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1. INTRODUCTION 

Suppose that we are interested in a variable y and have collected its data on a sample of n subjects: y1, 

…, yn. Then we can obtain its frequency distribution and descriptive statistics such as central tendency 

(e.g., mean and median) and variation (e.g., overall range and standard deviation). Such basic 

information can help us understand the variable and can even be used to forecast y’s future or 

expected values, e.g., using its mean (and standard deviation). In case of time-series sample data, we 

can also exploit y’s time trend and forecast its future values by building, e.g., auto-regression and 

moving-average models. 

In addition to the above single-variable analysis, we are often more interested in multi-variable causal 

analysis that may include some or all of the following steps. First, those variables that have impacts in 

y should be identified. Since there are usually many factors affecting y directly or indirectly with 

different strengths, attention is often restricted to a few major variables that have noticeable impacts 

in y. To be simple while without loss of much generality, we assume that there is only a single 

affecting variable x and we have also collected its sample data on the same n subjects: x1,…xn. 

Second, the relationship between y and x should be examined and established, usually in a functional 

form. Since x is only one of the many factors affecting y, such relationship is usually characterized by 

a major part through a function g(x) reflecting the effect of x in y and an error term  reflecting the 

effects of the omitted factors (and measurement errors): 

y = g(x) +                          (1) 

Hence for the observed subjects we have 

yi = g(xi) + i,  1  i  n                                    (2) 

Eq.(1) or (2) is a general regression or curve-fitting model where g(x) will be referred to as a 

regression or fitting function in this paper. 

Third, the concrete form of the function g(x) should be estimated using the available sample data on y 

and x. This may include two cases. The first case is when the functional form of g(x) is known but 

with some unknown parameters. For example, based on theory and experience, g(x) may be taken as 
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linear (a + bx), polynomial (e.g., a + bx + cx2), exponential (e.g., a + becx), or logistic (e.g., a/(1 + 

becx)), with a, b and c being unknown parameters. This is the common case where the objective is to 

estimate the unknown parameters using the sample data. The second case is when the functional form 

of g(x) is unknown, and our objective is to estimate this unknown function using observational data. 

Fourth, the goodness of model-fitting should be evaluated, which may also include two cases. The 

first case is when the probability density function for error , h(), is known but with some unknown 

parameters. Usually  can be assumed to be normal with 

h() = [exp(-0.52/2)]/[(2)0.5],  

where  is ’s standard deviation, but may also follow other distributions (e.g., lognormal). In this 

common case the objective is to estimate the unknown parameters in g(x) as well as in h() using 

observational data. With ’s and hence y’s distribution estimated, we can then evaluate the accuracy 

of the parameter estimates and the goodness of the overall model-fitting. The second case is when the 

functional form of h() is unknown, and our objective is to estimate this unknown density using 

observational data and then to evaluate the model-fitting. 

It should be noticed that, without estimating h() or without any information on the error distribution, 

it is also possible to evaluate the goodness of model-fitting, e.g., through re-sampling techniques such 

as bootstrapping and jackknifing or through studying the large sample properties of the model 

estimates. 

Finally, the values of y corresponding to new values of x should be forecast and the accuracy of such 

forecast should be evaluated. With g(x) estimated, such forecast is straightforward. With h() 

estimated, evaluating the forecast accuracy is also not difficult. Even without estimating h(), it is still 

possible to evaluate the forecast accuracy through bootstrapping or jackknifing methods.  

The estimation of model (1) can also be considered from another perspective. For two random 

variables X and Y with joint density hX,Y(x,y), the marginal density of X can be obtained by 

integrating hX,Y(x,y) with respect to y as hX(x) = hX,Y(x,y)dy and the conditional density of Y given X 

is given as hY|X(y|x) = hX,Y(x,y)/hX(x). Given a realization or observation of X: X = x, there may be 

many corresponding Y values whose mean is the so-called conditional expectation of Y calculated as: 

u(x) = E[Y|X=x] = yhY|X(y|x)dy = yhX,Y(x,y)dy/hX(x). Denoting  = Y – u(x), then we have Y = u(x) 

+  where E[|X = x] = 0, and for any pair of observation (xi, yi) on (X, Y) we have yi = u(xi) + i. 

This is the same as the above regression model (1) or (2). Thus, estimating g(x) in model (1) is 

essentially an estimation of the conditional expectation. In other words, model (1) can also be 

estimated with the help of the relevant density estimates.  

