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1. INTRODUCTION 

Understanding the flow of non-Newtonian fluids is a problem of great interest of researchers and 

practical importance. There are several natural and industrial applications of such fluids, for instance 

volcanic lava, molten polymers, drilling mud, oils, certain paints, poly crystal melts, fluid 

suspensions, cosmetic and food products and many others. The flow dynamics of non-Newtonian 

fluids can be described by non-linear relationships between the shear stress and shear rate. Further 

these fluids have sheared dependent viscosity. In literature there exist many mathematical models 

with different constitutive equations involving different set of empirical parameters. The micropolar 

fluid model is adequate for exocitic lubricants, animal blood, liquid crystals with rigid molecules, 

certain biological fluids and colloidal or suspensions solutions. The micromotion of fluid elements, 

spin inertia and the effects of the couple stresses are very important in micropolar fluids [1,2]. The 

fluid motion of the micropolar fluid is characterized by the concentration laws of mass, momentum 

and constitutive relationships describing the effect of couple stress, spin-inertia and micromotion. 

Hence the flow equation of micropolar fluid involves a micro -rotation vector in addition to classical 

velocity vector. In micropolar fluids, rigid particles in a small volume element can rotate about the 

centred of the volume element. The micropolar fluids in fact can predict behaviour at microscale and 

rotation is independently explained by a microrotation vector. More interesting aspects of the theory 

and application of micropolar fluids can be found in the books of Eringen [3] and Lukazewicz [4] and 

in some studies of Peddieson and McNitt [5] Willson [6], Siddheshwar and Manjunath [7].  

In Newtonian heating, the rate of heat transfer from the bouncing surface with a finite heating 

capacity is proportional to the local temperature surface which is usually termed as conjugate 

convective flow (see Merkin [8], Lesnic et al. [9], Chaudhary and Jain [10] and Salleh et al. [11] 

numerically investigated the boundary layer flow of viscous fluid over a stretched surface in the 

regime of Newtonian heating. Numerical solution of the differential system is obtained by Keller box 

method. Recently, Qasim [12] studied the heat Transfer in a micropolar fluid over a stretching sheet 

with newtonian heating. Uddin et al. [13] studied the MHD free convective boundary layer flow of a 

nanofluid past a flat vertical plate with newtonian heating.  
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The heat source/sink effects in thermal convection, are significant where there may exist a high 

temperature differences between the surface (e.g. space craft body) and the ambient fluid. Heat 

generation is also important in the context of exothermic or endothermic chemical reactions. Singh et 

al. [14], investigated the effect of volumetric heat generation/absorption on mixed convection 

stagnation point flow on an isothermal vertical plate in porous media. Das and his co-workers [15] 

analyzed the effect of mass transfer on MHD flow and heat transfer past a vertical porous plate 

through a porous medium under oscillatory suction and heat source. Ibrahim et al.[16] have examined 

the effects of unsteady MHD micropolar fluids over a vertical porous plate through a porous medium 

in the presence of thermal and mass diffusion with a constant heat source. Rehman and sattar [17] 

have analyzed the effect of magnetohydrodynamic convective flow of a micropolar fluid past a 

continuously moving porous plate in the presence of heat generation/ absorption. 

The study of radiation effects on the various types of flows is quite complicated. In the recent years, 

many authors have studied radiation effects on the boundary layer of radiating fluids past a plate. 

Raptis [18] studied the flow of a micropolar fluid past a continually moving plate by the presence of 

radiation. The radiation effect on heat transfer of a micropolar fluid past unmoving horizontal plate 

through a porous medium was studied by Abo-Eldahab and Ghonaim [19]. Ishak [20] investigated 

that the thermal boundary layer flow over a stretching sheet in a micropolar fluid with radiation effect. 

Uddin el [21] investigated the MHD forced convective laminar boundary layer flow from a 

convectively heated moving vertical plate with radiation and transpiration effect. Recently, 

Mohammed Ibrahim and Bhaskar Reddy [22] studied the mass transfer and thermal radiation effects 

over a stretching sheet in a micropolar fluid with heat generation.  

The present study investigates the steady, two dimensional flow of an incompressible micropolar fluid 

over a stretching sheet with Newtonian heating in the presence of heat generation, radiation. Using the 

similarity transformations, the governing equations have been transformed into a set of ordinary 

differential equations, which are nonlinear and cannot be solved analytically, therefore, fifth order 

Runge-Kutta integration scheme has been used for solving it. The results for velocity, microrotation 

and temperature functions are carried out for the wide range of important parameters namely, material 

parameter, heat generation parameter and radiation parameter. The skin friction, the couple wall stress 

and the rate of heat transfer have also been computed. 

