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1. INTRODUCTION 

1.1. The Concept of Deficiency 

Before turning to the general case of statistics constructed from samples with random size, that is the 

main aim of the present paper, let us recall (see [1]) the notion of a deficiency of a statistical estimator 

for the traditional case where the sample size is non-random. 

Suppose thatTn
*
(X1,...,Xn)  and Tn(X1,...,Xn) are two competing estimators of g(θ),θ∈ Θbased on n 

observations X1,...,Xnand let their expected squared errors (risk functions) be denoted byRn
*
(θ)  and 

Rn(θ), respectively. An interesting quantitative comparison can be obtained by taking a viewpoint 

similar to that of the asymptotic relative efficiency (ARE) of estimators, and asking for the number 

m(n) of observations needed by estimator Tm(n)(X1,...,Xm(n)) to match the performance of Tn
*
(X1,...,Xn) 

(based on n observations). The asymptotic (as n → ∞) comparison of the two estimators involves the 

comparison of m(n) with n, and this can be carried out in various ways. Although the difference 

m(n)−n seems to be a very natural quantity to examine, historically the ratio n/m(n) was preferred by 

almost all authors in view of its simpler behavior. The first general investigation of m(n) − n was 

carried out by Hodges and Lehmann [9]. They name m(n) − n the deficiency of Tn with respect to 

Tn
*
and denote it as 

dn = m (n) − n.                                                                                                                                     (1.1) 

Suppose that for n → ∞, the ratio n/m(n) tends to a limit b, the asymptotic relative efficiency of 

Tn(X1,...,Xn) with respect to Tn
*
(X1,...,Xn). If 0 < b <1, we have dn∼ (b

−1 
− 1)n and further asymptotic 

information about dnis not particularly revealing. On the other hand, if b = 1, the asymptotic behavior 

of dn, which may now be varying from o (1) to o(n), does provide important additional information. 
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If limn→∞ dn exists, it is called the asymptotic deficiency of Tn with respect to Tn
*
and denoted d. At 

points where no confusion is likely, we shall simply call d the deficiency of Tn with respect to Tn
*
. 

The deficiency of Tn relative to Tn
*
 will then indicate how many observations one loses by insisting on 

Tn, and thereby provides a basis for deciding whether or not the price is too high. If the risk functions 

of these two estimators are 

, 

then, by definition, dn(θ) = dn = m(n) − n, for each n, may be found from 

.                                                                                                                               (1.2) 

In order to solve (1.3), m(n) has to be treated as a continuous variable. This can be done in a 

satisfactory manner by defining Rm (n)(θ) for non-integer m(n) as 

 

(cf. [1]). 

Generally  and Rn(θ) are not known exactly and we have to use approximations. Here these are 

obtained by observing that  and Rn(θ) will typically satisfy asymptotic expansions (a.e.) of the 

form 

                                                                                (1.3) 

                                                                    (1.4) 

for certain a(θ), b(θ) and c(θ) not depending on n and certain constants r >0, s >0. The leading term in 

both expansions is the same in view of the fact that ARE is equal to one. From (1.2) – (1.5) is now 

easily follows that (see [1]) 

 .                                                                   (1.5) 

 

       (1.6) 

. 

 

A useful property of deficiencies is the following (transitivity): if a third estimator T¯n is given, for 

which the risk R¯n(θ) also has an expansion of the form (1.5), the deficiency d of T¯n with respect to

 satisfies the relation d = d1 + d2, where d1 is the deficiency of T¯n with respect to Tn and d2 is the 

deficiency of Tn with respect to . 

The situation where s = 1 seems to be the most interesting one. Hodges and Lehmann [1] demonstrate 

the use of deficiency in a number of simple examples for which this is the case (for testing problems 

see also [2]). 

