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1. INTRODUCTION 

The first assumption related to regression model is that all relevant variables should be included in the 

model. An economic investigation begins with the specification of the econometric model underlying 

the phenomenon of interest [1]. Some important questions that arise in the specification of models 

include what variables should be included in the model, what are the probabilistic assumptions made 

about the (dependent variable), (independent variable and random error term). The specification of a 

linear regression model consists of a formulation of the regression relationships and of statements or 

assumptions concerning the explanatory variables and disturbances. If any of these is violated, e.g., 

incorrect functional form, incorrect introduction of disturbance term in the model etc., then specification 

error occurs. The classical assumption that the error term is independent of the explanatory variables is 

violated by exclusion of a relevant variable. This error term can be seen as a collection of everything 

that is not accounted for by observable variables included in the model. In a classic regression equation, 

the estimated is little affected by omitted variables provided these are orthogonal to the remaining 

regressors [2]. One often faces the problem of estimating a mis-specified model in empirical research 

and specification problem appears to have received the most attention in empirical work by researchers 

such as Hoch [3], Griliches [4], and Mundlak [5]. Misspecification are the errors associated with the 

specification of the model, which can take many forms such as omission of relevant variable, inclusion 

of unnecessary variables, choosing a wrong functional form, errors of measurement etc. Omitting 

relevant variables from the model as a specification error has been particularly well studied relative to 

multiple regression analysis and the most serious consequence of this type of error is likely the biased 

estimates of the regression coefficients. Omitted variable bias (OVB) is one of the most common and 

vexing problems in ordinary least squares regression. It occurs when a variable that is correlated with 

both the dependent and one or more included independent variables is omitted from a regression 

equation [6]  Even under the conditions that the estimates are not biased, the power of the relevant 

statistical tests is somewhat adversely affected by the omission of the relevant variables [7]. According 

to Clarke [8] when a model is mis specified due to omitted variable, there is always the fear of omitted 

variable bias, a key underlying assumption is that the danger posed by omitted variable can be 

ameliorated by the inclusion of control variables. The bias is a function of the omitted variables 

coefficient times the correlation between the included and omitted variable.  Also, small amount of 

nonlinearity in control variables can also have a deleterious effect on the models considered [9]. The 
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complete regression analysis depends on the explanatory variables present in the model. In narrower 

sense, the specification error refers to explanatory variables.  It is understood in the regression analysis 

that only correct and important explanatory variables appears in the model. In practice, after ensuring 

the correct functional form of the model, the analyst usually has a pool of explanatory variables which 

possibly influence the process or experiment. Generally, all such candidate variables are not used in the 

regression modeling but a subset of explanatory variables is chosen from this pool. In practice, the 

researcher is likely to have some omitted variable bias because it’s impossible to control for everything 

that affects your dependent variable. When a model has the appropriate explanatory variables, but still 

fails to account for the relationship between the explanatory and response variables, then the model has 

functional form misspecification. If the model is mis specified then it may not be a reasonable 

approximation of the true data generation process. We make a functional form specification error when 

we choose the wrong functional form. Examples of function form misspecification include leaving out 

a squared variable or constraining dy/dx to be constant [10]. Specification errors can cause large 

forecasting errors [11], so it is of considerable importance to have means of fitting and choosing models 

in the presence of misspecification.  

Most studies on misspecification bias has emphasized on multicollinearity as a reason for omission or 

inclusion of variables [12 -16]. Given the forgoing concerns, we thus need model selection techniques 

which will guard us against the dangers of model misspecification. Again, most researchers rarely pay 

attention to the other aspects of misspecification. In particular, little note is made of the consequences 

of irrelevant variables, or of the effects of misspecification on the variance and mean square error of the 

regression estimates mainly because these results are not readily available [17]. In view of the 

importance of these aspects of misspecification in empirical research and in order to get a clearer 

picture, some major results of misspecification are presented in this paper. We shall consider the 

classical linear regression model where all the independent variables are non-stochastic and the error 

terms are homoscedastic and serially independent both for ill conditioned and data free from 

multicollinearity. This study therefore is on model selection in the presence of misspecification.  The 

rest of the paper is as follows: In Section 2, we consider misspecification error bias for omission of 

relevant variable and inclusion of irrelevant variable. Section 3 deals with the materials and methods 

which is followed by a numerical application in section 4 to x-ray the implications of each specification 

error. Section 5 concludes the work. 

