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1. INTRODUCTION 

Vibration analysis of beams is an important issue in structural engineering applications such as long 

span bridges, aerospace vehicles, automobiles and many other industrial fields. The dynamics of 

continuous systems, such as beams, plates, and shells, are governed by nonlinear partial-differential 

equations in space and time. In general, it is very hard to find the exact or closed-form solutions for 

class of thisproblem.There are two basic points to studytype of this problem includingthe frequency 

domain method and the time domain method. In the time domain method, Rayleigh-Ritz and Galerkin 

methodsare two well-known techniques to transform partial differential equations into ordinary 

differential equations. 

The response of nonlinear oscillation problems is fully studied by the development of approximate 

methods.Some approximate methods have been developed recently such asParameterized Perturbation 

Method (PPM) [1], Homotopy Perturbation Method (HPM) [2], Min-Max Approach (MMA)[3], 

Variational Iteration Method (VIM) [4], Energy Balance Method (EBM) [5] and Variational 

Approach (VA) [6]which were introduced by He; and the Equivalent Linearization Method (ELM) 

was proposed by Caughey [7]. 

Based on approximate analytical methods, nonlinear vibration of beams are very interested in many 

scientists. Using He’s Variational Iteration method,  free vibration problems of an Euler–Bernoulli 

beam under various supporting conditionswere investigated by Liu and Gurram [8]. Pakar and 

Payatanalyzed nonlinear vibrations of buckled Euler-Bernoulli beamsby employing He’s Min-Max 

Approach [9].Sedighi and Reza used He’s Max-Min Approach and Amplitude-Frequency 

Formulation to investigate effect of quintic nonlinearity on transversely vibrating of buckled Euler-

Bernoulli beams [10]. The nonlinear dynamics of a simply supported beam resting on a nonlinear 

spring foundation with cubic stiffness was studied by Pellicano and Mastroddi [11]. Nonlinear 

vibration and postbuckling of functionally graded materials beams resting on a nonlinear elastic 

foundation and subjected to an axial force were studied by Yaghoobi and Torabi using the Variational 

Iteration method [12]. Dynamic response of an elastic beam resting on a nonlinear foundation was 

investigated by Younesian et al. using the Variational Iteration Method [13]. The Variational Iteration 

method was used by Ozturk to analyze free vibration of beam resting on elastic foundation [14]. The 

Homotopy Analysis method was used by Pirbodaghi et al. to investigate nonlinear vibration behaviour 

of Euler-Bernoulli beams subjected to axial loads [15]. Based onHe’s  Variational  Approach  and  
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Laplace  Iteration method, Bagheri et al. analyzed nonlinear  responses  of a clamped-clamped 

buckled beam [16]. Effect of shear deformation on free vibration of elastic beams with general 

boundary conditions was investigated by Li and Hua [17]. And  recently,by using the Equivalent 

Linearization method, Hieu and Hai analyzed effects of the compressive axial force and the length of 

beams on nonlinear vibrating behaviour of quintic nonlinear Euler-Bernoulli beams subjected to axial 

forces [18]. 

Nonlinear response of a clamped-clamped buckled beam resting on linear elastic foundation was 

studied by Bagheri et al. [16],however, in the work, the influence of compressive axial force and 

coefficient of elastic foundation on vibrating response of beams has not been adequately studied.Thus, 

in the present paper, we focus on analyze nonlinear vibration response of Euler-Bernoulli beams 

resting on elastic and subjected to axial force. Frequency-Amplitude relationships of beams with 

simply supported (S-S) and clamped-clamped (C-C) end conditions are given in closed-forms by 

employing the Equivalent Linearization method with a weighted averaging. The solution is compared 

with the one obtained by He’s Variational Approach (VA) method and the numerical one achieved by 

the 4th-order Runge-Kutta method. The results show accuracy of the presentsolution.Effects of the 

compressive axial force and the coefficient of elastic foundation on the nonlinear frequency and the 

frequency ratio of beam are investigated in this work. 

