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1. INTRODUCTION 

In 1960, Opial [1] established the following interesting and important inequality: 

Theorem A Suppose f ∈ C1[0, a] satisfies f (0) = f (a) = 0 and f (x) > 0 for all x ∈ (0, a). 

Then the inequality holds 

                                                                                  (1.1) 

where this constant a/4 is best possible. 

Opial’s inequality and its generalizations, extensions and discretizations play a fundamental role in 

establishing the existence and uniqueness of initial and boundary value problems for ordinary and 

partial differential equations as well as difference equations ([2-6]). The inequality (1.1) has received 

considerable attention and a large number of papers dealing with new proofs, extensions, 

generalizations, variants and discrete analogues of Opial’s inequality have appeared in the literature 

([7-18]).      

Recently, some new Opial’s inequalities for the conformable fractional integrals were established (see 

[19-22]). In the paper, we introduce two new concepts of α-conformable partial derivatives and α-

conformable fractional integrals. Some properties of these new concepts are proved. As applications, 

we establish some Opial type inequalities for α-conformable partial derivatives and α-conformable 

fractional integrals. 

2. α - CONFORMABLE PARTIAL DERIVATIVES 

We recall the well-known Katugampola derivative formulation of conformable derivative of order for 

α ∈ (0, 1] and t ∈ [0, ∞), given by                                                                                

                                                                           (2.1) 

and 

                                                                                                      (2.2) 
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∂t 

provided the limits exist. If f is fully differentiable at t, then 

 
A function f is α-differentiable at a point t ≥ 0, if the limits in (2.1) and (2.2) exist and are finite. Inspired 

by this, we propose a new concept of α-conformable partial derivative. In the way of (2.1), we define α-

conformable partial derivative. 

Deftnition 2.1 (α-conformable partial derivative) Let α ∈ (0, 1] and s, t ∈ [0, ∞). Suppose f (s, t) is a 

continuous function and has partial derivatives, the α-conformable partial derivative at a point t ≥ 0, 

denoted by ∂ (f )α(s, t), defined by 

                                                                          (2.3) 

provided the limits exist, and call α-conformable partial differentiable. 

To generalize Definition 2.1, we give the following definition. 

Remark 2.2 Let α ∈ (0, 1] and s, t ∈ [0, ∞). Suppose f (s, t) and (f) α (s, t) are continuous 

functions and have partial derivatives, we define a bivariate partial derivative, denoted 

by , defined by 

                                                                                       (2.4) 

And 

 

provided the limits exist, and call α-conformable partial differentiable. 

Theorem 2.3 Let α ∈ (0, 1], s, t ∈ [0, ∞) and f (s, t), g (s, t) be α-conformable partial differentiable, then 

(i) 

                                         (2.5) 

for all a, b ∈ R. 

(ii) 

                         (2.6) 

Proof Here, we only prove (2.6). Let 

 

From (2.3), (2.4), and in view of L’Hospital rule, we obtain 

                                          (2.7) 
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From (2.3), (2.4) and (2.7), we have 

 

This completes the proof.  

Theorem 2.4 Let α ∈ (0, 1], s, t ∈ [0, ∞) and f (s, t), g(s, t) be α-conformable partial differentiable, then 

                     (2.8) 

where u = g(s, t), and f is partial derivative at g(s, t). 

Proof From Definitions 2.1 and 2.2, we obtain 

 

where u = g(s, t). 

3. INEQUALITIES FOR α -CONFORMABLE PARTIAL DERIVATIVES 

Deftnition 3.1 (α-conformable fractional integral) Let α ∈ (0, 1] and 0 ≤ a < b. A function 

f (x, y) : [a, b] × [a, b] → R is α-fractional integrable on [a, b] × [a, b], if the integral 

                                                 (3.1) 

exists and is finite. 

Theorem 3.2 Let α ∈ (0, 1], 0 ≤ s ≤ c, 0 ≤ t ≤ d, and p(s, t) be nonnegative and continuous function on 

[0, c]×[0, d]. Let u(s, t) be a α-conformable partial differentiable function on [0, c]×[0, d] with u(s, d) 

= u(b, t) = u(b, d) = 0, then 

                    (3.2) 

Proof Let 

 

and  
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Then 

                                 (3.3) 

and for all (s, t) ∈ [0, b] × [0, d], 

                                                                                                    (3.4) 

Hence 

                          (3.5) 

from (3.5) and in view of Cauchy-Schwarz inequality for α-conformable fractional integral, we obtain 

 

This completes the proof.  

Remark 3.3 Taking for α = 1 in (3.2), we have 

       (3.6) 

Let p(s, t) and u(s, t) reduce to p(t) and u(t), respectively, and with suitable modifications, (3.6) becomes 

the following result. Let p(t) be a nonnegative and continuous function on [0, h]. Let u(t) be an 

absolutely continuous function on [0, h] with u(0) = u(h) = 0, then 

 

This is just an inequality which was established in [20]. 
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