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1. INTRODUCTION 

Many problems can be formulated in Mathematics to form the ordinary differential equation, specially 

Bernoulli differential equations of first order, here we study and solve Bernoulli differential equations, 

numerical method is used to solve numerical problems using Runge Kutta Newton's Interpolation and 

Aitken's Methods. The differential equation problem [1-10],  consists of at least one differential 

equation and at least one additional equation such that the system together have one and only one 

solution called the analytic or exact solution to distinguish it from the approximate numerical solutions 

that we shall consider In this paper of first order, Faith C. K [1] studied the problem of Riccati by using 

combination of newton’s interpolation and Lagrange method, Nasr Al Din Ide [2] studied this problem 

also by using of Newton's Interpolation and Aitken's Method for Solving Riccati First Order Differential 

equations. In present study we will study Bernoulli Differential Equations by combined of Newton’s 

interpolation and Aitken's method [4-10] and Runge-Kutta method. Finally we verified on a number of 

examples and numerical results obtained show the efficiency  of the method given by present study in 

comparison with the exact solution. Let the  Bernoulli differential equation which can be written in the 

following standard form: 

𝑦′ +  P(x)y = Q(x)𝑦𝑛                                                                                                                                           (1) 

where P and Q are functions of x, and n is a constant  

n ≠ 1 (the equation is thus nonlinear).  

Where y is a known function and the values in the initial conditions are also known numbers. 

2. PRESENT AITKEN INTERPOLATION METHOD  

2.1. Combined Newton’s Interpolation and Lagrange Method [1, 2] 

This study combine both Newton’s interpolation method and Lagrange method. it used newton’s 

interpolation method to find the second two terms then use the three values for y to form a quadratic 

equation using Lagrange interpolation method as follows; 
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2.1.1.Newton’s interpolation method [1, 2, 9] 
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2.1.2.Lagrang interpolation method [1, 8] 
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3. DESCRIPTION OF THE METHOD 

This method will combine both Newton’s interpolation method and Lagrange method .it used newton’s 

interpolation method to find the second two terms then use the three values for y to form a linear or 

quadratic equations using Lagrange interpolation method as follows; 

0 1 0 2 0 1 0 1 2 1( ) ( ) ( )( ) ... ( )( )... ( )n n nf x a a x x a x x x x a x x x x a x x                                                                                                         (5) 

Where 

0 0a y  ,  
1 0

1

1 0

( ) ( )

( )

f x f x
a

x x






 , 1 02 1

2 1 1 0
2

2 0

( ) ( )( ) ( )

( ) ( )

( )

f x f xf x f x

x x x x
a

x x




 




                                                                                                                           (6)   

etc 
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Forming quadratic interpolation of  Lagrange, we have: 
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Note: we can use Newton's Forward Interpolation Formula instead of Newton's divided Interpolation 

method in (2.1). 

3.1.Aitken interpolation method [3,8] 
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4. RUNGE-KUTTA METHOD [8] 

 For the equation  y,xfy   and the initial condition   oo yxy   
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5. EXAMPLES 

In this section, we will check the effectiveness of the present technique (3). First numerical comparison 

for the following test examples taken in [3]. 

Example 1 

Solve     𝑦′ = 𝑦 + 𝑥. y
1

2, 𝑡ℎ𝑒 𝑒𝑥𝑎𝑐𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑖𝑠 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑖𝑠 
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𝑦 = (𝑐. e
𝑥
2 − 𝑥 − 2)2 

For c=1, 𝑡ℎ𝑒 𝑒𝑥𝑎𝑐𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑖𝑠 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑖𝑠 𝑦 = (e
𝑥

2 − 𝑥 − 2)2, ℎ𝑒𝑛𝑐𝑒, 𝑦(0) = 1 

Now, by taking the step h=0.01 

First by using Newton's interpolation, we have 
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Now, forming linear and quadratic using Aitken Method 

𝑃0,1(𝑥) = 1 

𝑃0,2(𝑥) = 0.0055𝑥 + 1 

𝑃0,1,2(𝑥) = 0.55𝑥2 − 0.0055𝑥 + 1 

Hence, we can take the approximation solution of linear and quadratic using Aitken Method, if we take 

quadratic using Aitken Method, Table 1 gives the approximation solutions of Runge-Kutta method and 

Combined Newton's Interpolation and Aitken method with the exact solution of example 1 with the 

errors for : 

x=0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1 

Table1. Solution of     𝑦′ = 𝑦 + 𝑥. 𝑦
1

2,      𝑦(0) = 1 

 

x       

Combined 

Newton's 

Interpolation 

and Aitken 

Runge-Kutta 

Solution 

exact Solution Absolut error 

of Aitken and 

Exact 

Solutions 

Absolut error 

of Runge-

Kutta and 

Exact 

Solutions 

   0 1 1.010000000 1 0 0.010000000 

 0.01  1 1.020200499 1.009999833 0.009999833 0.010200666 

0.02 1.000110000 1.030604514 1.019998665 0.019888665 0.010605849 

0.03 1.000330000 1.041215115 1.029995492 0.029665492 0.011219623 

0.04 1.000660000 1.052035426 1.039989307 0.039329307 0.012046119 

0.05 1.001100000 1.063033143 1.049979102 0.048879102 0.013242123 

0.06 1.001650000 1.074282095 1.059963867 0.058313867 0.012857083 

0.07 1.002310000 1.085750449 1.069942587 0.067632587 0.015807862 

0.08 1.003080000 1.097441548 1.089877829 0.076834247 0.007563719 

0.09 1.003960000 1.109358794 1.090000000 0.086040000 0.019358794 

0.1 1.004950000 1.121505643 1.100000000 0.095050000 0.021505643 

Example 2 

Solve     𝑦′ = 2𝑥𝑦 + 2x3. y2, 𝑡ℎ𝑒 𝑒𝑥𝑎𝑐𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑖𝑠 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑖𝑠 

