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1. INTRODUCTION 

The concept of a preopen set in a topological space was introduced by H.H. Corson and E. Michael in 

1964 [4]. A subset A of a topological space (X,τ) is called preopen or locally dense or nearly open if A 

⊆ Int(Cl(A)). A set A is called preclosed if its complement is preopen or equivalently if Cl(Int(A)) ⊆ A. 

The term ,preopen, was used for the first time by A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-

Deeb [20], while the concept of a , locally dense, set was introduced by H.H. Corson and E. Michael [4]. 

The concept of a semi-open set in a topological space was introduced by N. Levine in 1963 [17]. A 

subset A of a topological space (X,τ) is called semiopen [10] if A ⊆ Cl(Int(A)). A set A is called semi-

closed if its complement is semi-open or equivalently if Int(Cl(A)) ⊆ A. 

A generalized class of closed sets was considered by Maki in [19]. He investigated the sets that can be 

represented as union of closed sets and called them V −sets. Complements of V −sets, i.e., sets that are 

intersection of open sets are called Λ−sets [19]. 

Recall that a real-valued function f defined on a topological space X is called A−continuous [25] if the 

preimage of every open subset of R belongs to A, where A is a collection of subsets of X. Most of the 

definitions of function used throughout this paper are consequences of the definition of A−continuity. 

However, for unknown concepts the reader may refer to [5 , 11]. In the recent literature many topologists 

had focused their research in the direction of investigating different types of generalized continuity. 

J. Dontchev in [6] introduced a new class of mappings called contracontinuity. A good number of 

researchers have also initiated different types of contra-continuous like mappings in the papers [1, 3, 8, 

9, 10, 12, 13, 24]. 

Hence, a real-valued function f defined on a topological space X is called contra-continuous (resp. 

contra-semi−continuous, contra-precontinuous) if the preimage of every open subset of R is closed 

(resp. semi−closed, preclosed) in X[6]. 

Results of Katˇetov [14, 15] concerning binary relations and the concept of an indefinite lower cut set 

for a real-valued function, which is due to Brooks [2], are used in order to give a necessary and sufficient 

conditions for the insertion of a contra-continuous function between two comparable realvalued 

functions on such topological spaces that Λ−sets or kernel of sets are open [19]. 

If g and f are real-valued functions defined on a space X, we write g ≤ f in case g(x) ≤ f(x) for all x in X. 

The following definitions are modifications of conditions considered in [16]. 

A property P defined relative to a real-valued function on a topological space is a cc−property provided 

that any constant function has property P and provided that the sum of a function with property P and 
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any contracontinuous function also has property P. If P1 and P2 are cc−properties, the following 

terminology is used:(i) A space X has the weak cc−insertion property for (P1,P2) if and only if for any 

functions g and f on X such that g ≤ f,g has property P1 and f has property P2, then there exists a 

contracontinuous function h such that g ≤ h ≤ f.(ii) A space X has the strong cc−insertion property for 

(P1,P2) if and only if for any functions g and f on X such that g ≤ f,g has property P1 and f has property 

P2, then there exists a contra-continuous function h such that g ≤ h ≤ f and if g(x) < f(x) for any x in X, 

then g(x) < h(x) < f(x). 

In this paper, for a topological space whose Λ−sets or kernel of sets are open, is given a sufficient 

condition for the weak cc−insertion property. 

Also for a space with the weak cc−insertion property, we give necessary and sufficient conditions for 

the space to have the strong cc−insertion property. Several insertion theorems are obtained as corollaries 

of these results. 

2. THE MAIN RESULT 

Before giving a sufficient condition for insertability of a contra-continuous function, the necessary 

definitions and terminology are stated. 

The abbreviations cc, cpc and csc are used for contra-continuous, contraprecontinuous and contra-

semi−continuous, respectively. 

Definition 2.1. Let A be a subset of a topological space (X,τ). We define the subsets AΛ and AV as follows: 

AΛ = ∩{O : O ⊇ A,O ∈ (X,τ)} and AV = ∪{F : F ⊆ A,Fc ∈ (X,τ)}. 

In [7, 18, 23], AΛ is called the kernel of A. 

The family of all preopen, preclosed, semi−open and semi−closed will be denoted by pO(X,τ), pC(X,τ), 

sO(X,τ) and sC(X,τ), respectively. 

We define the subsets p(AΛ),p(AV ),s(AΛ) and s(AV ) as follows: p(AΛ) = ∩{O : O ⊇ A,O ∈ pO(X,τ)}, 

p(AV ) = ∪{F : F ⊆ A,F ∈ pC(X,τ)}, s(AΛ) = ∩{O : O ⊇ A,O ∈ sO(X,τ)} and s(AV ) = ∪{F : F ⊆ A,F ∈ 

sC(X,τ)}. p(AΛ) (resp. s(AΛ)) is called the prekernel (resp. semi − kernel) of A. 

The following first two definitions are modifications of conditions considered in [14, 15]. 

Definition 2.2. If ρ is a binary relation in a set S then ρ¯ is defined as follows: x ρ¯ y if and only if y ρ 

v implies x ρ v and u ρ x implies u ρ y for any u and v in S. 