1.2. Motivation for the Consideration of Statistics Constructed from Samples with Random 

Sizes 

In most cases related to the analysis of experimental data, the number of random factors which 

influence observed objects is random and changes from one observation to anorher. Due to the 

stochastic character of the intensities of information flows in high performance information systems, 
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the size of data available for the statistical analysis can be often regarded as random. In classical 

problems of mathematical statistics, the size of the available sample, i. e., the number of available 

observations, is traditionally assumed to be deterministic. In the asymptotic settings it plays the role of 

infinitely increasing known parameter. At the same time, in practice very often the data to be analyzed 

is collected or registered during a certain period of time and the flow of informative events each of 

which brings a next observation forms a random point process. Therefore, the number of available 

observations is unknown till the end of the process of their registration and also must be treated as a 

(random) observation. For example, this is so in insurance statistics where during different accounting 

periods different numbers of insurance events (insurance claims or insurance contracts) occur and in 

high performance information systems where due to the stochastic character of the intensities of 

information flows, the size of data available for the statistical analysis can be often regarded as 

random. Say, the statistical algorithms applied in high-frequency financial applications must take into 

consideration that the number of events in a limit order book during a time unit essentially depends on 

the intensity of order flows. Moreover, contemporary statistical procedures of insurance and financial 

mathematics do take this circumstance into consideration as one of possible ways of dealing with 

heavy tails. However, in other fields such as medical statistics or quality control this approach has not 

become conventional yet although the number of patients with a certain disease varies from month to 

month due to seasonal factors or from year to year due to some epidemic reasons and the number of 

failed items varies from lot to lot. In these cases the number of available observations as well as the 

observations themselves are unknown beforehand and should be treated as random to avoid 

underestimation of risks or error probabilities. 

In asymptotic settings, statistics constructed from samples with random sizes are special cases of 

random sequences with random indices. The randomness of indices usually leads to that the limit 

distributions for the corresponding random sequences are heavy-tailed even in the situations where the 

distributions of non-randomly indexed random sequences are asymptotically normal see, e. g., [3], [4], 

and [5]. For example, if a statistic which is asymptotically normal in the traditional sense, is 

constructed on the basis of a sample with random size having negative binomial distribution, then 

instead of the expected normal law, the Student distribution with power-type decreasing heavy tails 

appears as an asymptotic law for this statistic [3], [8]. 

At the same time, according to the conventional logics of the statistical analysis, the distributions of 

the statistics (estimators, tests, etc.) to be used for the statistical inference should be known before the 

actual sample is observed in order to calculate critical values or thresholds. As a rule, asymptotic 

approximations by limit distributions of statistics are used instead of the exact distributions because 

the former are considerably easier computable than the latter. As this is so, in limit theorems of 

probability theory and mathematical statistics the centering and normalization of random variables are 

used to obtain non-trivial asymptotic distributions. It should be especially noted that to obtain 

reasonable approximation to the distribution of the basic random variables, both centering and 

normalizing values should be nonrandom. Otherwise the approximate distribution becomes random 

itself and, say, the problem of evaluation of quantiles required for the calculation of critical values or 

confidence intervals becomes senseless. 

Throughout the paper we use conventional notation: R is the set of real numbers, N is the set of 

natural numbers, h(n) ∼ f(n), n → ∞ if and only if limn→∞ h(n)/f(n) = 1. The symbols =
d
, ⇒ and  

denote the coincidence of distributions, convergence in distribution and the end of the proof, 

respectively. 

Consider a family of probability measures P = {Pθ:θ∈ Θ} each of which is defined on a measurable 

space (Ω, F). Consider a sequence of random variables (r.v.’s) X1,X2,... defined on a measurable space 

(Ω, F). Everywhere in what follows consider the random variables X1,X2,... to be independent and 

identically distributed (i.i.d) with common distribution Pθ. Let N1,N2,... be a sequence of nonnegative 

integer random variables with common distribution P defined on the same measurable space so that 

for each n >1 the random variable Nnis independent of the sequence X1,X2,... with respect to any 

measure Pθfrom P. A random sequence N1,N2,... (Ni with distribution P, i= 1,2,...) is said to be 

infinitely increasing 

(Nn→ ∞) in probability P, if P(Nn<M) → 0 as n → ∞ for any M ∈ (0,∞). For n >1 let Tn= Tn(X1,...,Xn) 

be a statistic, that is, a measurable function of the r.v.’sX1,...,Xn. Foreachn >1 definether.v. TNn by 

letting 
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for every elementary outcome ω∈ Ω. Assume that for each θ∈ Θthere exists 

EθTn ≡ g(θ), 

where Eθ≡ Eθ,n is the expectation w.r.t. distribution Pθ≡ Pθ,n of Tn. We will say that the statistic Tn 

is asymptotically normal, 

, 

if 

P                                                                                (1.7) 

for each θ∈ Θ. 

