it is necessary to reformulate the physical PDE in the form 6, to the 



Adaptive Moving Mesh Finite Volume Method Experimentation to Solving Riemann’s Type Hyperbolic 

Problems  

 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)                     Page | 11 

otherwise, no results are obtained. The scheme are established with the reformulation of the conservation 

law which is written: 

 

 

4. NUMERICAL RESULTS 

The purpose of this section is to validate the numerical solutions obtained by the method of finite volumes 

with a moving mesh through a series of comparisons. 

4.1. Some Characterizations of the Numerical and Reference Solutions 

Figures 1 and 3 show the initial conditions of the two problems, figures 2 and 4 give the numerical solutions 

obtained by the finite volume method with a static mesh which will be considered in the following as 
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reference solutions. 

In figures 5 and 7, we observe the trajectories of the mesh nodes. And finally on figures 6 and 8, we have 

the graphical numerical solutions obtained by finite volume method with a moving mesh. 

 

 

Figure1. Initial solution to the saturation problem 

 

Figure2. Solution to the saturation problem determined by the finite volume method with a static mesh 

of 2000 nodes 

Figure3. Initial solution to the transport-diffusion problem 

 

 
 

Figure4. Solution to the transport-diffusion problem determined by the finite volume method with a 

static mesh of 1650 nodes. 
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Figure5. Saturation problem: trajectories of 51 nodes 

 

Figure6. Solution of the saturation problem determined by the finite volume method with a moving mesh 

of 150 nodes. 
 

 
 

Figure7. Transport-diffusion problem: trajectories of 51 nodes 

Figure8. Solution of the transport-diffusion problem determined by the finite volume method with a 

moving mesh of 200 nodes. 
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4.2. Validation of numerical solutions obtained by the finite volume method with a moving grid 

The aim is to evaluate the numerical solutions obtained by the finite volume method with a moving 

mesh by comparing them to reference solutions. The reference solutions are those determined 

by the finite volume method with a static mesh, which will also be validated by comparing 

them to those determined by finite differences method. The aim is to be able to highlighting the 

main advantage of a moving mesh, which is to determine with a more high accuracy the solutions 

rather irregular using fewer discretization nodes than the static mesh. As a reminder, the studied 

method is the finite volumes method with a moving mesh, hence the choice of reference solutions. 

4.2.1. Evaluation of reference solutions 

This involves validating the numerical solution determined by the finite volume method with a 

static mesh by comparing it to the numerical solution determined by the finite difference method . 

This comparison will be made through the graphical overlay both numerical solutions on the same 

figure, but also through an estimation of the difference between the two solutions in an table. The 

error is said to be estimated, since the two solutions noted Uvf and Udf respectively determined by 

finite volumes and finite differences do not have the same size as vectors. 

Figure9. Saturation problem: Graphical comparison of the solutions determined by the finite 

volumes method and the finite difference method both with a static mesh 

 

Figure10. Transport-diffusion Problem: Graphical comparison of the solutions determined by the 

finite volumes method and the finite difference method both with a static mesh 

Table1. Table of estimated error 
 

 Saturation problem 

Time sections 0.2 0.4 0.6 0.8 1 

E2 1.2723 1.49 0.4896 0.5277 0.55 

E∞ 0.5695 0.5950 0.3107 0.3196 0.32 
 Transport-diffusion problem 

E2 0.0163 0.0274 0.0371 0.0460 0.0544 

E∞ 0.0062 0.0088 0.0108 0.0124 0.0139 
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4.2.2. Comments 

In Table 1, we have an estimate of the difference between the solution obtained by the finite 

differences method and that obtained by the finite volume method with a static mesh considered 

as a reference solution. 

In figures 9 and 10, the superposition states of the solutions determined by the finite volume 

method denoted Uvf and the finite differences method denoted Udf , thus Table 1 show the accuracy 

of the finite volume method compared to the finite difference method. Remember that the values 

in Table 1 are not significant because they are estimated values. 

Indeed, Uvf and Udf are two vectors of different sizes. To obtain these values, it was necessary 

to approach the larger vector size and then evaluate it at the nodes of the smaller vector size. 