Among the various issues or steps in estimating the general model (1) as outlined above, choosing an 

appropriate estimation method from many alternatives may be the most influential one, or at least an 

important starting point, especially for practitioners. The current paper is just so oriented to provide a 

practical review of and operational guide to some statistical methods available in the classical 

literature for estimating model (1) or more general regression models. For that purpose we first in 

Section 2 outline the popular least squares (LS) method in linear regression, followed by a description 

of the nonlinear regression procedures, to estimate model (1) when g(x) is of known form with 

unknown parameters. Then in Section 3 we turn to the case when g(x) in model (1) is of unknown 

form and present a number of nonparametric methods to estimate the unknown g(x), including the 

kernel method, series method, penalized LS method, spline method, and the method of sieves. Since 

density estimation is important by itself and helpful in estimating model (1) as indicated above, we 

describe several (nonparametric) methods to estimate the unknown densities in Section 4. Some 

concluding remarks are offered finally in Section 5. 

2. PARAMETRIC METHODS FOR ESTIMATING REGRESSION MODELS 

2.1.  Linear Regression 

The general regression model (2), yi = g(xi) + i, 1  i  n, is mainly characterized by the regression 

function g(x), which can be of either known form with a few unknown parameters or unknown form. 

Let us first consider the parametric case. Except for the trivial case when g(x) is a constant which can 
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easily be estimated as y’s sample mean, the simplest and most common case is a linear regression 

model with g(x) being linear (i.e., g(x) = a + bx): 

yi = a + bxi + i,  1  i  n                       (3) 

Naturally, appropriate estimates for a and b in model (3) should be found in such a way that the errors 

1, …, n are as small as possible, i.e, the observational data points (x1, y1), …, (xn, yn) are close to the 

straight line y = a + bx as much as possible. A straightforward and actually more reliable realization 

of this intuitive idea is the least absolute deviations (LAD) method which estimates a and b by 

minimizing the sum of the absolute errors (Bloomfield and Steiger 1983; Harris 1950): 

Min 1in|i| = 1in|yi – (a + bxi)| 

However, computational difficulties in obtaining the LAD estimates make it seldom adopted by 

practitioners. In contrast, the computationally easy LS approach to estimating a and b by minimizing 

the sum of the squared errors can be performed in many computer packages and even in some 

calculators and hence is much more popular in practice: 

Min 1in(i)2 = 1in[yi – (a + bxi)]2                                  (4) 

Denoting the sample means of x and y as x  = 1in xi/n and y  = 1inyi/n, then the LS estimates for 

a and b can easily be solved out from minimization problem (4), a simple quadratic programming, as: 

b̂  = 1in(xi – x )(yi – y )/1in(xi – x )2 = 1in[(xi – x )/1kn(xk – x )2]yi 

â = y  – b̂ x  = 1in[1/n – x (xi – x )/1kn(xk – x )2]yi 

Clearly, both â and b̂  are weighted sums of y1, …, yn. The model-fitted value of yi corresponding to xi 

can then be calculated as: 

ŷi = â + b̂ xi = ( y  – b̂ x ) + b̂ xi = y  + (xi – x ) b̂   

= 1jn yj/n + (xi – x )1jn[(xj – x )/1kn(xk – x )2]yj  

= 1jn[1/n + (xi – x )(xj – x )/1kn(xk – x )2]yj  1jn[wj(xi)]yj                              (5) 

which is a weighted average of y1, …, yn, where the normalized weight 

wj(xi)  1/n + (xi – x )(xj – x )/1kn(xk – x )2  

is linear in xi, dependent on the distance between xi and the sample mean x , and especially satisfies 

the normalization condition of 1jn[wj(xi)] = 1 (for any xi). 

Without any conditions imposed, we can evaluate the overall LS fitting by examining the so-called R-

square –– that portion of the sample variance of y explained by the model: 

R2 = 1in(ŷi – ŷ )2/1in(yi – y )2                      (6) 

where ŷ  = 1in ŷi/n is the sample mean of the fitted ŷ. 

Under some general conditions, the LS estimates are unbiased, consistent, and best linear unbiased 

estimators. If we further assume that the errors are normally distributed, then y1, …, yn and hence the 

LS parameter estimates are also normally distributed, and therefore their accuracies can be evaluated. 

If the errors are normally distributed, we can also use the maximum likelihood (ML) method to obtain 

estimates for the parameters and evaluate their accuracies. For more about the LS as well as the ML 

estimation methods, interested readers may consult appropriate textbooks on statistics or 

econometrics, such as Davidson and MacKinnon (2004), Davison (2003), Gelman and Nolan (2002) 

and Middleton (2004). 

