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1. INTRODUCTION 

Solving nonlinear equations f (x)=0, is one of the most important problem in scientific and 

engineering applications. There are several well-known methods for solving nonlinear algebraic 

equations of the form: 

F (x)=0                                                                                                                                                   (1) 

Where F denote a continuously differentiable function on [a, b]∁ℛ, and has at least one root r, in [a, 

b] Such as Newton’s Method, Bisection method, Regula Falsi method, Nonlinear Regression Method 

and several another methods see for example [1-25]. Here we describe a new method by using Fuzzy 

Concept, then we find that, this procedure lead us to the root r of equation (1) between two fuzzy sets 

A and B. 

2. THE PRESENT METHOD -FUZZIFICATION OF BISECTION METHOD 

Fuzzification of the Bisection method will be done as it treated in [26] by using triangular fuzzy 

number. 

Let us consider equation (1): F(X) =0, Let the function F(X) changes its sign over an interval X0 and 

X1. Let X0=[ 𝑋0
′ , 𝑋0

′′
, 𝑋0

′′′] and X1=[  𝑋1
′ , 𝑋1

′′
, 𝑋1

′′′]. Then there is a root of F(X)=0 lying between X0 

and X1. Fuzzy membership function of X0 and X1are respectively,  

µx0 =

{
 
 

 
 

𝑋− 𝑋0
′

,𝑋0
′′− 𝑋0

′ ;    𝑋0
′ ≤ X ≤ 𝑋0

′′

𝑋− 𝑋0
′′′

,𝑋0
′′− 𝑋0

′′′ ;    𝑋0
′′ ≤ X ≤ 𝑋0

′′′

0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

      ;   µx1 =

{
 
 

 
 

𝑋− 𝑋1
′

,𝑋1
′′− 𝑋1

′ ;    𝑋1
′ ≤ X ≤ 𝑋1

′′

𝑋− 𝑋1
′′′

,𝑋1
′′− 𝑋1

′′′ ;    𝑋1
′′ ≤ X ≤ 𝑋1

′′′

0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

with 𝛼-cuts: 

[X0]𝛼 = [𝑋0
′   , 𝑋0

′′  , 𝑋0
′′′]=[𝑋0

′  + 𝛼 (𝑋′0
′  − 𝑋0

′) , 𝑋0
′′′ + 𝛼 (𝑋0

′′ − 𝑋0
′′′)] 
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[X1]𝛼 = [𝑋1
′  , 𝑋′1

′  , 𝑋1
′′′]=[𝑋1

′  + 𝛼 (𝑋′1
′  − 𝑋1

′) , 𝑋1
′′′ + 𝛼 (𝑋1

′′ − 𝑋1
′′′)] 

According to Bisection method, if F(X0).F(X1)<0 then, the first approximation of the root of  F(X)=0 

is X2 which it is given as following: 

X2=[
𝑋0 +𝑋1

2
]=[ 

𝑋0
′+𝑋1

′

2
 , 
𝑋0
′′+𝑋1

′′

2
,
𝑋0
′′′+𝑋1

′′′

2
]=[ 𝑋2

′ , 𝑋2
′′, 𝑋2

′′′] 

With the membership function: 

µx2 (X)=

{
 
 

 
 

𝑋− 𝑋2
′

,𝑋2
′′− 𝑋2

′ ;    𝑋2
′ ≤ X ≤ 𝑋2

′′

𝑋− 𝑋2
′′′

,𝑋2
′′− 𝑋2

′′′ ;    𝑋2
′′ ≤ X ≤ 𝑋2

′′′

0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

      

And    [X2]𝛼 = [𝑋2
′  , 𝑋′2

′  , 𝑋2
′′′]=[𝑋2

′  + 𝛼 (𝑋′2
′  − 𝑋2

′ ) , 𝑋2
′′′ + 𝛼 (𝑋2

′′ − 𝑋2
′′′)] 

After that, we study the sign of f(X2), if  f(X0). f(X2)<0, then the solution is between X0 and X2 else 

the solution is between X1 and X2. Suppose that f(X0). f(X2)<0, then the solution is between X0 and 

X2, so, Similarly X3 is given by: 

 X3=[
𝑋0 +𝑋2

2
]=[ 

𝑋0
′+𝑋2

′

2
 , 
𝑋0
′′+𝑋2

′′

2
,
𝑋0
′′′+𝑋2

′′′

2
]=[ 𝑋3

′ , 𝑋3
′′, 𝑋3

′′′] 

with membership function: 

µx3 (X)=

{
 
 

 
 