The following statement describes the change of the limit law of an asymptotically normal statistic 

when the sample size is replaced by a r.v. (see [9], Theorem 3.3.2). 

Lemma 1.1. Assume that Nn −→ ∞ in probability P as n → ∞. Let the statistic Tn be asymptotically 

normal in the sense of (1.7). Then a distribution function F(x) such that 

𝑃𝜃  𝑛𝜎(𝜃)(𝑇𝑁𝑛
−  𝑔 𝜃 ) ≤ 𝑥 → 𝐹 𝑥 ,   

exists if and only if there exists a distribution function Q(x) satisfying the conditions Q(0) = 0, 

. 

1.3. The Purpose and Structure of the Paper 

The purpose of this paper is to present some means for the comparison of the quality of estimators 

constructed from samples with random sizes with that of estimators constructed from samples with 

non-random sizes. As this means we propose to use the deficiency. It can be an illustrative 

characteristic of a possible loss of the accuracy of statistical inference if a random-size-sample is 

erroneously regarded as a sample with non-random size. The present paper develops the research 

started in [5] and presents a number of applications of the deficiency concept in problems of point 

estimation in the case when the number of observations is random. 

Section 2 contains main results. First, in Section 2.1 we heuristically show that if the d.f. Q(x) in 

Lemma 1.1 is not degenerate, then the deficiency of a statistic constructed from a sample with random 

size whose expectation equals n with respect to the same statistic constructed as if the sample size was 

non-random and equal to n, grows almost linearly as n grows. A nontrivial behavior of the deficiency 

is possible only if the random sample size is asymptotically degenerate. This is the case considered in 

Sections 2.3, 2.4 and 2.5 where the deficiencies of statistics constructed from samples whose sizes 

have the Poisson, binomial and special three point distributions, respectively, are considered. Section 

2.2 contains some preliminary basic results dealing with some properties of estimators based on the 

samples with random sizes. Sections 3 – 5 contain results concerning deficiencies of asymptotic 

quantiles. 

In this paper we focus on the case where the sample size is independent of the r.v.’s forming the 

sample. This assumption, first, is made for the sake of simplicity of the methods used to obtain the 

qualitative results. Second, in many applied problems this assumption does not contradict the essence 

of the problem. For example, this is so when the data is accumulated within a prescribed time interval 

(a month, a year, etc.), but the informative events form a stochastic flow. This situation is typical for 

financial and insurance practice or any other field of activities with accounting periods. Moreover, the 

independence of X1,X2,...is not crucial since basic Lemma 1.1 can be proved without this assumption, 

see [9]. Third, most papers considering non-independent sample sizes deal with the case of 

asymptotically degenerate indexes. This is just the case yielding non-trivial results in the present 
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paper. It seems that using martingale techniques or imposing some concrete conditions on the 

character of dependence between the sample elements and the sample size, the results of this paper 

can be extended for the non independent case. 

2. DEFICIENCIES OF SOME ESTIMATORS BASED ON THE SAMPLES WITH RANDOM SIZE 

2.1. The Asymptotic Behavior of the Deficiency of a Statistic Constructed From a Sample with 

Random Size 

The interpretation of the deficiency as the number of additional observations required to attain the 

same quality here needs to be refined since this number becomes random in random-sizesamples 

problems. In order to circumvent this difficulty assume that the r.v.’s N1,N2,... are parameterized by 

their expectations: 

 E Nn = n, n ∈ N. 

This assumption will enable us, instead of comparing random variables, to compare their easily 

tractable parameters. 

Before we construct the exact formulas for the deficiencies so tractable, we have to make some 

important heuristic comments concerning the boundedness of the deficiency as a function of the 

parameter n. By X without any indexes we will denote a r.v. with the standard normal distribution 

N(0, 1). Let Tnbe an asymptotically normal (1.7) (with σ(θ) = 1) statistic constructed from the sample 

X1,...,Xn, TNnbe (the same) statistic constructed from the random-size-sample X1,...,XNn. Assume that 

EθTn= g(θ), n ∈ 
N, implying EθTNn= g(θ), n ∈ N (see Theorem 2.1 below). Denote 

. 