2. MISSPECIFICATION ERROR BIAS 

Consider the model  

tktktti xxxy   ..............2211                                                                                                                      (1) 

ttkkktktti xxxxy    112211 ..............                                                                                           (2)  

where          Tt .,,.........2,1  

When equation (1) is the truth, but suppose for some reason a researcher decides to use equation (2), 

then (2) is a misspecified model because of the presence of the irrelevant variable Xk+1. When also 

equation (2) is the truth, equation (1) is a misspecified model because of the absence of variable Xk+1. 

When a relevant variable in the model is excluded, the specification error will affect the properties of 

OLS estimator, in the presence of such error, OLS estimators will be bias.  

 These two equations may be written in the matrix form as 

  XY                                                                                                                                                                                        (3) 

  XY                                                                                                                                                                                        (4) 

where Y is a vector of observations on the dependent variable, and X and X are matrices of independent 

variables in the equations (1) and (2) respectively. Without any loss of generality, the equation (3) may 

be rewritten as: 

  










 

0
1kXXY                                                                                                                                                                       (5) 

https://www.statisticshowto.datasciencecentral.com/explanatory-variable/
https://www.statisticshowto.datasciencecentral.com/explanatory-variable/
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where Xk+1 is a vector of observations on the independent variable 

When a relevant variable in the model is excluded, the specification error will affect the properties of 

OLS estimator, in the presence of such error, OLS estimators will be bias. Also when an incorrect 

functional form is chosen, then the model is mis specified.  

2.1. Omission of a Relevant Variable 

Consider the multiple linear regression model:  

  22110 XXY                                                                                                                                                       (6) 

For some reason such as unavailability of the data on X2, we construct a regression model without the 

X2 variable 

1110   XY                                                                                                                                                                        (7) 

In econometrics, this issue is known as “omitting a relevant variable”, if 02  , and this is a type of 

misspecification. Then, by omitting X2, its effect becomes part of the error term in the reduced model: 

221 X   

This implies: 

]/[]/[ 12211 XXEXE    

]/[]/[ 1221 XXEXE    

]/[]/)/([ 122121 XXEXXXEE    

]/[]/[ 1221 XXEXE    

]/[ 122 XXE      

Hence, 

]/[]/[( 1221101 XXEXXYE    

In general, whenever we have  

0]........,([ .1 kXXEE  

Theorem 1: In the classical linear regression model, omission of a variable specified by the truth 

introduces bias and decreases the variance in all the least squares estimates.  

Following Rao[17], Griliches [18] , The least squares estimates of the 3's in equation (1) are given by: 

  YXXX ''ˆ 1
                                                                                                                                                                            (6) 

Since equation (2) is the truth we may rewrite equation (6) as: 

    


XXXX ˆ''ˆ 1
 

     ''ˆ''
11
XXXXXXX


                                                                                                                                (7) 

Since all the independent variables are nonstochastic, taking expectation in (7) we have 

   XXXXE ˆ'')ˆ(
1

                                                                                                                                                               (8) 

The expected value of the regression coefficient of the independent variable x1 may be written as: 

The variance of the estimate vector   

       ˆˆˆˆ)ˆ( EEEV   
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    11
''''


 XXXXXXE   

  12 '


 XX  

That is, the “omission of relevant variables” in the analysis generates inconsistency and bias in 

estimating the effects of variables, though a reduction in the variance of the estimator. 