2.2. Nonlinear Regression 

If g(x) in model (1) is nonlinear with some unknown parameters, the parameters can also be estimated 

using sample data and the LS method. One simple case is when g(x) is polynomial: g(x) = a0 + a1x + 

a2x2 + … + amxm, then we can use the LS method similarly as in the linear regression case to get 
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estimates for the parameters a0, a1, a2, …, am. Another simple case is when our model is exponential: y 

= aebx, which can first be converted into a linear one: ln(y) = ln(a) + bx + ln(), and then be estimated 

by the LS method. 

For general nonlinear function of known form, g(x)  g(, x), where  is a column vector of the 

unknown parameters, we have the general nonlinear model: yi = g(, xi) + i, 1  i  n. We can still 

apply the LS-type method to get the parameter estimate, ̂ , by minimizing the sum of the squared 

errors as in the LS Eq.(4) for linear regression: 

Min 1in(i)2 = 1in[yi – g(, xi)]2 

For example, we can first linearize g(, xi) at an appropriately-determined initial estimate 0: g(, xi)  

g(0, xi) + (g(0, xi)/)T( – 0), and then get a new estimate 1 by minimizing  

1in{yi – [g(0, xi) + (g(0, xi)/)T( – 0)]}2 

Repeating this process until two consecutive estimates t and t+1 are sufficiently close we can obtain 

the final parameter estimate ̂   t+1. This is the popular Gauss-Newton iterative method. Another 

more effective approach is to directly apply the popular Newton-Raphson nonlinear optimization 

method to the objective function 1in[yi – g(, xi)]2 to get the parameter estimate ̂ .  

As in linear regression, without any conditions imposed on the nonlinear regression model we can still 

evaluate its overall LS-fitting by examining the R2 as given by Eq.(6) with ŷi = g( ̂ , xi) being the 

model-fitted value of yi and ŷ  = 1in ŷi/n being the sample mean of the fitted ŷ. However, no matter 

whether the error distribution is of known or unknown form in a nonlinear regression model, it is not 

easy to get the distributions for its parameter estimates and hence not easy to evaluate their accuracies. 

For more about estimating nonlinear regression models, interested readers may consult appropriate 

textbooks on statistics or econometrics, such as Davidson and MacKinnon (2004), Davison (2003), 

Gelman and Nolan (2002) and Middleton (2004) as cited in Section 2.1. 

3. NONPARAMETRIC METHODS FOR ESTIMATING REGRESSION MODELS 

3.1. Local Regression Method 

For regression model (2), if the functional form of g(x) is unknown, then we are facing with the so-

called nonparametric estimation of g(x) using sample data (x1, y1), …, (xn, yn). Consider a simple case 

when X is a discrete random variable, and let one of its possible values be x*. Then we can check 

how many X-observations x1,…,xn equal to x*. To be simple, suppose the first n* X-observations 

equal to x*: xi = x*, 1  i  n*. Then a sensible estimate for the corresponding y* = g(x*) + * is the 

average of the first n* Y-observations: ŷ* = ĝ(x*) = 1in* yi/n*, which is a consistent estimate if n* 

  as n  . Clearly,  

n* = 1jn* I(xi = x*) = 1in I(xi = x*) = 1in I(-0.5  xi – x*  0.5) 

= 1in I(-0.5  (xi – x*)/  0.5) 

where I() is an indicator or characteristic function equal to 1 if condition  holds and zero 

otherwise, and  is a bandwidth smaller than the distances between any pair of the distinct X-

observations. Hence, 

ŷ* = ĝ(x*) = 1in* yi/n* 

= 1in yi I(-0.5  (xi – x*)/  0.5)/1jn I(-0.5  (xj – x*)/  0.5)  

 1in [wi(x*)]yi                        (7) 

i.e., the estimated ŷ* or ĝ(x*) corresponding to x* equals to the weighted average of all the observed 

Y-values, where the normalized weight:  

wi(x*) = I(-0.5  (xi – x*)/  0.5)/1jn I(-0.5  (xj – x*)/  0.5) 

depends on the distance between xi and x*, leading to the name of local regression estimate. 

The above estimate (7) is very similar to the so called kth-nearest neighbor (k-NN) estimates as 

initially proposed by Lofstgaarden and Quesenberry (1965), Royall (1966) and Watson (1964), in 

which  
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wi(x*) = k-1Iki(x*) 

where Iki(x*) = 1 if xi is one of the k nearest observations to x* and 0 otherwise. It is also noticed that 

the local regression estimate (7) as well as the k-NN estimate are consistent with the LS fitted y-

values as in Eq.(5) that are weighted averages of the observed y1, …, yn, a reasonable property for 

such fits.   