From Lemma 1.1, for n large enough we have the approximate relations 

, 

where 

 P(U < x) = Q(x), x ∈ R, 

and the r.v.’s X and U are independent. Therefore, 

, 

. 

Equating  and Rm(n)(θ) we obtain 

1

𝑛
+ 𝑜 𝑛−1 =  

𝐸 𝑈−1

(𝑛 + 𝑑𝑛)
+ 𝑜((𝑛 +  𝑑𝑛)−1)) 

or 

, 

Where 

D= E U
−1 

− 1. 

So, in general, if E U−1 >1, then dn = O(n). And the only possibility for dn to be o(n) and, in 

particular, to remain bounded, is the case 
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E U
−1 

= 1. 

In general, if in addition to the conditions of Lemma 1.1, the family {Nn/n}n>1 is uniformly 

integrable, then the conditions of Lemma 1.1 and E Nn = n imply that E U = 1, so that by the 

Jensen inequality we have EU−1 >1 with the equality attainable if and only if 

P (U = 1) = 1. 

In other words, for the deficiency dn to be bounded in n, it is necessary that the sample size Nn should 

be asymptotically degenerate in the sense that 

 
in probability as n → ∞. This property is inherent in sample sizes with the Poisson, binomial and 

special three-point distributions considered in the present paper. 

It is worth noting that an example of geometrically distributed Nn for which the limit r.v. U has the 

exponential distribution vividly illustrates the possibility of the deficiency to be unbounded since in 

this case the Fr´echet distribution of the r.v. U−1 has the infinite first moment. 

Summarizing the abovesaid we conclude that if the d.f. Q(x) in Lemma 1.1 is not degenerate, then the 

deficiency of a statistic constructed from a sample with random size whose expectation equals n with 

respect to the same statistic constructed as if the sample size was non-random and equal to n, grows 

almost linearly as n grows. A non-trivial behavior of the deficiency is possible only if the random 

sample size is asymptotically degenerate. This is the case to be considered in the present paper. 

2.2. Some Properties of Estimators Based on the Samples with Random Sizes  

Assume that for each n ≥ 1 the r.v. Nn takes only natural values (i.e., Nn ∈  N) and is independent of 

the sequence X1,X2,... Everywhere in what follows the r.v.’s X1,X2,... are assumed independent and 

identically distributed with distribution depending on θ∈  Θ ∈  R. 

Recall that we assume that 

E Nn = n, 

that is, the expected sample size equals the sample size for the case where it is non-random, that is, 

the r.v. Nn is parameterized by its expectation n. 

Theorem 2.1. 

1. If 

 Eθ Tn = g(θ), θ ∈ Θ, 

then 

 Eθ TNn = g(θ), θ ∈ Θ. 

2. Let 

. 

Assume that there exist numbers a(θ), b(θ), C(θ) >0, α>0, r >0 and s >0 such that 

. 

Then 

. 

Proof. The desired relations can be easily obtained by the formula of total probability formula. 

Namely, we obviously have 

 ∞ ∞ 

EθTNn = X EθTk P(Nn = k) = X g(θ)P(Nn = k) = 
 k=1 k=1 

∞ 
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 = g(θ) X P(Nn = k) = g(θ), θ∈ Θ, 
k=1 

and 

 

 

Corollary 2.1. Let  

.  

Assume 

that there exist numbers a(θ), b(θ), r >0 and s >0 such that 

. 

Then 

. 

Consider some examples. 

1. Let observations X1,...,Xn have expectation EθX1 = g(θ) and variance DθX1 = σ
2
(θ). The customary 

estimator for g(θ) based on n observation is 

                                                                                                                       (2.1) 

This estimator is unbiased and consistent, and its variance is 

                                                                                                            (2.2) 

If this estimator is based on the sample with random size, then we have (see Corollary 2.1) 

                                                                                             (2.3) 

2. Now, if g(θ) is given, for σ2(θ) we consider the estimator of the form 

                                                                                                       (2.4) 

This estimator is unbiased and consistent, and its variance is 
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                                                                                (2.5) 

Where . For this estimator based on a sample with random size we 

have 

                                                        (2.6) 