2.2. Inclusion of an Irrelevant Variable 

Another situation that often appears is the associated with adding variables to the equation that are 

economically irrelevant. The researcher might be keen to avoiding the problem of excluding any 

relevant variables, and therefore include variables on the basis of their statistical relevance. Some of the 

included variables could then be irrelevant economically.  

Theorem 2: In the classical linear regression model, inclusion of an irrelevant variable does not 

introduce bias but increases the variance in the least squares estimates  

Assume that the truth be given by equation (1), and let the misspecified model, equation (2), with the 

irrelevant variable Xk+1 be estimated. The least squares estimate of the misspecified model, equation 

(2), is given by 

  YXXX ''ˆ
1

                                                                                                                                                                         (10) 

Since equation (1), which may be written without loss of generality as equation (5), is the truth, we may 

rewrite equation (10) 

  
























0
''ˆ

1
XXXX                                                                                                                                                 (11) 

Therefore   









0


E                                                                                                                                                                 (12)    

This implies:     E  

The variance of the least squares estimates, given by equation (11)  is given by  

  12 ')(


 XXV                                                                                                                                                                      (13) 

The variance of the least squares estimates when the true equation (1) is estimated is 

  12 ')(


 XXV   

i.e.     2122121 /]/[ XXXEXXE    ]/[ 11 XE   

The estimates are still inconsistent and unbiased, and the only inconvenience is an increase of the 

residual variance and hence of the estimated standard deviation of the residual increased. 

3. MATERIAL AND METHODS 

The purpose of this paper is to evaluate the effect of omission of relevant variable and inclusion of 

irrelevant variable in a collinear and non-collinear models by using simulated incidence matrices and 

the COLLIN option in SAS 9.0 version PROC REG. Simulation study for investigating the effect of 

omission of relevant variable and inclusion of irrelevant variable in both collinear and non-collinear 

regression parameters consist of (x, y) vectors.  The simulation study is performed as follows: Consider 

the standard linear regression model given as  

  XY                                                                                                                                                                                      (14) 

 where: Y is an n x 1 vector of dependent variables  

X is an n x k matrix of regressors  
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β is a k x 1 vector of parameter  

e is an n x 1 vector of disturbance and is normally distributed with covariance matrix proportional to 

the identity matrix.  

Sample data for Y, X1, X2 and X3 were generated from a multivariate normal distribution (MVN) with 

several datasets of sample size 50, 100, 500 and 1000 with one response variable y and three predictors 

xi, i=1, 2, 3 were generated. The parameters of equation (14) were specified and initially fixed as β0 = 

1, β1 = 0.5, β2 = 0.5  and β3 = 0.5. We introduce an irrelevant variable (X3) by giving β3 = 50. Thereafter, 

we also subjected the coefficients to β0 = 1, β1 = 0.5, β2 = 0.5 and β3 = 2.5.   The levels of intercorrelation 

(multicollinearity) among the independent variables were determined by adjusting (u = 20, 50). By 

doing so in line with the objective, we obtain severe and no collinearity. To illustrate the effect of 

omission of relevant variable and inclusion of irrelevant variables on a collinear model, we first 

investigate collinearity between relevant independent variables, and then between relevant and 

irrelevant independent variables. We combine the findings to develop a decision matrix that researchers 

can utilize to determine which situation they may want to avoid, and when using it, outline strategies to 

detect and respond to potential multicollinearity issues. This enables a clear demonstration of the effect 

of inclusion of irrelevant variable to collinearity on regression and portray some conditions under which 

the various collinearity diagnostics are informative and some conditions where they are misleading. 

Secondly, we also create a model where X1 and X2  are  correlated (relevant to each other) and introduce 

a third variable X3 which is neither correlated to X1 nor X2  and then omit  either X1 or X2 (Omission of 

relevant variable). We then observed the model selection criteria statistics like MSE, AIC, BIC, R2. 