3.2. Kernel Method 

If X is a continuous random variable, considering its any exact value x* as above is not meaningful. 

Another problem with the simple g(x) estimate in Eq.(7) is its discontinuities at points xi  0.5. A 

natural expansion is to estimate y* = g(x*) + * as the average of such yi’s that correspond to those 

xi’s in a small interval around x*. This can be done by replacing the above indicator function I(-0.5  

(xi – x*)/  0.5) by a general kernel function K((xi – x*)/): 

ŷ* = ĝ(x*) = 1in yiK((xi – x*)/)/1jn K((xj – x*)/)                                (8) 

which is called the Nadaraya-Watson kernel estimate (Nadaraya 1964, 1965; Watson 1964), where a 

kernel K(x) is a continuous function such that K(x)  0 for any x, K(-) = K(+) = 0 and K(x)dx = 1, 

and the bandwidth  controls the kernel estimate’s smoothness. Commonly-used kernels include the 

Bartlett (1963) or Epanechnikov (1969) kernel with K(x) = 0.75(1 – x2)I(-1  x  1) and the normal 

kernel with K(x) = (2)-0.5exp(-0.5x2). 

If kernels are allowed to be discontinuous, then the indicator function I() in Section 3.1 is obviously 

a such kernel, called the uniform or naive kernel with K(x) = I(-0.5  x  0.5). Hence, the kernel 

estimate of g(x) in Eq.(8) is a direct generalization over the simple local regression estimate in Eq.(7). 

3.3. Series Method 

Series estimation method was initially proposed by Čencov (1962) using orthogonal Fourier series. 

Without loss of generality, suppose random variable X takes values on the unit interval [0, 1], 

implying that the conditional expectation g(x) is defined on [0, 1]. Then g(x) can be expressed as a 

Fourier series 0jajj(x), where the coefficients aj = [0,1] g(x)j(x)dx, 0  j  , and the orthogonal 

sequence {j(x)}0j  is taken as: 0(x) = 1, j(x) = 20.5cos(j+1)x when j is odd, and j(x) = 

20.5sin(jx) when j is even. 

Given sample observations (x1, y1), …, (xn, yn) on (X, Y), we need to estimate the coefficient  

aj = [0,1] g(x)j(x)dx  

in order to estimate g(x) = 0j ajj(x). To be simple, suppose x1, …, xn are distinct from each other 

and are ranked as 0  x1 < x2 < … < xn  1, then we can divide the interval [0, 1] into n small non-

overlapping intervals A1, A2, …, An so that xi  Ai and, for any x  Ai, g(x)  g(xi)  yi, which leads 

to: 

aj = [0,1] g(x)j(x)dx = 1in Ai g(x)j(x)dx  1in yiAi j(x)dx 

That is, we get an estimate for aj as âj = 1in yiAi j(x)dx, and hence an orthogonal series estimate for 

g(x) = 0j ajj(x) is given by: 

ŷ = ĝm(x) = 0jm âjj(x) = 0jm[1in yiAi j(x)dx]j(x)  

= 1in yi[0jm j(x)Ai j(x)dx]                                  (9) 

where the cutoff point m in the infinite sum determines the degree of smoothing in the estimate, 

corresponding to the bandwidth  in the kernel estimates. It is noticed that, since âj is a weighted sum 

of y1, …, yn, the series estimate in Eq.(9) is too and hence consistent in this sense with the kernel 

estimate (8) and the LS estimate (5). 

3.4. Linear Spline Method 

A linear spline is a piece-wise continuous linear function with a number of linear functions joined 

together at some points called knots. For model (2): yi = g(xi) + i, 1  i  n, we can take ĝ(x) as a 

linear spline with the n observations (x1, y1), …, (xn, yn) as knots to estimate g(x). The so-obtained 
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ĝ(x) is a perfect match with the sample data, but this perfect match is practically useless. A sensible 

way is to find a linear spline ĝ(x) with fewer knots but still fitting the sample data satisfactorily. For 

this purpose, assume without loss of generality that g(x) is defined over a limited range [p, q]. Then 

we can use an (m+1)-knot spline ĝm(x) to approximate g(x). The m+1 knots, p = t0 < t1 < … < tm = q, 

are usually assumed to be equally spaced over [p, q] with width or mesh size  = (q-p)/m, i.e., tj = p + 

j, 0  j  m. Then  

ĝm(x)  = [(tj – x)/]g(tj-1) + [(x – tj-1)/]g(tj),   x  [tj-1, tj], 1  j  m 

More clearly, 

ĝm(x)  = [(t1 – x)/]g(t0) + [(x – t0)/]g(t1),  if x  [t0, t1] 

