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1. INTRODUCTION AND PRELIMINARIES 

Inequalities of positive semi-definite block matrices have been widely used in matrix theory. In recent 

years, inequalities about block matrices have become a hot topic of research. At the same time, some 

very good results have been obtained, such as references [1, 3, 4, 5]. In this paper, we mainly discussed 

some positive semi-definite block matrices and obtained some matrix inequalities. 

As we all know, the positive semi-definite block matrices have very good properties. Their eigenvalues 

are real numbers, so they can always be arranged in ascending order and we recorded then as

2 1( ) ( ) ( )n A A A     . In this paper, we use symbol 1( )A  to represent the largest eigenvalue of a 

positive semi-definite matrix A . And use symbol A B to represent B A be a positive semi-definite 

matrix, obviously, " " is a partial order relation. In particular, 0A denotes that matrix A is positive 

semi-definite. In addition, we call U a unitary matrix if it satisfiesU U I  ，we call A  a Hermitian 

matrix if it satisfies A A  . Last, the A B denotes the direct sum of A and B , the block diagonal 

matrix 0

0

A

B

 
 
 

; and 0 represents a zero block matrix. 

2. MAIN RESULTS 

Let's start with the following lemmas  

Lemma1.1  Let 
,m nA M  with m n , then ( ) ( 0)AA A A     with0 m nM  . 

Lemma1.2  Let
nA M  be positive semi-definite matrix. Then 

1( ) ( )n A I A A I   ,  where I denotes 

Abstract: In 2019，Zübeyde Ulukök obtained an important theorem in reference [1]：When
*

A C
H

C B

 
  
 

is a 

positive semi-definite matrix, then 1

1 13[ ( ) ( )]r r
A

H A B
B

    
   

 

 ,where A , B are n-order square matrices. In 

this paper, we firstly do the same thing for a 3 3 positive semi-definite block matrix, and give a generalization 

of the above theorem. Next, we further generalize the case of k k positive semi-definite block matrix, and 

discuss the partial ordering relationship between the sum of matrices on quasi-diagonal lines and block 

matrices at other locations. Thus, we gave a new eigenvalue inequality.     
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the identity matrix in 
nM . 

Lemma1.3  If 
A B

B A

 
 
 

is a positive semi-definite matrix, then A B . 

Proof  Just consider the equation  
1

0
2

A B I
A B I I

B A I

  
     

  
and we can get the conclusion. 

Lemma1.4  If 
*

A B

B C

 
 
 

 is a positive semi-definite matrix, ,A C  are square matrices of the same 

order, then we have
*A C B B   and

*( )A C B B    . 

Proof  Becase
*

A B

B C

 
 
 

 is a positive semi-definite matrix, So, for any unitary matrix U ,we have

*

*
0

A B
U U

B C

 
 

 
, thus there is 

*

* *
0

A B A B
U U

B C B C

   
    

   
. In particular, take

0

0

I
U

I

 
  
 

,then we have
*

*
0

A C B B

B B A C

  
 

  

.From lemma 1.3 we can get that 

*A C B B   . And we can draw another conclusion by replacing the original B with B . 

Lemma1.5 If nH M is a positive semi-definite matrix, then for any n k unitary matrixU satisfying

*

kU U I  and for each 1,...,i k , we have
*( ) ( ) ( )i m k i iH U HU H      . 

Theorem 1 *

* *

A D E

H D B F

E F C

 
 


 
  

 is a positive semi-definite matrix, where A , B ,C  are all n-order square 

matrices,then 

1

1 1 13[ ( ) ( ) ( )]r r

A

H A B C B

C

   

 
 

  
 
  

    for 1.r   

ProofBecause H is a positive semi-definite matrix, so there exists an invertible matrix P such that

*H P P . We divide P into blocks: [ , , ]P X Y Z , where 3, , n nX Y Z M  , and we can know that

,X X A  ,Y Y B  .Z Z C  From Lemma 1.1, we can get the following results:

*

1 1 1( ) ( 0) ( ),XX X X A     1 1 1( ) ( 0) ( ),YY Y Y B       

1 1 1( ) ( 0) ( ).ZZ Z Z C       

Noting that the following equation holds:
* * * 1( ) ( )r r rH P P P PP P  ,and we denote 
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* 1( )rT PP  . So, for 
rH , there is the following decompositions： 