3. In the preceding example suppose that g(θ) is unknown and instead of (2.4) we consider any 

estimator of the form 

                                           (2.7) 

with Tn defined in (2.1). If γ6= −1, this estimator is not unbiased but may have a less expected squared 

error than the unbiased estimator with γ= −1. One easily obtains (see [1], (3.6)) 

 

and hence 

 

Using Theorem 2.1 we have 

 

O E                              (2.9) 

2.3. Deficiencies of Some Estimators Based on Samples with Random Size Having the Poisson 

Distribution 

When the deficiencies of statistical estimators constructed from samples of random size Nm(n) and the 

corresponding estimators constructed from samples of non-random size n (under the condition E Nn = 

n) are evaluated, we actually compare the expected size m(n) of a random sample with n by means of 

the quantity dn = m(n) − n and its limit value. 

We will now apply the results of Section 2.2 to the three examples. We begin with the case of the 

Poisson-distributed sample size. Let Mnbe the Poisson r.v. with parameter n−1, n >2. 

Define the random sample size as Nn= Mn+ 1. Then, ENn= n and expanding the exponent in the Taylor 

series, we easily obtain that 

P                                                                   (2.10) 

The deficiency of TNn relative to Tn (see (2.1)) is given by (2.2), (2.3), (2.10) and (1.7) with r = s = 1, 

a(θ) = σ
2
(θ), b(θ) = 0, c(θ) = σ

4
(θ), and hence, is equal to 

  d = 1. 

Similarly, the deficiency of T Nn relative to Tn(see (2.4)) is given by (2.5), (2.6), (2.10) and (1.6) 

with r = s = 1, a(θ) = c(θ) = µ4(θ) − σ
4
(θ), b(θ) = 0, and hence, is equal to 

d = 1. 

d = 1.Theorem 2.2. Assume that there exist numbers a(θ), b(θ) and k1, k2 such that 
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and 

 E , E , E . 

Then the asymptotic deficiency of TNnwith respect to Tnis equal to 

. 

The proof follows from Theorem 2.1, (1.5) and (1.6). 

2.4. Deficiencies of Some Estimators Based on Samples with Random Size Having the Binomial 

Distribution 

In this Section the results obtained above will be applied to the calculation of the deficiencies of the 

estimators  (see (2.1), (2.4) and (2.7)) constructed from samples whose sizes are random 

and have the binomial distribution. 

Using the definition of the binomial distribution we directly obtain the following statement. 

Lemma 2.1. Let the r.v. Bn have the binomial distribution with the parameters m(n − 1), n >2 and p = 

1/m, where m >2 is a fixed natural number. Define the r.v. Nn as 

Nn = Bn + 1. 

Then, as n → ∞, 

 E Nn = n, E , E , 

 E , E , E

. 

Lemma 2.1 and relations (2.3), (2.6) and (2.9) yield the following result. 

Theorem 2.3. Let the r.v. Bn have the binomial distribution with the parameters m(n−1), n >2 and p = 

1/m, where m >2 is a fixed natural number. Put Nn = Bn + 1. Then 

, 

, 

 

  O . 

Corollary 2.2. Under the conditions of Theorem 2.3 the asymptotic deficiencies of the estimators 

TNn, TNn and TeNn with respect to the corresponding estimators Tn, Tn and Ten has the form 

. 

2.5. Deficiencies of Some Estimators Based on Samples with Random Size Having a Three-Point 

Symmetric Distribution 

In this Section we will consider the case where the random sample size Nn has the symmetric 

distribution of the form 
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𝑃 𝑁𝑛  =   𝑛 ∓ ℎ𝑛 = 𝑃 𝑁𝑛 = 𝑛 =  
1

3
,                                                                                                     (2.12) 

where the sequence of natural numbers hn < n satisfies the condition 

 ,                                                                                                                    (2.13) 

that is, hn = o(n) as n → ∞. It is easy to see that (2.12) and (2.13 imply that Nn/n −→ 1 in probability 

as n → ∞. 

Lemma 2.3. Let the conditions of Theorem 2.3 hold and 

 

Then 

. 