  = [(t2 – x)/]g(t1) + [(x – t1)/]g(t2),  if x  [t1, t2] 

  ………… 

  = [(tm – x)/]g(tm-1) + [(x – tm-1)/]g(tm), if x  [tm-1, tm] 

That is, over each sub-interval [tj-1, tj], 1  j  m, ĝm(x) is a linear function linking or passing through 

the two points: (tj-1, g(tj-1)) and (tj, g(tj)). Hence, if the mesh size  or each sub-interval is sufficiently 

small, ĝm(x) can approximate g(x) quite closely. 

To express the linear spline ĝm(x) more effectively, it is helpful to define m+1 triangle-type base 

functions as follows (Prenter 1976): 

  For j = 0 (right triangle with base width of  and height of 1): 

  Bm,0(x) = (t1 – x)/, if x  [t0, t1] 

   = 0,  otherwise 

  For j = 1, …, m-1 (symmetric triangle centered at tj with base width of 2 and height of 1): 

  Bm,j(x) = (x – tj-1)/, if x  [tj-1, tj] 

   = (tj+1 – x)/, if x  [tj, tj+1] 

   = 0,  otherwise 

  For j = m (right triangle with base width of  and height of 1): 

  Bm,m(x) = (x – tm-1)/, if x  [tm-1, tm], 

    = 0,  otherwise 

Then the linear spline ĝm(x) can be written as a weighted sum of these base functions with g(tj) as 

weights: 

ĝm(x) = 0jm g(tj)Bm,j(x)                     (10) 

It can be proved (Prenter 1976) that such ĝm(x) is a good approximation to g(x) as m   (i.e., there 

are more and more knots or sub-intervals) or equivalently as   0 (i.e., each sub-interval is narrower 

and narrower):  

 ĝm(x) – g(x)  (g(2)(x) /4)2                    (11) 

Hence, we can use the linear spline ĝm(x) as defined in Eq.(10) to fit the unknown g(x) with the n data 

points (x1, y1), …, (xn, yn) by minimizing the sum of the squared fitting-errors, still an LS-type 

approach: 

Min 0in[yi – ĝm(xi)]2 = 0in[yi – 0jm g(tj)Bm,j(xi)]2                               (12) 

As long as we choose no more than n knots (i.e., m  n-1), we can find from Eq.(12) the optimal g(x) 

values at these knots: g(tj), 0  j  m+1. Connecting these m+1 knots by straight lines we get 

ĝm(x) = 0jm g(tj)Bm,j(x)  
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as in Eq.(10), the optimal linear spline estimate for g(x). If our sample size n is large, then we can 

choose more knots (i.e., a bigger m or a smaller ), which can increase the accuracy of such linear 

spline estimation according to Eq.(11). 

3.5. Penalized Ls Method 

For our model (2): yi = g(xi) + i, 1  i  n, where g(x) is an unknown function which in this Section is 

assumed to be mth-order differentiable. The traditional LS method to obtain the optimal g(x) by 

minimizing 1in (i)2  1in [yi – g(xi)]2 does not work here, since any mth-order differentiable 

function passing through the n sample points (x1, y1), …, (xn, yn) is such an optimal solution with 

1in[yi – g(xi)]2 reaching the minimum possible value of 0 and there are infinitely many such 

functions. For example, for any real number r, it is possible to find a polynomial with n coefficients: 

ĝ(x) = xr(a0 + a1x + a2x2 + … + an-1xn-1), which is mth-order differentiable and passes through all the n 

sample points. 

To resolve this problem, one possible way is to introduce a penalty function into the objective 

function to make the minimization problem meaningfully solvable, i.e., to get the optimal g(x) by 

solving the following modified minimization problem: 

Min 1in[yi – g(xi)]2 + [g(m)(x)]2dx                                 (13) 

where g(m)(x) is the mth-order derivative of g(x) and  > 0 is a smoothing parameter. In Eq. (13), 

minimizing the original LS term 1in[yi – g(xi)]2 is as before to guarantee a good fit of g(x) to the 

sample data, while minimizing the penalty term [g(m)(x)]2dx is to require the smoothness of g(x) in 

the sense of having a small mth-order derivative. It turns out that the optimal g(x), ĝ(x), is a 

polynomial spline of order 2m-1 with possible knots at the sample data points (see Schoenberg (1964) 

for the case of m = 1, Reinsch (1967) for the case of m = 2, and Kimeldorf and Wahba (1970a and 

1970b) for the general case). It is also noticed that  controls the degree of smoothness of g(x): when 

  0 the original LS term dominates and ĝ(x) tends to be an interpolating function of the sample 

data, fitting all the n data points exactly and making 1in[yi – g(xi)]2 = 0; and when    the 

penalty term dominates and ĝ(x) tends to be the LS polynomial of order m-1 (since [g(m)(x)]2dx tends 

to be zero if and only if g(x) is a polynomial of order m-1) passing through the sample data points. 