Definition 2.3. A binary relation ρ in the power set P(X) of a topological space X is called a strong 

binary relation in P(X) in case ρ satisfies each of the following conditions: 

 If Ai ρ Bj for any i ∈{1,...,m} and for any j ∈{1,...,n}, then there exists a set C in P(X) such that Ai ρ 

C and C ρ Bj for any i ∈{1,...,m} and any j ∈{1,...,n}. 

 If A ⊆ B, then A ρ¯ B. 

 If A ρ B, then AΛ ⊆ B and A ⊆ BV . 

The concept of a lower indefinite cut set for a real-valued function was defined by Brooks [2] as follows: 

Definition 2.4. If f is a real-valued function defined on a space X and if {x ∈ X : f(x) < ℓ} ⊆ A(f,ℓ) ⊆ {x 

∈ X : f(x) ≤ ℓ} for a real number ℓ, then A(f,ℓ) is called a lower indefinite cut set in the domain of f at 

the level ℓ. 

We now give the following main result: 

Theorem 2.1. Let g and f be real-valued functions on the topological space X, in which kernel sets are 

open, with g ≤ f. If there exists a strong binary relation ρ on the power set of X and if there exist lower 

indefinite cut sets A(f,t) and A(g,t) in the domain of f and g at the level t for each rational number t such 

that if t1 < t2 then A(f,t1) ρ A(g,t2), then there exists a contra-continuous function h defined on X such 

that g ≤ h ≤ f. Proof. Theorem 2.1, of [22].  

Theorem 2.2. Let P1 and P2 be cc−property and X be a space that satisfies the weak cc−insertion 

property for (P1,P2). Also assume that g and f are functions on X such that g ≤ f,g has property P1 and f 

has property P2. The space X has the strong cc−insertion property for (P1,P2) if and only if there exist 
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lower cut sets A(f −g,2−n) and there exists a sequence {Hn} of subsets of X such that (i) for each n,Hn 

and A(f −g,2−n) are completely separated by contra-continuous functions, and (

ii) . 

Proof. Theorem 3.1, of [21]. 

Theorem 2.3. Let P1 and P2 be cc−properties and assume that the space X satisfied the weak cc−insertion 

property for (P1,P2). The space X satisfies the strong cc−insertion property for (P1,P2) if and only if X 

satisfies the strong cc−insertion property for (P1,cc) and for (cc,P2). Proof. Theorem 3.2, of [21].  

3. APPLICATIONS 

Before stating the consequences of theorems 2.1, 2.2, and 2.3 we suppose that X is a topological space 

whose kernel sets are open. 

Corollary 3.1. If for each pair of disjoint preopen (resp. semi−open) sets G1,G2 of X , there exist closed 

sets F1 and F2 of X such that G1 ⊆ F1, G2 ⊆ F2 and F1 ∩ F2 = ∅ then X has the weak cc−insertion property 

for 

(cpc,cpc) (resp. (csc,csc)). 

Proof. Corollary 3.1, of [22].  

Corollary 3.2. If for each pair of disjoint preopen (resp. semi−open) sets 

G1,G2, there exist closed sets F1 and F2 such that G1 ⊆ F1, G2 ⊆ F2 and F1∩F2 = ∅ then every contra-

precontinuous (resp. contra-semi−continuous) function is contra-continuous. 

Proof. Corollary 3.2, of [22].  

Corollary 3.3. If for each pair of disjoint preopen (resp. semi−open) sets G1,G2 of X , there exist closed 

sets F1 and F2 of X such that G1 ⊆ F1, G2 ⊆ F2 and F1∩F2 = ∅ then X has the cc−insertion property for 

(cpc,cpc) 

(resp. (csc,csc)). 

Proof. Corollary 3.3, of [22].  

Corollary 3.4. If for each pair of disjoint subsets G1,G2 of X , such that G1 is preopen and G2 is 

semi−open, there exist closed subsets F1 and F2 of X such that G1 ⊆ F1, G2 ⊆ F2 and F1 ∩ F2 = ∅ then X 

have the weak cc−insertion property for (cpc,csc) and (csc,cpc). 

Proof. Corollary 3.4, of [22].  

Before stating consequences of Theorem 2.2, 2.3 we state and prove the necessary lemmas. 

Lemma 3.1. The following conditions on the space X are equivalent: 

 For each pair of disjoint subsets G1,G2 of X, such that G1 is preopen and G2 is semi−open, there exist 

closed subsets F1,F2 of X such that G1 ⊆ 

F1,G2 ⊆ F2 and F1 ∩ F2 = ∅. 

 If G is a semi−open (resp. preopen) subset of X which is contained in a preclosed (resp. semi−closed) 

subset F of X, then there exists a closed subset H of X such that G ⊆ H ⊆ HΛ ⊆ F. 

Proof. Lemma 3.1, of [22].  

Lemma 3.2. Suppose that X is a topological space. If each pair of disjoint subsets G1,G2 of X, where G1 

is preopen and G2 is semi−open, can be separated by closed subsets of X then there exists a contra-

continuous function h : X → [0,1] such that h(G2) = {0} and h(G1) = {1}. Proof. Lemma 3.2, of [22].  