It is worth noting that in Corollary 2.3 h can be arbitrarily large. Therefore the finite asymptotic 

deficiency d considered in Corollary 2.3 can be arbitrarily large. This is in full correspondence with 

the conclusion of Section 2.1. 

3. ASYMPTOTIC DEFICIENCY AND QUANTILES 

For n >1 let Tn = Tn(X1 ...,Xn) be a statistic, that is, a measurable function of the r.v.’s 

X1,...,Xn. The asymptotic quantile of order α, α∈ (0,1) (the α– quantile) of statistic Tn 

 for which 

P .                                                      (3.1) 

Using Taylor’s formula one has 

Lemma 3.1. Suppose that the distribution function of n Tn satisfies (uniformly in x ∈ R) the relation 

P , 

where G(x), g1(x), g2(x) are sufficiently smooth functions. Then 

 

, 

where G (cα) = 1 − α. 

Corollary 3.1. Let δn → 0, n → ∞. Then under the conditions of Lemma 3.1 uniformly in x ∈ R 

P  

. 

Now consider a statistic Sn = Sn(X1 ...,Xn) other than Tn having α– quantile cα(n) 

P.                                                        (3.2) 

Suppose that 
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 P ,               (3.3) 

where G(x), g1(x), g¯2(x) are some smooth functions. Define the sequence of positive integers {m(n) = 

n + d + o(1), d ∈ R, n = 1,2,...} by the relation (d is the asymptotic deficiency) 

P .                                         (3.4) 

Theorem 3.1. Under the conditions of Lemma 3.1 and (3.3) the asymptotic deficiency d equals 

. 

Proof. It follows from (3.1) and Lemma 3.1 that 

 

 )  (3.5) 

and 

 

Moreover (3.4) implies 

 

 .                                                                   (3.7) 

Using Corollary 3.1 we obtain 

. 

Then (3.2) and (3.6) imply 

 .  

Now we apply these results to our exapmle. 

Let X1,X2,... be i.i.d.r.v.’s with 

 E .  (3.8) 

Define 

 .                                                                                (3.9) 

Suppose that the distribution of X1 satisfies the Cramer condition (C) 

 .                                                                              (3.10) 

Under the conditions (3.8) and (3.10) (see Theorem 6.3.2, [10]) we have 

 

where the functions Q1(x),...,Qk−2(x) are defined in [10] 
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, 

                        (3.12) 

Carrying out the type of computation outlined above we arrive at the following simplified version of 

Lemma 1.1 (see (3.11)). 

Lemma 3.2. Let the conditions (3.8) – (3.10) with k = 3 be satisfied and  be defined by (3.9), 

then 

, 

where uα= Φ−1(1 − α) denotes the upper α– point of the standard normal distribution. 

Now let Y1,Y2,... be i.i.d.r.v.’s and 

E .                                                     (3.13) 

Define 

.                                                                                           (3.14) 

Suppose that 

E ,                                                                                                                     (3.15) 

And 

limsup |E exp{itY1}| <1.                                                                                                                   (3.16) 
|t|→∞ 

Applying Theorem 3.1 we obtain Lemma 3.3. Under the above conditions of Lemma 3.2 and (3.13) - 

(3.16) the asymptotic deficiency d (see (3.4)) equals 

𝑑 =  
(𝐸𝑋1

4  − 𝐸𝑌1
4 )(3 − 𝑢𝛼

2 )

12  
+ 𝑜(1) 

Samples with Random Sizes 

Consider random variables N1,N2,... иX1,X2,..., defined on the same probability space (Ω,A,P). The 

r.v.’sX1, X2,...Xn will be treated as observations with n being a non – random sample size, whereas the 

r.v.’s Nn will be treated as random sample size depending on the parameter n ∈N. For example, if the 

r.v. Nn has the geometric distribution with parameter 1/n, then 

E Nn = n,                                                                                                                                              (4.1) 

that is, the r.v. Nn is parametrized by its expectation n. 

Assume that for each n ≥ 1 the r.v. Nn takes only natural values, that is, Nn ∈ N and are independent of 

the sequence X1,X2,.... Everywhere in what follows consider the r.v.’s X1,X2,... to be independent and 

identically distributed. By Hn = Hn(X1,...,Xn) denote a statistic, that is, real measurable function of 

observations X1,...,Xn. For each n ≥ 1 define tne statistic HNn constructed from the sample of random 

size, that is 

 HNn(ω) ≡ HNn(ω)(X1(ω),...,XNn(ω)(ω)), ω∈ Ω. 