3.6.  Method of Sieves 

As mentioned above, when we use the LS method to estimate the unknown g(x) in model (2): yi = 

g(xi) + i, 1  i  n, there are infinitely many functions which minimizes 1in(i)2  1in[yi – g(xi)]2. 

This is mainly due to the fact that, unlike traditional linear regression with only a few unknown 

parameters, here the “parameter” space S = {g(x) | g(x) is continuous or differentiable over [a, b]} is 

too “big” with infinite dimensions. So another possible approach to resolving this problem is to limit 

the infinite-dimensional functional space S to a series of increasingly bigger (but still finite-

dimensional) functional spaces, S0  S1  S2  S3  …, which more and more approaches S. Here the 

functional-space series {Sm}0m  is called a “sieve”. Within each finite-dimensional space Sm, we can 

get the optimal solution ĝm(x) by minimizing 1in[yi – g(xi)]2 subject to g(x)  Sm. And the limit of 

ĝm(x) is what we want. This is the so-called “method of sieves” initially suggested by Grenander 

(1981). In practical applications, depending on our sample size, usually a moderate m such as m = 5, 

10 or 20 may be enough, i.e., we may take ĝ5(x), ĝ10(x) or ĝ20(x) as the final solution. 

So the key for applying the method of sieves is to construct appropriate sieves {Sm}0m. One 

example is based on the Fourier series expansions as discussed in Section 3.3: 

Sm = {g(x) | g(x) = 0jm ajj(x)} 

Another example comes from the splines as discussed in Section 3.4: 

Sm = {g(x) | g(x) = 0jm g(tj)Bm,j(x)} 

Yet a further example corresponds to the penalized LS estimation in Section 3.5: 

Sm = {g(x) | g(x) is (m+1)th-order differentiable with [g(m+1)(x)]2dx < } 

For more about the method of sieves, interested readers may consult, e.g., Geman and Hwang (1982) 

and Grenander (1981). 
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4. ESTIMATING DENSITY FUNCTIONS 

Estimating the probability density function h(x) of a random variable X given its sample observations 

x1, …, xn is of theoretical and practical values. If h(x) is of known form with some unknown 

parameters, then we can use the popular ML method to estimate these parameters and hence to clearly 

determine X’s distribution. The moment method can also be applied to solve the same problem by 

matching X’s theoretical moments with its sample ones. If the form of h(x) is unknown, then we need 

to apply nonparametric methods to estimate it, much the same way as we estimate the unknown 

regression function g(x) in Section III with certain differences since h(x) is a density function, not that 

arbitrary as g(x).  

On the other hand, density estimation can also help estimate the regression function g(x), as 

mentioned in the introduction Section. Here a noticeable fact is that g(x) is the conditional expectation 

of Y given X = x, which depends on the joint density of X and Y. Hence, if we can estimate joint 

densities, we can then estimate the corresponding regression functions. 

4.1. Local Histogram Estimate of Density 

Consider a random variable X with realizations x1, …, xn. If X is discrete, then its density h(x) equals 

to the probability of X = x. A common and consistent estimate for h(x) is the empirical histogram 

whose function form is:  

ĥ(x) = {number of x1,…,xn equal to x}/n = n-11in I(xi = x) 

If X is continuous, then h(x) can be approximated as the probability of X  [x – 0.5, x + 0.5] for 

small  values, and hence can also be estimated by the empirical histogram as: 

ĥ(x) = {number of x1,…,xn within [x – 0.5, x + 0.5]}/n  

= n-11inI(x – 0.5  xi  x + 0.5) = n-11inI(-0.5  (xi – x)/  0.5) 

from which h(x) can be estimated as: 

ĥ(x) = (n)-11inI(-0.5  (xi – x)/  0.5)  

Clearly, ĥ(x) has discontinuities at xi  0.5, and a lot of observations are needed to make it 

sufficiently smooth and close to the true density h(x). 