4. RESULTS AND DISCUSSION  

In this section, the result from the simulated data involving both omission of relevant variable and 

inclusion of irrelevant variable with three explanatory variables from multicollinear model and model 

free from collinearity were obtained. The criteria used for comparing evaluation of the performance of 

our estimators were MSE, AIC, BIC, R2. 

Case 1: Regression with inclusion of Irrelevant variable and omission of relevant variable in a 

collinear model  

Table1. Comparison of coefficients of the models between Inclusion of Irrelevant variable and Omission of 

relevant variable in a collinear model. 

N Variable  Parameter 

estimate  

Standard 

Error 

t-

value 

Prob.  

R2  

 

MSE 

 

AIC 

 

BIC 

 

VIF 

Inclusion of irrelevant variable (X3) 

 

50 

Intercept  1.2404 0.2474 5.01 0.0000  

 

0.999 

 

 

0.8885 

 

 

-7.9882 

 

 

-

5.3077 

0 

372.78 

371.17 

1.0851 

X1 1.0009 0.1705 4.74 0.0000 

X2 1.0039 0.1702 6.94 0.0000 

X3 -0.0039 0.0027 1.85 0.0703 

 

100 

Intercept  1.2571 0.2107 5.97 0.0000  

 

0.999 

 

 

1.0922 

 

 

21.5583 

 

 

23.888 

0 

410.16 

409.06 

1.0778 

X1 0.9124 0.1551 5.88 0.0000 

X2 1.0722 0.1557 6.89 0.0000 

X3 0.0027 0.0022 1.24 0.2169 

 

200 

Intercept  1.2021 0.1486 8.09 0.0000  

 

0.999 

 

 

1.0744 

 

 

32.6459 

 

 

34.808 

0 

460.64 

460.01 

1.0766 

X1 0.8749 0.1128 7.76 0.0000 

X2 1.1126 0.1130 9.85 0.0000 

X3 0.0019 0.0014 1.29 0.2000 

 

500 

Intercept  1.1060 0.0916 12.08 0.0000  

 

0.999 

 

 

1.0744 

 

 

32.6459 

 

 

34.808 

0 

445.86 

445.54 

1.0876 

X1 0.9114 0.0693 13.15 0.0000 

X2 1.0828 0.0693 15.62 0.0000 

X3 0.0013 0.0009 1.26 0.1969 

 

1000 

Intercept  1.0546 0.0643 16.39 0.0000  

 

 

 

 

 

 

 

0 

412.82 X1 0.9858 0.0470 20.96 0.0000 
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X2 1.0123 0.0471 21.46 0.0000 0.999 1.0744 32.6459 34.808 412.79 

1.0778 X3 0.0003 0.0007 0.38 0.7028 

Omission of relevant variable (X2) 

 

50 

Intercept  1.4046 1.2862 1.09 0.2804  

 

0.578 

 

 

4.620 

 

 

155.93 

 

 

157.93 

0 

13.804 

13.804 
X1 1.2442 0.4269 2.91 0.0054 

X3 -0.3200 0.4031 -0.79 0.4313 

 

100 

Intercept  1.4355 1.0408 1.38 0.1710  

 

0.569 

 

 

5.478 

 

 

343.10 

 

 

345.23 

0 

20.20 

20.20 
X1 1.1508 0.3447 3.34 0.0012 

X3 -0.2874 0.3375 -0.85 0.3966 

 

200 

Intercept  1.1297 0.7469 1.51 0.1320  

 

0.586 

 

 

5.4308 

 

 

679.81 

 

 

681.81 

0 

19.38 

19.38 
X1 1.0100 0.2338 4.32 0.0000 

X3 -0.1237 0.2282 -0.54 0.5885 

 

500 

Intercept  0.4964 0.4609 1.08 0.2820  

0.626 

 

5.3038 

 

1671.41 

 

1673.4 

0 

22.72 

22.72 
X1 1.0304 0.1573 6.55 0.0000 

X3 -0.0800 0.1542 -0.52 0.6040 

 