The values in table 1 are therefore for information only. It is in this context, we set the finite 

volume method solution as a benchmark solution against which we will evaluate the solution 

noted Unum determined by the finite volume method this time with a moving mesh. 

4.2.3. Graphical comparison of the finite volume method and adaptive moving mesh method graphical 

comparison 

The numerical solution as said above, determined by the finite volume method with a static 

mesh will be considered as the reference solution to be used to evaluate the one determined by the 

same method with a moving mesh. 

Since the estimated error is not very significant, this comparison will be made through a graphical 

study only. In order to appreciate the accuracy of the adaptive moving mesh method denoted Mnum 

determined with few nodes (only a few hundred), we will simultaneously represent on four 

different figures the reference solution determined with a static mesh of 2000 nodes for the first 

problem and 1650 nodes for the second, as well as the adaptive moving mesh method Mnum 

determined by 100, 300, 400 and 600 nodes respectively. 

 

Figure11. Saturation problem: Graphical comparison of the finite volume method (2000 nodes) and 

the adaptive moving mesh method (100 nodes) at the following times t = 0, t = 0.2s, t = 0.4s, t = 0.6, t 

= 0.8s, t = 1s 

Figure12. Saturation problem: Graphical comparison of the finite volume method (2000 nodes) 

and the adaptive moving mesh method (300 nodes) at the following times t = 0, t = 0.2s, t = 0.4s, 
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t = 0.6, t = 0.8s, t = 1s 

 

Figure13. Saturation problem: Graphical comparison of the finite volume method (2000 nodes) 

and the adaptive moving mesh method (400 nodes) at the following times t = 0, t = 0.2s, t = 0.4s, 

t = 0.6, t = 0.8s, t = 1s 

Figure14. Saturation problem: Graphical comparison of the finite volume method (2000 nodes) and 

the adaptive moving mesh method (600 nodes) at the following times t = 0, t = 0.2s, t = 0.4s, t = 0.6, t 

= 0.8s, t = 1s 

 

 

Figure15. Transport-diffusion problem: Graphical comparison of the finite volume method (1650 
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nodes) and the adaptive moving mesh method (100 nodes) at the following times t = 0, t = 0.2s, t 

= 0.4s, t = 0.6, t = 0.8s, t = 1s 

Figure16. Transport-diffusion problem: Graphical comparison of the finite volume method (1650 

nodes) and the adaptive moving mesh method (300 nodes) at the following times t = 0, t = 0.2s, t = 

0.4s, t = 0.6, t = 0.8s, t = 1s 

 

Figure17. Transport-diffusion problem: Graphical comparison of the finite volume method (1650 

nodes) and the adaptive moving mesh method (400 nodes) at the following times t = 0, t = 0.2s, t 

= 0.4s, t = 0.6, t = 0.8s, t = 1s 

Figure18. Transport-diffusion problem: Graphical comparison of the finite volume method (1650 

nodes) and the adaptive moving mesh method (600 nodes) at the following times t = 0, t = 0.2s, t = 

0.4s, t = 0.6, t = 0.8s, t = 1s 

4.2.4. Comments 

Through figures 11 to 14 for the saturation problem and figures 15 to 18 for the diffusion 

transport problem, we note mainly that already with 100 nodes the adaptive moving mesh 

method has a fairly good accuracy. We also note that this accuracy improves with increasing the 
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number of nodes. In conclusion, we confirm that the adaptive moving mesh method offers more 

possibilities to obtain better results. 

5. CONCLUSION 

This paper is an experiment which consisted in solving by the finite volume method with a moving 

mesh, two hyperbolic conservation laws whose particularity is that they form Riemann problems 

consisting of physicals PDEs and discontinuous initial conditions. This experiment has consists in 

first presenting the two chosen problems, and then in a second step, in presenting the finite volume 

method with a moving mesh was described, before ending with the validation of the results 

obtained through a series of comparisons. The result obtained is well in conformity with the 

objectives which supported the development of the adaptive moving mesh method. These are as 

follows: use few nodes in the grids to obtain sufficiently precise numerical solutions. 
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