Lemma 3.3. Suppose that X is a topological space. If each pair of disjoint subsets G1,G2 of X, where G1 

is preopen and G2 is semi−open, can separate by closed subsets of X, and G1 (resp. G2) is a closed subsets 

of X, then there exists a contra-continuous function h : X → [0,1] such that, h−1(0) = G1 (resp. h−1(0) = 

G2) and h(G2) = {1} (resp. h(G1) = {1}). 
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Proof. Suppose that G1 (resp. G2) is a closed subset of X. By Lemma 3.2 , there exists a contra-

continuous function h : X → [0,1] such that, h(G1) = {0} (resp. h(G2) = {0}) and h(X \ G1) = {1} (resp. 

h(X \ G2) = {1}). Hence, h−1(0) = G1 (resp. h−1(0) = G2) and since G2 ⊆ X \ G1 ( resp. G1 ⊆ X \ G2), 

therefore h(G2) = {1} (resp. h(G1) = {1}).  

Lemma 3.4. Suppose that X is a topological space such that every two disjoint semi−open and preopen 

subsets of X can be separated by closed subsets of X. The following conditions are equivalent: 

 For every two disjoint subsets G1 and G2 of X, where G1 is preopen and G2 is semi−open, there exists 

a contra-continuous function h : X → [0,1] such that, h−1(0) = G1 (resp. h−1(0) = G2) and h−1(1) = G2 

( resp. h−1(1) = G1). 

 Every preopen (resp. semi−open) subset of X is a closed subsets of X. 

 Every preclosed (resp. semi−closed) subset of X is an open subsets of X. 

Proof. (i) ⇒ (ii) Suppose that G is a preopen (resp. semi−open) subset of X. Since ∅ is a semi−open 

(resp. preopen) subset of X, by (i) there exists a contra-continuous function h : X → [0,1] such that, 

h−1(0) = G. Set . Then for every n ∈N, Fn is a closed subset of

. 

(ii) ⇒ (i) Suppose that G1 and G2 are two disjoint subsets of X, where G1 is preopen and G2 is semi−open. 

By Lemma 3.3, there exists a contracontinuous function f : X → [0,1] such that, f−1(0) = G1 and f(G2) = 

{1}. , and H = {x ∈ 

. Then G ∪ F and H ∪ F are two open subsets of X and 

(G∪F)∩G2 = ∅. By Lemma 3.3, there exists a contra-continuous function 

1] such that, g−1(1) = G2 and . Define h by h(x) = f(x) for x ∈ G ∪ F, 

and h(x) = g(x) for x ∈ H ∪ F. Then h is welldefined and a contra-continuous function, since 

(G∪F)∩(H∪F) = F and for every x ∈ F we have . Furthermore, (G∪F)∪(H ∪F) = X, 

hence h defined on X and maps to [0,1]. Also, we have h−1(0) = G1 and h−1(1) = G2. 

(ii) ⇔ (iii) By De Morgan law and noting that the complement of every open subset of X is a closed 

subset of X and complement of every closed subset of X is an open subset of X, the equivalence is hold.  

Corollary 3.5. If for every two disjoint subsets G1 and G2 of X, where G1 is preopen (resp. semi−open) 

and G2 is semi−open (resp. preopen), there exists a contra-continuous function h : X → [0,1] such that, 

h−1(0) = G1 and h−1(1) = G2 then X has the strong cc−insertion property for (cpc,csc) (resp. (csc,cpc)). 

Proof. Since for every two disjoint subsets G1 and G2 of X, where G1 is preopen (resp. semi−open) and 

G2 is semi−open (resp. preopen), there exists a contra-continuous function h : X → [0,1] such that, h−1(0) 

= G1 and h−1(1) = G2, define  and . 

Then F1 and F2 are two disjoint closed subsets of X that contain G1 and G2, respectively. Hence by 

Corollary 3.4, X has the weak cc−insertion property for (cpc,csc) and (csc,cpc). Now, assume that g and 

f are functions on X such that g ≤ f,g is cpc (resp. csc) and f is cc. Since f − g is cpc ( resp. csc), therefore 

the lower cut set A(f − g,2−n) = {x ∈ X : (f − g)(x) ≤ 2−n} is a preopen (resp. semi−open) subset of X. 

Now setting Hn = {x ∈ X : (f − g)(x) > 2−n} for every n ∈ N, then by Lemma 3.4, Hn is an open subset of 

X and we have  and for every n ∈ N,Hn and A(f − g,2−n) 

are disjoint subsets of X. By Lemma 3.2, Hn and A(f −g,2−n) can be completely separated by contra-

continuous functions. Hence by Theorem 2.2, X has the strong cc−insertion property for (cpc,cc) (resp. 

(csc,cc)). 

By an analogous argument, we can prove that X has the strong cc−insertion property for (cc,csc) (resp. 

(cc,cpc)). Hence, by Theorem 2.3, X has the strong cc−insertion property for (cpc,csc) (resp. (csc,cpc)).  
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