1000 

Intercept  0.3306 0.3218 1.03 0.3045  

0.640 

 

5.2553 

 

3321.48 

 

3323.5 

0 

22.12 

22.12 
X1 0.9095 0.1092 8.33 0.0000 

X3 0.0687 0.1070 0.64 0.5209 

Table 1 gives an overview of the consequences of including or not including a relevant versus irrelevant 

collinear variable in a regression model. Naturally, not including an irrelevant variable has no 

detrimental consequences on regression results. When the irrelevant variable was included in the 

collinear model as shown in table 1, the t-value for the irrelevant variable (X3) is insignificant as 

expected. The results from the exercise also shows the mean square error increased as the sample size 

increases. The coefficient of determination was very high (0.999) all through the samples and the VIF 

showed a severe collinearity. A look at the AIC and BIC indicated that under such severe collinearity, 

the least sample size (n = 50) outperformed others. In the case of omission of relevant variable, the 

coefficient of determination dropped to 0.57 but later increased slightly to 0.67 with increase in the 

sample. The mean square error was five times compared to omission of relevant variable and Again the 

smallest sample (n =50) appeared to better than others. In comparison, the omission of relevant variable 

shows to be more sensitive than inclusion of irrelevant variable in a collinear model.      

Case 2: Regression with inclusion of irrelevant variable and omission of relevant variable but free 

from multicollinearity 

Considering the case of inclusion of irrelevant variable and omission of relevant variable but free from 

multicollinearity as in table 2 below, similar effect was also demonstrated with the simulation studies 

when a model without multicollinearity was considered. A closer look at the table indicates that for 

inclusion of irrelevant variable (X3), the coefficient of determination was very high (0.999) as in case 

1. Again, the mean square error increased with increase in sample size and the sample size of 50   (n = 

50) indicated a better model than with higher sample size judging from the AIC and BIC values. With 

omission of relevant variable (X2), the coefficient of determination dropped slightly but later increased 

at n = 500 and 1000. The AIC and BIC also increased with increase in sample size. Comparing both 

scenario of inclusion of irrelevant variable and omission of relevant variable in a model free from 

collinearity, we observed that inclusion of irrelevant variable is preferred than omission of relevant 

variable. Furthermore, the standard error in the model for inclusion of irrelevant variable appear to be 

lower than omission of relevant variable. 

Table2. Regression model without collinearity 
n Variabl

e  

Paramete

r estimate  

Standar

d Error 

t-

value 

Prob.  

R2  

 

MSE 

 

AIC 

 

BIC 

 

VIF 

Inclusion of irrelevant variable (X3) 

 

50 

Intercept  1.2493 0.2486 5.03 0.000

0 

 

 

0.99

9 

 

 

0.889

1 

 

 

-7.9252 

 

 

-

5.2447 

0 

1.283

6 X1 0.9861 0.006 102.8

0 

0.000

0 
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X2 1.0041 0.0057 176.9

2 

0.000

0 

1.199

8 

1.080

1 
X3 0.0050 0.0027 1.83 0.070

3 

 

100 

Intercept  1.2395 0.2145 5.78 0.000

0 

 

 

0.99

9 

 

 

1.095

3 

 

 

22.119 

 

 

24.449 

0 

4.662

2 

4.552

4 

1.079

3 

X1 0.9851 0.0158 62.54 0.000

0 

X2 1.0007 0.0164 60.86 0.000

0 

X3 0.0025 0.0022 1.18 0.241

3 

 

200 

Intercept  1.1999 0.1453 8.26 0.000

0 

 

 

0.99

9 

 

 

1.074

4 

 

 

32.650

7 

 

 

34.813 

0 

1.308

8 

1.229

8 

1.075

7 

X1 0.9856 0.0058 171.4

4 

0.000

0 

X2 1.0021 0.0032 314.1

4 

0.000

0 

X3 0.0019 0.0014 1.28 0.200

5 

 