𝑋− 𝑋3
′

,𝑋2
′′− 𝑋3

′ ;    𝑋3
′ ≤ X ≤ 𝑋3

′′

𝑋− 𝑋3
′′′

,𝑋3
′′− 𝑋3

′′′ ;    𝑋3
′′ ≤ X ≤ 𝑋3

′′′

0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

And    [X3]𝛼 = [𝑋3
′  , 𝑋′3

′  , 𝑋3
′′′]=[𝑋3

′  + 𝛼 (𝑋′3
′  − 𝑋3

′ ) , 𝑋3
′′′ + 𝛼 (𝑋3

′′ − 𝑋3
′′′)] 

And so, we can find X4,  

X4=[
𝑋0 +𝑋3

2
]=[ 

𝑋0
′+𝑋3

′

2
 , 
𝑋0
′′+𝑋3

′′

2
,
𝑋0
′′′+𝑋3

′′′

2
]=[ 𝑋4

′ , 𝑋4
′′, 𝑋4

′′′] so on, we can find Xn. 

3. THE ERROR OF PRESENT METHOD 

For the error, we can study the error as it given by [35], we select a tolerance ɛ>0 and generate X2 , 

X3 , X4 ,…..,Xn  until one of the following conditions is met: 

a) |𝑿𝒏   −𝑿𝒏−𝟏 | < ɛ 

b) 
|𝑿𝒏   −𝑿𝒏−𝟏 |

|  𝑿𝒏  |
< ɛ; |  𝑿𝒏  | ≠ 𝟎. 

c) |  𝑭(𝑿𝒏 ) | < ɛ 

4. NUMERICAL EXAMPLE  

Let us consider the algebraic equation [26],  F(X)= 𝑿𝟑 -6X+4  

Let  X0=[-0.01, 0, 0.01] and X1=[0.99, 1, 1.01] since, 

F(X0)=F[-0.01, 0, 0.01]= 𝑿𝟎
𝟑-6 X0+4=[3.93, 4, 4,07] ,  

F(X1)= F=[0.99, 1, 1.01]= 𝑿𝟏
𝟑-6 X1+4=[-1.09, -1, -0.89]  

Since F(X0) and F(X1) are of opposite sign, a root r lies between 

X0=[-0.01, 0, 0.01]  and  X1=[0.99, 1, 1.01], if F(X0). F(X1)<0, then the solution is between X0 and X1 

Hence, X2=[
𝑿𝟎 +𝑿𝟏

𝟐
]=[0.49, 0.05, 0.51], 

The membership function of X2 is 
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µx2 (X)={

𝑿− 𝟎.𝟒𝟗

𝟎.𝟎𝟓− 𝟎.𝟒𝟗
;    𝟎. 𝟒𝟗 ≤ 𝑿 ≤ 𝟎. 𝟎𝟓

𝑿− 𝟎.𝟓𝟏

𝟎.𝟎𝟓− 𝟎.𝟓𝟏
;    𝟎. 𝟎𝟓 ≤ 𝑿 ≤ 𝟎. 𝟓𝟏

𝟎             𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

 

And    [X2]𝛼 = [𝑋2
′  , 𝑋′2

′  , 𝑋2
′′′]=[0.49 + 𝛼 (0.05 −0.49) , 0.51+ 𝛼 (0.05− 0.51)] 

                                                   =[0.49 −0.44 𝛼, 0.51 − 0.46α)] 

 we stydy the sign of F(X2), we see that 

F(X2)=[1.177649, 1.125, 1.072651]>0, so, the solution is between X0 and X2 

So, X3=[
𝑿𝟎 +𝑿𝟐

𝟐
]=[0.24, 0.25, 0.26]. The membership function of X3 is 

µx3 (X)={

𝑿− 𝟎.𝟐𝟒

𝟎.𝟐𝟓− 𝟎.𝟐𝟒
;    𝟎. 𝟐𝟒 ≤ 𝑿 ≤ 𝟎. 𝟐𝟓

𝑿− 𝟎.𝟐𝟔

𝟎.𝟐𝟓− 𝟎.𝟐𝟔
;    𝟎. 𝟐𝟓 ≤ 𝑿 ≤ 𝟎. 𝟐𝟔

𝟎             𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

 

And    [X3]𝛼 = [𝑋3
′  , 𝑋′3

′  , 𝑋3
′′′]=[0.24 + 𝛼 (0.25 −0.24) , 0.26+ 𝛼 (0.25− 0.26)] 

                                                        =[0.24 + 0.01 𝛼 , 0.26− 𝟎. 𝟎𝟏𝜶]  

we study the sign of F(X3), we see that 

F(X3)=[2.573824, 2.515625., 2.457576]>0, so the solution is between X0 and X3 and so. 

5. CONCLUSION 

In this work we use the fuzzy concept to find the root of nonlinear algebraic equation by the Bisection 

method, using the triangular number, we treat one example to clarify this work. 
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