2. DESCRIPTION OF PROBLEM 

Consider a straight beam on an elastic foundation with length L, a cross-section A, a mass per unit 

length  that subjected to an axial force of magnitude F’ as shown in Figure 1. It is assumed that the 

cross-sectional area of the beam is uniform and its material is homogenous. With assumptions that 

ignore the transverse shear strains and the rotation of the cross section is due to bending  only, the 

equation of motion of beam based on the Euler-Bernoulli beam theory as follows [19]: 

2
4 2 2

4 2 2

0

' ' 0,
2

L
w w EA w w

EI F dx K w
x t L x x


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                    (1) 

where K' is the Winkler parameter of elastic foundation,I is moment of inertia, E is modulus of 

elasticity and wis the transverse displacement of any point on the neutral axis of beam. 

 

Fig1. Schematic of  beams resting on the linear elastic foundation subjected to an axial load, (a)simply 

supported beam, (b) clamped-clamped beam 

For convenience, the following nondimensional variables are introduced: 

2 4

4
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where R=(I/A)0.5 is the radius of gyration of the cross section. Using Eq. (2), Eq. (1) can be written in 

the dimensionless form as follows: 
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                                           (3) 

Assuming that displacement function ( , )w x t  can be expanded as: 

( , ) ( ) ( ),w x t Q t x                                     (4) 
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where ( )Q t is the unknown time-dependent function to be determinedand ( )x is the basis function 

satisfying the kinematic boundary conditions.The basis functions are selected as follows: 

+ For simply supported (S-S) beam: 

( ) sin( ).x x                          
                       

(5) 

+ For clamped-clamped (C-C) beam: 

 
1

( ) 1 cos 2 .
2

x x    
                                   (6) 

Applying the Galerkin method, Eq. (3) is is transformed into the following ordinary differential 

equation: 
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The beam is assumed to satisfy the following conditions: 

 (0) , (0) 0,Q Q                                     (9) 

where  denotes the non-dimensional maximum amplitude of oscillation. 

3. SOLUTION PROCEDURE 

Based on the equivalent linearization method proposed Caughey [7]; in refs. [20, 21], Anh et al. had 

developed this method by using the weighted averaging instead of the convenial (classical) averaging 

[22]. The equivalent linearization method with a weighted averaging has been used to analyze 

responses of strong nonlinear oscillation problems and this method gives the solutions with much 

better accuracy than the classical method[21, 23-25]. In this section, we will find the approximate 

analytical solution of Eq. (7) by using the equivalent linearization method with a weighted averaging. 

First, the linearizedform of Eq. (7) is introduced as follows: 

2( ) ( ) 0Q t Q t                                                            (10) 

The equation error between the two oscillators given in Eq. (7) and Eq. (10) is: 

3 2

1 2( )e Q a Q a Q Q                                                                        
(11) 

where ω2 is determined by using the mean square error criterion which requires that [7]: 
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The symbol in Eqs. (12) and (13) denotes the time-averaging operator in classical meaning [22]: 
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where 2T 


  is the period of oscillation.The averaging value in Eq. (14) is called the 

classical/conventional averaging value which often leads to unacceptable errors for strongly nonlinear 

problems. In this paper, the weighted averaging value proposed by Anh et al. [20, 21] is used to 

calculate averaging values in Eq. (13). By replacing the constant coefcient 1/T in Eq. (14) by a 

weighted coefcient function ( )h t . By this way, the averaging value is calculated in the new way 

called weighted averaging value as follows: 

0

( ) ( ) ( ) .
w

Q t h t Q t dt



 
                                             (15) 

where  ( )h t is the weighted coefficient functionwhich must satisfies the following condition: 

0

( ) 1.h t dt




                                                           (16) 

In this paper, we use a specific form of the weighted coeficient function as [20, 21]: 

2( ) ,s th t s te                                                             (17) 

with s is a positive constant, Eq. (15) will take the form of Eq. (14) whens=0. 