500 

Intercept  1.0862 0.0898 12.10 0.000

0 

 

 

0.99

9 

 

 

1.053

8 

 

 

56.417

5 

 

 

58.482 

0 

1.363

1 

1.280

7 

1.080

9 

X1 0.9921 0.0037 271.6

5 

0.000

0 

X2 1.0030 0.0019 528.4

3 

0.000

0 

X3 0.0012 0.0001 1.24 0.214

6 

 

100

0 

Intercept  1.0535 0.0622 16.93 0.000

0 

 

 

0.99

9 

 

 

1.046

3 

 

 

94.583

5 

 

 

96.616 

0 

1.304

6 

1.238

9 

1.067

5 

X1 0.9980 0.0025 399.3

2 

0.000

0 

X2 1.0002 0.0013 749.6

2 

0.000

0 

X3 0.0003 0.0007 0.38 0.707

3 

Omission of relevant variable (X2) 

 

50 

Intercept  1.4734 0.5341 2.76 0.280

4 

 

 

0.56

9 

 

 

2.054

3 

 

 

74.61 

 

 

74.89 

0 

1.022

8 

1.022

8 

X1 0.7108 0.0926 7.67 0.000

0 

X3 0.0116 0.0199 0.58 0.564

1 

 

100 

Intercept  1.2689 0.3585 3.54 0.000

6 

 

 

0.56

5 

 

 

2.034

1 

 

 

144.96 

 

 

145.82 

0 

1.020

8 

1.020

8 

X1 0.7183 0.0645 11.14 0.000

0 

X3 -0.0030 0.0132 -0.22 0.823

0 

 

200 

Intercept  1.2465 0.2652 4.70 0.000

0 

 

 

0.56

2 

 

 

2.071

1 

 

 

294.20 

 

 

295.08 

0 

1.019

3 

1.019

3 

X1 0.7259 0.0462 15.71 0.000

0 

X3 0.0018 0.0092 0.20 0.841

5 

 

500 

Intercept  0.9518 0.1677 5.67 0.000

0 

 

 

0.59

5 

 

 

2.036

6 

 

 

714.26 

 

 

715.02 

0 

1.028

4 X1 0.7680 0.0289 26.57 0.000

0 
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X3 0.0034 0.0063 0.54 0.587

2 

1.028

4 

 

1000 

Intercept  1.0852 0.1156 9.39 0.000

0 

 

 

0.59

8 

 

 

2.049

7 

 

 

1438.3

9 

 

 

1439.2

3 

0 

1.034

0 

1.034

0 

X1 0.7678 0.0205 37.55 0.000

0 

X3 0.0065 0.0044 1.50 0.135

1 

5. CONCLUSION  

In this paper, we studied three issues related to model misspecification bias of OLS estimators arising 

from errors of exclusion (of relevant variables) and inclusion (of irrelevant variables): (1) omitted 

variable bias; (2) possible reduction of omitted variable bias with the inclusion of some of the omitted 

variables; (3) selection between inclusion of irrelevant variables and omission of relevant variables 

using AIC and BIC criterion. In conclusion, it was found that inclusion of irrelevant variable is a safer 

bias than omission of relevant variable in model selection of a mis-specified linear regression model. It 

is clear from the result that including a collinear variable, regardless of whether it is relevant, leads to 

error inflation and an increase in VIFs, which makes it more difficult for the researcher to identify 

relevant relationships.  Inclusion of irrelevant variables is not as severe as the consequences of omitting 

relevant variables, so the temptation is to include “everything but the kitchen sink”.  There is a balancing 

act, however, between bias and efficiency.  A small amount of bias may be preferable to a great deal of 

inefficiency. This inclusion also assured convergence in a conditional manner. The best place to start is 

with good theory.  Then include all the variables available that follow from this theory and then exclude 

variables that add least to the model and are of least theoretical importance. 

