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1. INTRODUCTION 

Proposition 1 
4 3( ) ( )A A rank A rank E A n=  + − =  

Proof: Since the elementary transformation of a matrix does not change the rank of the matrix, the 

following equality can be obtained. 

4 4

3 3 3 3 3

0 0

0

A A A A A A A A
rank rank rank rank rank

E A A E A A E A E E

   − −     
= = = =        

− −         

 

Therefore 
4 3( ) ( )A A rank A rank E A n=  + − =  

Proposition 2 
4 3( ) ( )a bA A rank A rank E A n=  + − =  

Proof: On the one hand, by 
4A A= , we have 

3( ) 0A E A− = , So for every positive integer, we have 

3( ) 0aA E A− = .With the help of the property of matrix multiplication operation, we can get 

3( ) ( )arank A rank E A n+ −  . 

On the other hand, The minimum polynomial of matrix A  obtained from 
4A A=  is the factor of 

polynomial 
4 − . Therefore, the minimum polynomial of A has no multiple roots, so A  can be 

diagonalized. 

For every positive integer ,a b , there exists an invertible matrix P  such that the following equation 

holds.
3 1 1 3 1 1 1 3[ ( ) ] ( ) ( ) [ ( ) ]a b a b a bP A E A P PA P P E A P PAP E PAP− − − − −+ − = + − = + −

 

It is not hard to get
3[ ( ) ]a brank A E A n+ − = . Hence it follows that 

3 3[ ( ) ] ( ) ( )a b a bn rank A E A rank A rank E A n= + −  + −   

Therefore 
3( ) ( )a brank A rank E A n+ − =  

Conversely, it does not necessarily hold true. Here's an example. 

1 1 0

1 1

1

A

 
 

=
 
  

, when 4, 4a b= = , 

3( ) ( ) 3a brank A rank E A+ − = , but 
4A A  

Proposition 3 
4 3 2 3( ) ( ) ( )A A rank A rank E A A n rank A=  + − + = +  

Proof  The following equation can be obtained from elementary transformation.  
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Abstract: The equality of rank a fourth-idempotent matrix is established by means of elementary 

transformation and properties of idempotent matrix. 
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3 2

3 2 3 2

A A A A A
rank rank rank

E A A A E A A A E

 −   
= =     

− + − +     
4 3 3 2

0

A A A A A
rank

E

 − + −
=  

 

4 3 0

0

A A A
rank

E

 − +
=  

 
,  

Substituting 
4A A= , 

4 3 30 0

0 0

A A A A
rank rank

E E

   − +
=   

   
, Therefore 

 

3

3 2

0

0

A A
rank rank

E A A E

  
=   

− +   
. That is to say 

3 2 3( ) ( ) ( )rank A rank E A A n rank A+ − + = +  

Conversely, it does not necessarily hold true. For example, 3A E= , 

3 2 3( ) ( ) 2 ( )rank A rank E A A n n rank A+ − + = = + ,  but 
4 81 3A E E A=  = . 

Proposition 4 
4 3 2 3 3( ) ( ) ( )A A rank E A A rank A rank E A=  − + = + −  

4A A= , 3 2 3( ) ( ) ( )rank A rank E A A n rank A+ − + = + , 
3( ) ( )rank A rank E A n+ − = , 

So we can get 
3 2 3 3( ) ( ) ( )rank E A A rank A rank E A− + = + − . 

But the same, based on
3 2 3 3( ) ( ) ( )rank E A A rank A rank E A− + = + −  , we can not get 

4A A= . For 

example, 

1 1 0

0 0 1

0 0 0

A

 
 

=
 
   ,

2 3

1 1 1

0 0 0

0 0 0

A A

 
 

= =
 
    ,

3 2 3 3( ) 3 ( ) ( )rank E A A rank A rank E A− + = = + −
, but 

4

1 1 1 1 1 0

0 0 0 0 0 1

0 0 0 0 0 0

A A

   
   

=  =
   
        

According to the definition of the fourth-idempotent matrix and its operation, the following properties 

of the fourth-idempotent matrix can be given. 

Proposition 4  

(1)If the fourth-idempotent matrices ,A B  are commutative, then AB  is also a fourth-idempotent 

matrix. 

(2) If A  is a fourth-idempotent matrix, then 
3A  is an idempotent matrix. 

(3) If A  is a fourth-idempotent matrix, 
3E A−  is an idempotent matrix. 

(4) If A  is a fourth-idempotent matrix, then for any positive integer, there are
2

3

,3 | 1

,3 | 2

,3 |

n

A n

A A n

A n

−


= −

  

Proposition 5 If ,A B  are all fourth-idempotent matrices, the following equality is satisfied 

1)
3 3 3 3

3 3 3 3

3 3
( )

0 0

A B B A
rank A B rank rankB rank rankA

B A

   
+ = − = −   

   

 

(2)
3 3 3 3 3 3 3 3 3 3( ) [ , ] [ , ]rank A B rank A A B B rank B B A A+ = − = −  

(3)
3 3 3 3 3 3 3 3 3 3 3( ) ( )rank A B rank A A B B A B A B rankB+ = − − + +  

(4)
3 3 3 3 3 3 3 3 3 3 3( ) ( )rank A B rank A A B B A A B A rankA+ = − − + +
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(5)

3 3

3 3 3 3

3 3

0
( )

0

A B
rank A B rank rank A B

B A

 
 + = =   

   

(6)If 1 2,a a are two non-zero real numbers and 1 2 0a a+  , then
3 3 3 3

1 2( ) ( )rank a A a B rank A B+ = + .
 

Theorem 1 n nA P  ,  ( )f x P x  is a polynomial with any number greater than 1. Let 

4( ) ( ( ), )d x f x x x= − and 4( ) [ ( ), ]m x f x x x= − , then 

 4( ) ( ) ( ) ( )rankf A rank A A rankd A rankm A+ − = + . 

With the help of theorem 1 we can get if A is a fourth-idempotent matrix, then 

( ) ( ) ( )rankf A rankd A rankm A= +  

This theorem shows that there are also many rank eigenvalues of fourth-idempotent matrices.
 

Theorem 2 

n nA P  , 1t N +  , 
3 4( ) ( ) ( ) ( )t t trank A rank A A rank A rank A A++ − = + −

.
 Proof:  When t = 1, the equation clearly holds. 

Let 1t  , ( ) tf x x= , 
4( )g x x x= − , By simple calculation we get ( ( ), ( ))f x g x x=

3[ ( ), ( )] t tf x g x x x += − . By the above we can get the following equation. 

3 4( ) ( ) ( ) ( )t t trank A rank A A rank A rank A A++ − = + −
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