𝑦 = 1/(𝑐. e−x2
+ 1 − x2) 

For c=0, 𝑡ℎ𝑒 𝑒𝑥𝑎𝑐𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑖𝑠 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑖𝑠  𝑦 = 1/(1 − x2), ℎ𝑒𝑛𝑐𝑒, 𝑦(0) = 1 

Now, by taking the step h=0.01 

First by using Newton's interpolation, we have 
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Now, forming linear and quadratic using Aitken Method 

𝑃0,1(𝑥) = 1 

𝑃0,2(𝑥) = 0.0001𝑥 + 1 

𝑃0,1,2(𝑥) = 0.01𝑥2 − 0.0001𝑥 + 1 

Hence, we can take the approximation solution of linear and quadratic using Aitken Method, if we take 

quadratic using Aitken Method, Table 2 gives the approximation solution and the exact solution of 

example 1 with the error for : 

x=0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1. 

Table2. Solution of     𝑦′ = 2𝑥𝑦 + 2𝑥3. 𝑦2,      𝑦(0) = 1 

 

x       

Combined 

Newton's 

Interpolation 

and Aitken 

Runge-Kutta 

Solution 

exact Solution Absolut error 

of Aitken and 

Exact 

Solutions 

Absolut error 

of Runge-

Kutta and 

Exact 

Solutions 

   0 1 1 1 0 0 

 0.01     1.000009000 1.000200023 1.000100010 0.000099110 0.000100013 

0.02 1.000002000 1.000433443 1.000400610 0.000381600 0.000032833 

0.03 1.000006000 1.001034244 1.000900811 0.000394160 0.000133433 

0.04 1.000012000 1.001836355 1.001602564 0.001590564 0.000233791 

0.05 1.002495000 1.002840706 1.002506266 0.002566760 0.000334440 

0.06 1.000093000 1.004048471 1.003613007 0.003583007 0.000435464 

0.07 1.000042000 1.005461083 1.004924128 0.004882128 0.004968670 

0.08 1.000056000 1.007080229 1.006441224 0.006385224 0.000639005 

0.09 1.000072000 1.008907866 1.008166146 0.008094146 0.00724606 

0.1 1.000090000 1.010946221 1.010101010 0.010011010 0.000845211 

Example 3 

Solve     𝑦′ = x3. y3 − 𝑥𝑦, 𝑡ℎ𝑒 𝑒𝑥𝑎𝑐𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑖𝑠 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑖𝑠 

𝑦 = 1/(𝑐. ex2
+ 1 + x2) 

For c=0, 𝑡ℎ𝑒 𝑒𝑥𝑎𝑐𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑖𝑠 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 𝑖𝑠  𝑦 = 1/(1+x2), ℎ𝑒𝑛𝑐𝑒, 𝑦(0) = 1 

Now, by taking the step h=0.01 

First by using Newton's interpolation, we have 
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Now, forming linear and quadratic using Aitken Method 

𝑃0,1(𝑥) = 1 

𝑃0,2(𝑥) = −0.00005𝑥 + 1 

𝑃0,1,2(𝑥) = −0.005𝑥2 + 0.00005𝑥 + 1 

Hence, we can take the approximation solution of linear and quadratic using Aitken Method, if we take 

quadratic using Aitken Method, Table 3 gives the approximation solution and the exact solution of 

example 1 with the error for : 
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x=0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1. 

Table3. Solution of     𝑦′ = 𝑥3. 𝑦3 − 𝑥𝑦,      𝑦(0) = 1 

 

x       

Combined 

Newton's 

Interpolation 

and Aitken 

Runge-Kutta 

Solution 

exact Solution Absolut error 

of Aitken and 

Exact 

Solutions 

Absolut error 

of Runge-

Kutta and 

Exact 

Solutions 

   0 1 1 1 0 0 

 0.01 1 0.9990001000 0.999900010 0.000099990 0.000899910 

0.02 0.999999000 0.9970010997 0.999600160 0.000398840 0.002599060 

0.03 0.999997000 0.9940046968 0.999100809 0.000896191 0.005096112 

0.04 0.999994000 0.9990013484 0.998402556 0.001591444 0.000598792 

0.05 0.999990000 0.9985030939 0.997506234 0.002483766 0.000996860 

0.06 0.999985000 0.9979061424 0.996412914 0.003572086 0.001493228 

0.07 0.999979000 0.9972110166 0.995123893 0.004855107 0.002087124 

0.08 0.999972000 0.9641832507 0.993640700 0. 004855107 0.029457449 

0.09 0.999964000 0.9955287605 0.991965083 0.007998917 0.003563678 

0.1 0.999950500 0.9945430982 0.990099010 0.009851490 0.004444088 

6. CONCLUSION 

In this paper, we have been applied Runge-Kutta method and combined Newton’s interpolation and 

Aitken method to solve nonlinear Bernoulli differential equation of first order, we find  through  some 

examples showing that that the method of Combined Newton's Interpolation and Aitken method is 

better than Runge-Kutta method compared to the exact solution. 
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