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1. INTRODUCTION 

Solving nonlinear equations f (x)=0, is one of the most important problem in scientific and 
engineering applications. There are several well-known methods for solving nonlinear algebraic 

equations of the form: 

f (x)=0                                                                                                                                                    (1) 

Where f denote a continuously differentiable function on [a, b]∁ℛ, and has at least one root α, in [a, b] 

Such as Newton’s Method, Bisection method, Regula Falsi method, Nonlinear Regression Method 

and several another methods see for example [2-24].Here we describe a new method by using Least 

square method as a polynomial form of degree two, then we find that, this procedure lead us to the 
root α of equation (1).Some test examples are given to show the efficiency of the proposed methods 

and we compare the results of these examples of present methods with the famous methods of 

classical Newton’s method (NM) [4], Hou [12], Zheng et al method (QM) [13], Hu [14],and new 
Eighth higher and Sixteenth-order iterative methods given by Rafiullah (R1) and (R2) [1], the 

numerical results obtained show that thepresent method is faster than the other methods. 

2. THE PRESENT METHOD 

Consider a nonlinear equation (1),  

Consider the following iterative method proposed by M. Rafiullah [1]. This method involve six 

functions evaluations at each step and the order of convergence is improved up to the sixteen:  
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Abstract: Finding the roots of nonlinear algebraic equations is an important problem in science and 

engineering, later many methods developed for solving nonlinear equations. These methods are given [1-24], 

in this work, we proposed two new higher order iterative methods. These methods based on the method given 

by Rafiullah [1], 2016, which is Eighth and Sixteenth-order convergence. The Least square method is used to 

find the present methods. We verified on a number of examples and numerical results obtained show that the 
present method is faster than the other methods. 
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Which was used Lagrange interpolation (to reduce the number of functions)toapproximatef’(zn) with 

using three known points ((xn), f (xn)), ((yn), f (yn)) and ((zn), f(zn)). 

Here, in present work, we used the least square method of degree twoto approximate f’(zn)in the form 
given by equation (3) 

 𝑎+𝑏𝑥 + 𝑐𝑥2 = 0                                                                                                                                                  (3)  

Where a, b and c are the unknown constant. 

We used three points ((xn), f(xn)), ((yn), f(yn)) and ((zn), f(zn)), then we find that, this procedure lead 

us to the root α  of equation (1), let 𝑒𝑖is the error or the different value between the true value 𝑦𝑖  and 

the estimated value 𝑦𝑖  , therefore,  

𝑒𝑖 = 𝑦𝑖 − 𝑦𝑖                                                                                                                                            (4)  

And the sum of square error,   

 𝑒𝑖
23

𝑖=1
=  (𝑦𝑖 − 𝑦𝑖 )23

𝑖=1
                                                                                                                 (5) 

Or,               𝑒𝑖
23

𝑖=1
=  (𝑦𝑖 − [ 𝑎 + 𝑏𝑥𝑖 + 𝑐𝑥𝑖

2 ]23

𝑖=1
                                                                    (6) 

To find a, b, c we will minimize this function, taking the derivative of (6) equal to zero, we find the 

three normal equations: 
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Hence, we find a, b and c, then we have the new iteration: 

                                                                                                     (8) 

3. ALGORITHM 

The present method has 6 steps: 

Take   𝑎, 𝑏  is an initial interval, which has at least a root in this interval. 

Compute ((xn), f (xn)), ((yn), f (yn)) and ((zn), f(zn)), 

Determine the constants a, b and c by solving the system of three linear algebraic equations (7). 

Find iteration (xn+1) from (8). 

Return to step (2) until the absolute error 𝑓(𝑥) < 𝜀. 

4. EXAMPLES 

In this section, we shall check the effectiveness of present method. First we compare presentmethod 

(8) (PM) with the method of M. Rafiullah (R1) [1] with the classical Newton’s method (NM) [4] Hou 

[12] and Hu [14] which areeighth, second, twelfth and ninth order methods respectively. 

Example 1 [1, 2]: 
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Function x0 α (exact root) 

f1(x) = sin(x)2 + x 1 0 

f2(x) = e−x + cos x − 1  0 0.923632658955135 

 f3(x) = 4x5 − 3x4 + 2x3 −3 2 1 

f4(x) = xe−
x 
− x  1 0 

f5(x) = x3 − x2 + log x 1.5 1 

f6(x) = ex sin x + log(1 + x2) 1.5 0 

f7(x)= x9 − 45x8 + 870x7 −9450x6+63,273x5                       

−269,325x4+723,680x−15 

10 0.591897115013801022 

f8(x) = 3tan x − x 1 0 

The following table shows the number of iterations to achieve α. 

Function NM      HOU      HU       R1         PM 

  f1(x)  7 2 2 2 2 

 f2(x)  5 2 2 2 1 

 f3(x)  9 3 3 3 2 

 f4(x) 9 3 3 13 9 

f5(x) 7 2 2 2 2 

f6(x) 8 2 2 3 2 

f7(x) 12 slow 4 4 2 

f8(x) 6 slow 3 3 2 

Now, consider some test problems to illustrate the efficiency of our method (PM) with the second 

proposed method of M. Rafiullah (R2) [1], which is sixteenth order. We compare our results (PM) 
with the results of (R2) [1] and with the results method of Zheng et al. [13] (QM), which is sixteenth 

order as well. 

Example 2 [2,13] 

Consider the following functions  

Function x0 α (exact root) 

f1(x) =21(ex−2 − 1) 2.5 2 

f2(x) = x2 −2 e−x + 1 0.5 0 

f3(x) = = e-x +x+2 – 1 -0.7 -1 

f4(x) =ex − arctan(x) – 1 0.5 0 

The following table shows the first three iteration of (R2) method. 

Function x1 x2 x3 |α − x3| 

f1(x) 2.5000e+000 2.0000e+000 2.0000e+000 0 

f2(x) 5.0000e−001 1.9956e−010 2.0589e−159 2.0589e−159 

f3(x) −7.0000e−001 −1.0000e+000 −1.0000e+000 0 

f4(x) 5.0000e−001 5.0000e−002 5.0000e−003 5.0003e−001 

The following table shows the first three iteration of (QM) method. 

Function x1 x2 x3 |α − x3| 

f1(x) 2.5000e+000 2.0000e+000 2.0000e+000 0 

f2(x) 5.0000e−001 5.8971e−010 1.7520e−161 1.7520e−161 

f3(x) −7.0000e−001 −1.0000e+000 −1.0000e+000 0 

f4(x) 5.0000e−001 4.7826e−002 3.1265e−003 3.1265e−003 

The following table shows the first three iteration of present method (PM) method. 

Function x1 x2 x3 |α − x3| 

f1(x) 2.5000e+000 2.0000e+000 2.0000e+000 0 

f2(x) 5.0000e−001 119.5587e-12 173.8982e−204 173.8982e−204 

f3(x) −7.0000e−001 −999.9999e+030 −1.0000e+000 0 

f4(x) 5.0000e−001 36.1505e−003 2.2040e−003 2.2040e−003 

If we compare the results of present method (PM) with (R2)method and with (QM)method, we see 

that the performance of (PM) method is better than of both(R2) and(QM) methods. 
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5. CONCLUSIONS 

In this work, we have proposed a new iterative method by using least square method. The efficiency 

of this method is shown for some test problems, comparison of the obtained result is given with the 
existing methods such as the Newton–Raphson [7], Hou [12] and Hu [14] the M. Rafiullah (R2) 

method [1] and, Zheng et al. [13], it is shown that this new method is more efficient than these 

existing methods. 
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