4.2. Kernel Estimate of Density 

To make the above histogram-type density estimates smooth, a sensible way is to replace the indicator 

function I(x) by a continuous kernel function K(x): 

ĥ(x) = (n)-11in K((xi – x)/)                                 (14) 

which is also called the Rosenblatt (1956, 1969) kernel estimate. Under general conditions, the kernel 

density estimate is asymptotic unbiased and consistent, and the bandwidth  can be optimally chosen 

to be proportional to n-0.2 (see, e.g., Silverman 1986).  

As mentioned in Section 3.2, kernel function K(x) can be selected as the Bartlett or Epanechnikov 

kernel or the normal kernel, among other choices. Interested readers may consult Härdle (1990) and 

Silverman (1986) for more discussions about kernels, but it should be noted that the specific nature of 

the selected kernel is usually not critical to the performance of the density estimate (Pagan and Ullah 

1999). 

4.3. Estimating Joint and Marginal Densities and Conditional Expectations 

For two random variables X and Y, their joint density h2(x, y) can similarly be estimated using sample 

observations (x1, y1), …, (xn, yn) as the following two-dimensional histogram: 

ĥ2(x, y) = (n)-21in I(x – /2  xi  x + /2)  I(y – /2  yi  y + /2) 

= (n)-21in I(-1/2  (xi – x)/  1/2)  I(-1/2  (yi – y)/  1/2) 

or more generally using a two-dimensional kernel as: 
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ĥ2(x, y) = (n)-21in K2((xi – x)/, (yi – y)/) 

It is clear that K1(x) = K2(x, y)dy is a one-dimensional kernel, and the kernel estimate of the marginal 

density h1(x) is 

ĥ1(x) = ĥ2(x, y)dy = (n)-21in K2((xi – x)/, (yi – y)/)dy 

= (n)-11in K2((xi – x)/, y)dy = (n)-11in K1((xi – x)/) 

which is the same as the previous kernel density estimate in Eq.(14).  

Since the conditional expectation of Y given X is u(x) = E(Y|X=x) = yh2(x,y)dy/h1(x), a kernel 

estimate for it is proposed as follows (Nadaraya 1964, 1965; and Watson 1964): 

û(x) = yĥ2(x, y)dy/ĥ1(x)  

= (n)-21in yK2((xi – x)/, (yi – y)/)dy/[(n)-11jn K1((xj – x)/)] 

If the two-dimensional kernel K2(x, y) is symmetric (on y), then the above expression can be reduced 

to (by making transformation z = (yi – y)/ in the numerator integral): 

û(x) = 1in yiK1((xi – x)/)/1jn K1((xj – x)/) 

which, a weighted average of the observed y1, …, yn, is just a formal derivation of the previously 

obtained kernel estimate for the regression function as in Eq.(8). 

4.4. Series Estimate of Density 

Without loss of generality, now suppose X is a random variable with density h(x) on the unit interval 

[0, 1]. Then h(x) can be expressed as a Fourier series 0j cjj(x) as in Section 3.3, where the 

coefficients 

cj = [0,1] h(x)j(x)dx = E[j(X)], 0  j   

and the orthogonal sequence {j(x)}0j is taken as: 0(x) = 1, j(x) = 20.5cos(j+1)x when j is odd, 

and  j(x) = 20.5sin(jx) when j is even. 

Given sample observations x1, …, xn on X, an obvious estimate for the coefficient cj = E[j(X)] is ĉj = 

n-11inj(xi). Hence, as first suggested by Čencov (1962), an orthogonal series estimate for density 

h(x) = 0j cjj(x) can be given by: 

ĥm(x) = 0jm ĉjj(x) = n-10jm[1inj(xi)]j(x) 

where as before the cutoff point m in the infinite sum determines the degree of smoothing in the 

estimate, corresponding to the bandwidth ω in the kernel-type estimates. 

4.5. Penalized Likelihood Estimate of Density 

By conventional definition, the likelihood of the unknown density h(x) is L(h)  L(h|x1,…,xn)  1in 

h(xi), and log(L(h)) = 1in log(h(xi)), which obviously has no maximum over the universe of all 

densities. As in the penalized LS estimate of the unknown regression function g(x) discussed in 

Section 3.5, here we can also get the penalized ML estimate of the unknown density function h(x) by 

adding to log(L(h)) a term S(h) that represents a smoothness requirement for h(x). That is, we can get 

the estimate ĥ(x) of h(x) by solving the following maximization problem: 

Max  iinlog[h(xi)] – S(h)                                  (15) 

over all densities h(x) that satisfy h(x)  0 for any x, h(x)dx = 1, and S(h) < , where  > 0 is a 

smoothness-control parameter. 