The periodic solution of the linearized equation (10) is: 

( ) cos( )Q t t                                                            (18) 

With the periodic solution given in Eq. (18) and the weighted coefficient in Eq. (17), we will calculate 
2Q  and 

4Q  by using Eq. (15), we get: 
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Subsitituting Eqs. (19) and (20) into Eq. (13), we obtain the approximate frequency: 
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With the parameter s is chosen equal to 2, the approximate frequency will be: 

2 2

1 2 1 2

9216
0.72 .

12800
NL a a a a                                     (22) 

Therefore, the approximate solution can be get as: 

 2

1 2( ) cos 0.72 .Q t a a t                                               (23) 

4. NUMERICAL RESULTS 

The approximate frequency ωpresentin Eq. (22), the one obtained by Bagheri et al. using  He’s 

Variational Approach (VA) VA as given in Eq. (24) [16] and theexact frequency ωexactis compared. It 

is noted that Eq. (7) is the Cubic-Duffing oscillation, the exact frequency is given in Eq. (25) [26]. 

Comparisonis presented in Table1for different values of the initial amplitude and a1=2, a2=10.We can 

see accuracy of the present solution from Table 1, when the initial amplitude of oscillation(α) 

increases,relative error of the present solution is only 0.2% while relative error of the approximate 

solution usingHe’s Variational Approachis up to 2.2%. 
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The approximate frequency obtanied by He’s Variational Approach is given as [16]: 

2

1 20.75 .VA a a                                                 (24) 

The exact frequency of oscillation described by Eq. (7) is [26]: 
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2 2
0 1 2

.

2 2
2 1 cos

exact
d

a a








 



 


                               (25) 

Table1. Comparison of approximate frequencies with the exact frequency 

α ωexact ωVA R. Error (%) ωpresent R. Error (%) 

0.1 1.4404 1.4405 0.0027 1.4394 0.0696 

1 3.0411 3.0822 1.3501 3.0332 0.2628 

5 13.4734 13.7659 2.1708 13.4907 0.1286 

10 26.8302 27.4226 2.2079 26.8701 0.1484 

20 53.6619 54.7905 2.1030 53.6842 0.0415 

50 133.9639 136.9379 2.2199 134.1715 0.1549 

70 187.5442 191.7081 2.2202 187.8350 0.1551 

100 267.7916 273.8649 2.2679 268.3319 0.2017 

Using the basis functions given in Eqs. (5) and (6) and performing the integrations in Eq. (8), we can 

obtain the following expressions for the nonlinear frequency: 

 + For S-S beam: 

4
4 2 2( ) 0.72 .

4
NL K F


                          (26) 

 + For C-C beam: 

4
4 2 216 4

( ) 0.72 .
3 3 3

NL K F


                          (27) 

Comparison of frequency ratios ( /NL L  )of beams achieved by two methodswith various values of 

the initial amplitude (α), the compressive axial force (F) and the Winkler parameter (K) are presented 

in Table 2.A very good agreement between the frequency ratios obtained by two methods.Noted that 

the linear frequency ( L ) is given by: 

1 .L a                                      (28) 

Table2. Frequency ratios of beams achieved by two methods 

α F K S-S beam C-C beam 

VA [16] Present VA [16] Present 

0.1 10 10 1.0104 1.0100 1.0003 1.0003 

50 1.0019 1.0018 1.0003 1.0003 

0.2 5 10 1.0063 1.0060 1.0010 1.0010 

50 1.0037 1.0036 1.0010 1.0009 

0.5 5 10 1.0386 1.0371 1.0065 1.0063 

50 1.0230 1.0221 1.0060 1.0058 

Comparisonsof time-responses between the present solution and the VA solution with the numerical 

solution using the 4th-order Runge-Kutta methodare presented in Figures 2 and 3. 
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Fig2. Comparison of two approximate solutions with the numerical solutionfor F=5, K=50 for(a) S-S beam, (b) 