REFERENCES 

[1] Babatunde O.S, Ikughur A.J, Ogunmola A.O, Oguntunde P. E (2014:Effect of Omitted Variable due to 

Misspecification Error in Regression Analysis, International Journal of Modern Mathematical Sciences, 

2014, 11(1): 49-57 

[2] Cramer,J.S.,(2004): Scoring bank loans that may go wrong: a case study. Statistica Neerlandica, 58, 365-

380. 

[3] Hoch, L., (1962): Estimation of production function parameters combining time-series and cross-section 

data, Econometrica 30, 34–53. 

[4] Griliches, Z. (1986): Economic data issues. In Z. Griliches & M. D. Intriligator (Eds), Handbook of 

econometrics, Vol. 3: 1465–1514. Amsterdam: North-Holland. 

[5] Mundlak,Y.,(1961):Empirical production function free of management bias ,Journal of Farm Economics 43, 

44–56 

[6] Leightner, J.E., and Inoue T (2012): Solving the Omitted Variables Problem of Regression Analysis Using 

the Relative Vertical Position of Observations. Hindawi Publishing Corporation Advances in Decision 

Sciences Volume 2012. 

[7]   Pedhazur, E. J. (1997). Multiple regression in behavioral research: Explanation and prediction (3rd ed.). 

Fort Worth: Harcourt Brace. 

[8] Clarke Kelvin A. (2003): Non-Parametric Model Discrimination in International Relation, Journal of 

Conflict resolution, 47(1), 75-80. 

[9] Achen, Christopher H. (2000): “Why Lagged Dependent Variables Can Suppress the Explanatory Power of 

Other Independent Variables.” Annual Meetings of the Political Methodology Section of the American 

Political Science Association, UCLA 

[10] Wooldridge, J.M. (1994): “A simple specification test for the predictive ability of transformation models,” 

Review of Economics and Statistics 76, 59–65.  

[11] White, H., (1994): Estimation, Inference and Specification Analysis. New York: Cambridge University 

Press.  

[12] Liu, Z. and Lynk, E. L. (1999): Evidence on market structure of the deregulated US airline industry, Applied 

Economics, 31(9), 1083-92. 

[13] Greene, C. A. (1999):  On the impossibility of a stable and low GDP elasticity of money demand: the 

arithmetic of aggregation, replication and income growth, Applied Economics, 31(9), 1119-27. 

[14] Meyer, K. E., & Sinani, E. (2009): When and where does foreign direct investment generate positive 

spillovers? A meta-analysis. Journal of International Business Studies, 40(7): 1075–1094 



Choice Model between Omission of Relevant Variable and Inclusion of Irrelevant Variable in a 

Multicollinear Regression Model  

 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)                        Page | 9 

[15] Muethel, M., & Bond, M. H. (2013): National context and individual employees’ trust of the out-group: The 

role of societal trust. Journal of International Business Studies, 44(4): 312–333. 

[16] Zhao, M., Park, S. H., & Zhou, N. (2014):  MNC strategy and social adaptation in emerging markets. Journal 

of International Business Studies, 45(7): 842–861. 

[17] Rao, P., (1971): Some Notes on Misspecification in Multiple Regressions, The American Statistician, 25:5, 

37-39. 

[18] Griliches, Z., (1957):"Specification Bias in Estimates of Production Functions," Journal of Farm Economics, 

8-20. 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Citation: Ijomah Maxwell Azubuike & Nduka Ethelbert Chinaka (2020). Choice Model between Omission of 

Relevant Variable and Inclusion of Irrelevant Variable in a Multicollinear Regression Model. International 

Journal of Scientific and Innovative Mathematical Research (IJSIMR), 8(2), pp. 1-9. http://dx.doi.org/ 

10.20431/2347 -3142.0802001 

Copyright: © 2020 Authors, this is an open-access article distributed under the terms of the Creative 

Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 

provided the original author and source are credited. 

 

 

 

 

http://dx.doi.org/