** * *

* * *

* * *

r

X TX X TY X TZ X T T T X

H P TP Y TX Y TY Y TZ Y T T T Y

Z TX Z TY Z TZ Z T T T Z



       
       

         
             

 

We notice that 

*
1 1

2 2

1 1

2 2

1 1

2 2

0 0 0 0

0 0 0 0

0 0 0 0

T T
T T T

T T T T T

T T T
T T

   
   

     
     
     
      

   
   

, and
3 ( )

T T T

T T T T

T T T

 

 
 


 
  

. 

So, from lemma 1.2. We can get that: 
*

* 1

1 1 13 ( ) . 3 ( ) 3 ( )r r

X X A A

H T Y Y T B PP B

Z Z C C

   

       
       

  
       
              

1 * * *

13 ( )r

A

XX YY ZZ B

C

 

 
 

  
 
  

* * * 1

1 1 13[ ( ) ( ) ( )]r

A

XX YY ZZ B

C

   

 
 

  
 
  

 

1

1 1 13[ ( ) ( ) ( )]r

A

A B C B

C

   

 
 

  
 
  

. So, the theorem is proved. 

On the basis of this conclusion, we can easily get the results of Zübeyde Ulukök in reference[1]: 

Corollary 1
*

A C
H

C B

 
  
 

 is a positive semi-definite matrix, where A , B  are n-order square 

matrices,then 

1

1 13[ ( ) ( )]r r
A

H A B
B

    
   

 
  for 1.r   

Next, we will discuss the case of k k positive semi-definite block matrices and explore the relationship 

between quasi-diagonal matrices and other block matrices at other locations. 

Theorem 2

11 12 1

*

12 22 2

* *

1 2

k

k

k k kk

M M M

M M M
H

M M M

 
 
 
 
 
 

 is a positive semi-definite matrix, and 11M , …, kkM  are 

all n-order square matrices, if it satisfied
ijM are all Hermitian matrices, for 

(1 i j n   ), then 

1 1

2

1

k

ii ij

i i j n

M M
k   




   

Proof First of all, notice the following facts: if 1U ,…, kU are all unitary matrices, A  is a positive 

semi-definite matrix, then
* *

1 1 ... k kU AU U AU is still a positive semi-definite matrix. 
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After calculation, we can get that 
1

1 1

0
k k

ii il

i l i il ll

M M

M M



  

 
 

 
 . From lemma 1.4 we can get that：

1 1

1 1 1 1 1

( ) ( ) 2
k k k k

ii ll il il ij

i l i i l i i j n

M M M M M
 

        

      , 

So, there is 
1 1

2

1

k

ii ij

i i j n

M M
k   




  . 

Corollary 2If
*

A B

B C

 
 
 

 is a positive semi-definite matrix, ,A C  are square matrices of the same 

order, and B is a Hermitian matrix, then max ,trB trA trB . 

Theorem3

11 12 1

*

12 22 2

* *

1 2

k

k

k k kk

M M M

M M M
H

M M M

 
 
 
 
 
 

 is a positive semi-definite matrix, and 11M , …, kkM  are all 

n-order square matrices, if it satisfied 
ijM  are all Hermitian matrices, for(1 i j n   ),then for these

1 i n  , we have 

1

2
( ) ( )i ij i

i j n

M H
k
 

  

  

Proof Take a unitary matrix 1

I

I
U

k

I

 
 
 
 
 
 

, thenU satisfied
*

nU U I , noticed that
ijM are all Hermitian 

matrices, for (1 i j n   ),so we have 

*

1 1

1 2
+

k

ii ij

i i j n

U HU M M
k k   

   ,
1 1

1 2 2
+

1
ij ij

i j n i j n

M M
k k k     




    (from Theorem 2) 

1 1

2 1 2
( 1)

1
ij ij

i j n i j n

M M
k k k     

  


  . 

Then for 1 i n  , from lemma 1.5 we have 
1

2
( ) ( ) ( )i ij i i

i j n

M U HU H
k
  

  

  , thus the 

conclusion
1

2
( ) ( )i ij i

i j n

M H
k
 

  

  is proved. 
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