C-C beam; (line: Present solution, square : VA solution, circle: Numerical solution) 

 

Fig3. Comparison of two approximate solutions with the numerical solution for F=5, K=10 for (a) P-P beam, 

(b) C-C beam; (line: Present solution, square: VA solution, circle: Numerical solution) 

Influences of the compressive axial force (F) and the coefficient of elastic foundation (K)  on the 

nonlinear frequency NL  and the frequency ratio /NL L   are presented Figures 4-7 for both S-S and 

C-C beams. Figures 4 and 5 are presented influence of the compressive axial force on vibration 

response of S-S and C-C beams with K=150, respectively.  We can see from these Figures that when 

the initial amplitude   increases, both the nonlinear frequency NL and the frequency ratio /NL L   

of beams increase. From Figures 4 and 5, we can see that when the compressive axial force F 

increases, the nonlinear frequency decreases; and on the other hand, the frequency ratio increases. 

When the compressive axial force F increases, the nonlinear frequency of the beam decreases more 

slowly than the linear frequency, which leads to an increasing in the frequency ratio.Opposite of 

influence of the compressive axial force,it can be deduced from Figures 6 and 7 that the nonlinear 

frequency increases and the frequency ratio decreases as the Winkler parameter Kincreases. This 

situation is appropriate because when the coefficient of elastic foundation K increases, it will make 

beam to harder, and therefore, the nonlinear frequency will increase. However, the increase in the 

nonlinear frequency is slower than the increase of the linear frequency, which will cause the 

frequency ratio to decrease as the coefficient of elastic foundation K increases. 

 

Fig4. Variation of the nonlinear frequency (a) and the frequency ratio (b) of S-S beam with the initial amplitude 

forK=150 
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Fig5. Variation of the nonlinear frequency (a) and the frequency ratio (b) of C-C beam with the initial 

amplitude for K=150 

 

Fig6. Variation of the nonlinear frequency (a) and the frequency ratio (b) of S-S beam with the initial amplitude 

for F=7 

 

Fig7. Variation of the nonlinear frequency (a) and the frequency ratio (b) of C-C beam with the initial 

amplitude for F=7 

Futhermore, to achieve a better understanding of effects of the compressive axial force and the 

coefficience of elastics foundation on the vibration response of beams, we perform sensitivity analysis 

of thefrequencyratio via the compressive axial force, the coeficience of elastic foundation and the 

initial amplitue. The results of sensitivity analysis are presented in Figures 8-10. 
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Fig8.  Sensitivity analysis of the frequency ratio via the compressive axial force and the coefficient of elastic 

foundation with 1  ; (a) S-S beam, (b) C-C beam 

 

Fig9. Sensitivity analysis of the frequency ratio via the compressive axial force and the initial amplitude with 

K=50; (a) S-S beam, (b) C-C beam 

 

Fig10. Sensitivity analysis of the frequency ratio via the coefficient of elastic foundation and the initial 

amplitude with F=5; (a) S-S beam, (b) C-C beam 

5. CONCLUSIONS 

In this paper, nonlinear responses of Euler-Bernoulli beams resting on linear elastic foundation are 

investigated. The equivalent linearization method with a weighted averaging is employed to derive the 

amplitude – frequency relationship of beam. Comparing with the previous and numerical solutions 
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shown accuracy of the present solution.Effects of the compressive axial force and the coefficient of 

elastic foundation on the nonlinear frequency and the frequency ratio of S-S and C-C beams are 

studied. 

When the compressive axial force F increases, the nonlinear frequency decreases; and on the other 

hand, the frequecy ratio increases. 

 The nonlinear frequency increases and the frequency ratio decreases as the Winkler parameter 

Kincreases. 

Futhermore, sensitivity analysis of thefrequency ratio via the compressive axial force, the coeficient 

of  elastic foundation and the initial amplitue are also investigated in this paper. 

However, when the axial compressive force is very large, beams will be unstable, stable analysis of 

compressed axialbeams should be studied in the next time. 
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