Two good smoothness-control measures are suggested by Good and Gaskins (1971, 1980) as S1(h) = 

{[h(1)(x)]2/h(x)}dx and S2(h) = [h(2)(x)]2dx. Other forms of S(h) can also be adopted (see, e.g., 

Silverman 1982, 1984). Interestingly, it is showed (Silverman 1984) that the above penalized 

likelihood estimate can essentially be regarded as a special kernel estimate with variable bandwidths. 

It is also noticed that, since Eq.(15) cannot produce an explicit expression for ĥ(x), certain 

computational procedures have emerged to solve the maximization problem (see, e.g., Good and 

Gaskins 1971, 1980). 
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4.6. Sieve Estimate of Density 

Instead of adding a penalizing term in the likelihood as in Eq.(15), we can also use the method of 

sieves to directly maximize L(h) or log(L(h)) subject to h(x)  Sm, where the sieve {Sm}0m is a 

series of increasingly bigger functional spaces. A simple sieve comes from the empirical histograms 

as discussed in Section 4.1: 

Sm = {h(x)h(x) is a density and is constant when j-1  (m+1)x < j, j = 0, 1, 2, …} 

Another example is based on the Fourier series expansions as discussed in Section 4.4: 

Sm = {h(x)h(x) = 0jm cjj(x)} 

Yet a further example corresponds to the normal kernels in Section 4.2: 

Sm = {h(x)h(x) = m(2)-0.5exp(-0.5m2(x-y)2)dH(y), H is an arbitrary distribution} 

For more about the method of sieves for estimating density functions and regression models as well, 

interested readers may consult, e.g., Geman and Hwang (1982) and Grenander (1981). 

5. CONCLUDING REMARKS 

This paper provides a practical overview of some classical statistical methods to estimate the general 

regression model: y = g(x) + , or its observational form: yi = g(xi) + i, 1  i  n. We first briefly 

present the parametric approaches when g(x) is of known form with unknown parameters, notably the 

LS method for linear and nonlinear regression models. Then we discuss the case when the functional 

form of g(x) is unknown and describe a number of nonparametric methods for estimating g(x). We 

also outline some nonparametric methods for estimating the unknown probability densities, which is 

theoretically and practically important by itself and useful in estimating regression models. The 

methods reviewed in this paper are of course not exhaustive, but certainly many popular methods 

have been covered. Our review is mainly application-oriented with much attention paid to simple 

while still complete descriptions of the various estimation methods for practitioners’ easy 

understanding. Also, we provide concise and sufficient operational or procedural details for each 

method reviewed, so that practitioners can easily apply the appropriate method(s) to their specific 

estimation problems through straightforward computations or computerized programming.  

We can without difficulty calculate the R2 for each parametric or nonparametric regression approach 

as in the traditional LS method to evaluate the goodness-of-fit of an estimated model, and we can also 

easily make forecasts based on the estimated models. However, in most cases this paper does not 

involve the properties of the estimates produced by each method reviewed, such as unbiasedness, 

efficiency, and consistency, mainly due to their mathematical complexities that are difficult to be 

appropriately handled in our brief review paper. Interested readers may consult such publications as 

our listed References to examine the statistical properties of the relevant methods’ estimates. 

For simplicity, this paper focuses on the case of only one explanatory variable. However, the 

parametric and nonparametric methods reviewed can be extended to the case of multiple explanatory 

variables without great difficulty. It is noticed that, when multiple explanatory variables are presented, 

the model may not be fully parametric or nonparametric but can instead be partly parametric and 

partly nonparametric, i.e., semi-parametric. For example, if we have two explanatory variables x and 

z, then the regression model becomes y = g(x, z) + , for which three cases are possible. The first case 

is that g(x, z) is of known form with unknown parameters, e.g., g(x, z) = a + bx + cz, then the model is 

fully parametric and the parametric methods as reviewed in Section II can easily be extended to 

estimate the parameters involved. The second case is when g(x, z) is of unknown form, then the 

model is fully nonparametric and the nonparametric methods as reviewed in Sections III and IV can 

be appropriately extended to estimate g(x, z). The third case is when g(x, z) is semi-parametric, e.g., 

g(x, z) = a + bx + f(z) where a and b are parameters and f(z) is of unknown form, then we need the so-
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called semi-parametric methods to estimate both the parameters and the unknown function(s) 

involved. A number of semi-parametric methods are available to estimate various types of semi-

parametric models, and interested readers may consult, e.g., Horowitz (1998) and Ruppert et al. 

(2003), to examine and apply such estimation methods. 
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