Now assume that the d.f. of the non – normalized statistic Hn admits an asymptotic expansion 

described by the following condition. 

Condition A. There exist constants k ∈ N, k >2, αin ∈ R, i = 1,...,k, βn >0, Ck >0, a differentiable d.f. 

G(x) and measurable functions gj(x), j = 1,...,k such that 



Asymptotic Deficiency and Samples with Random Sizes 

 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)                     Page | 38 

. 

Lemma 4.1. If the condition A holds, then 

. 

The proof is a simple exercise on the application of the formula of total probability. 

Let X1,X2,... be i.i.d.r.v.’s and 

E .                (4.2) 

Define for each n ∈ N 

.                                                                                             (4.3) 

Suppose that the distribution of X1 satisfies the Cramer condition (C) 

limsup |E exp{itX1}| <1.                                                                                                          (4.4)  

|t|→∞ 

Taking into account (4.2), (4.4) and Theorem 6.3.2 [10] we obtain 

 

where (see [10]) 

       (4.6) 

Using (4.5) and Lemma 4.1, one has 

Lemma 4.2. Let the conditions (4.2) - (4.4) be satisfied, then 

. 

After these preliminaries (see (4.5) and Lemma 4.2), the following Lemma can be formulated. 

Lemma 4.3. Suppose that the conditions (4.2) - (4.4) hold with k = 4, δ>0 and there exist a, b such that 

E Nn = n, E , 

 E , E , 

then 
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and 

. 

For n >1 let Hn = Hn(X1 ...,Xn) be a statistic, that is, a measurable function of the r.v.’s X1,...,Xn. The 

asymptotic quantile of order α, α∈ (0,1) (the α– quantile) of statistic Hn is the value  for which 

 P .                                          (4.7) 

and we consider α– quantile of statistic HNn. That is the value hα(n) for which 

P.                                                                    (4.8) 

Taking into account (4.5), (4.6) and Lemma 3.1 we obtain 

Lemma 4.4. Suppose that the conditions (4.2) - (4.4) hold with k = 4, δ>0, then under the conditions 

of Lemma 4.3 α– quantiles  and hα(n) admit the following asymptotic expansions 

 

, 

where Φ(uα) = 1 − α. 

Define the sequence of positive integers {m(n) = n + d∗+ o(1), d∗∈ R, n = 1,2,...} by the relation (d 

is the asymptotic deficiency) 

P ,                              (4.9) 

Now we have in analogy to Theorem 3.1 Theorem 4.5. Suppose that 

E Nn = n, E , 

 E , E  

and 

, 

then the asymptotic deficiency d∗ (see. (4.9)) satisfies 

, 

where G(cα) = 1 − α. 

The result of these steps is the following Lemma. 

Lemma 4.6. If the conditions of Lemma 4.3 are satisfied, we have (see. (3.12)) 
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. 

If 

E , 

then 

. 

4. THE CASE OF THE SAMPLES WITH RANDOM SIZE HAVING A THREEPOINT SYMMETRIC 

DISTRIBUTION 

In the previous section the results of section 3 were used to solve the main problem of this section. 

Here we briefly discuss another application of these results (see Lemma 4.2 and Theorem 4.5). Let Nn 

have a three-point distribution with parameter hn 

 

                                                                                                (5.1) 

, 

where hn < n and 

.                                                                                                                      (5.2) 

Carrying out the type of computation outlined above we arrive at the following simplified version of 

Lemma 4.1. 

Lemma 5.1. Suppose that (4.2) - (4.4) (k = 4 and 0 <δ6 1), (5.1) and (5.2) are 

satisfied. Then 

 

Corollary 5.1. Under the conditions of Lemma 5.1 we have for hn= n
3/4 

(uniformly 

inx ∈ R) 

P . 

The result of these Lemmas is the following Theorem. 

Theorem 5.2. If the conditions of Corollary 5.1 are satisfied, we have (see (4.7), (4.8) and (4.9)) 

, 
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Where Φ(uα) = 1 − αand 

. 
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