2. MATHEMATICAL FORMULATION 

A steady boundary layer flow of an incompressible micropolar fluid induced by a stretching surface is 

considered. The sheet is stretched with a velocity ( )wu x cx  (where c is a real number). It is 

assumed that the Dufour effects are neglected in the energy equation. It is further assumed that the 

fluid properties are taken to be constant except for the density variation with the temperature in the 

buoyancy term. Under the usual boundary layer approximation, the governing equations are    

Continuity equation 

0
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Angular momentum equation
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Energy equation 

2

0

2

1
( )r

p p p

QT T k T q
u v T T

x y c y c y c  


   
    

   
                                                                                          (2.4) 

The boundary conditions for the velocity, temperature and concentration fields are  
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where u and v are the velocity components parallel to the x and y axes, respectively,   the fluid 

density,   the kinematic viscosity, T is temperature, N the microrotation or angular velocity, T  is the 

ambient temperature, cp the specific heat, k the thermal conductivity of the fluid, Q0 is the heat 

generation or absorption rate constant, ( / )j c is microinertia per unit mass,  * / 2 j     and 

  are the spin gradient viscosity and vortex viscosity, respectively. Here 0  corresponds to 

situation of viscous fluid and the boundary parameter n varies in the range0 1n  . Here 0n 
corresponds to the situation when microelements at the stretching sheet are unable to rotate and 

denotes weak concentrations of the microelements at sheet. The case 1/ 2n  corresponds to the 

vanishing of anti-symmetric part of the stress tensor and it shows weak concentration of 

microelements and the case 1n  is for turbulent boundary layer flows, sh  is the heat transfer 

coefficient.
  

By using the Rosseland approximation the radiative heat flux rq is given by
 

4

14

3 *
r

T
q

k y
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                                                                                                                (2.6)
 

Where 
1 is the Stefan -Boltzmann constant and *k  is the mean absorption coefficient. It should be 

noted that by using the Rosseland approximation, the present analysis is limited to optically thick 

fluids. If temperature differences within the flow are significantly small, then equation (2.4) can be 

linearised by expanding 
4T into the Taylor series aboutT

, which after neglect higher order terms 

takes the form: 

4 3 44 3T T T T  
                                                                                                      

(2.7)
     

In view of equations (2.8) and (2.9), eqn. (2.6) reduces to 
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The continuity equation (2.1) is satisfied by the Cauchy Riemann equations 

u
y





  and  v
x


 

                                                                                                                 

(2.9)

 
 

where ( , )x y  is the stream function.
 

In order to transform equations (2.2), (2.3) (2.8) and (2.5) into a set of ordinary differential equations, 

the following similarity transformations and dimensionless variables are introduced.
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where ( )f  is the dimensionless stream function, θ is the dimensionless temperature, N  is the 

dimensionless microrotation, η is the similarity variable, K is the material parameter, β is the heat 

generation parameter, R is the radiation parameter and
 
Pr is the Prandtl number. In view of equations 

(2.9) and (2.10), the equations (2.2), (2.3), (2.8) and (2.5) transform into

 
2

(1 ) ' ' 0K f ff f Kg                                                                                                   (2.11) 

 1 / 2 '' ' ' (2 '') 0K g fg f g K g f     
 

                                                                                         (2.12) 

 
1

1 " ' 0
Pr

R f                                                                                                       (2.13)  



Effect of Heat Generation and Radiation on Heat Transfer in a Micropolar Fluid over a Stretching Sheet 

with Newtonian Heating 

 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)                       Page 24 

The corresponding boundary conditions are  (0) 0, '(0) 1, (0) ''(0), '(0) 1 (0)f f g nf          ' 0f g      

as                                                                                                                                     (2.14) 

where the primes denote differentiation with respect to   and /sh c  his the conjugate 

parameter for Newtonian heating.
 

The physical quantities of interest are the skin friction coefficient fxC , the local couple wall stress wxM  

and the local Nusselt number xNu  which are defined as 
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Where  2Re /x cx   is the local Reynolds number. 

Our main aim is to investigate how the values of fxC and xNu  vary in terms of the various parameters. 

3. SOLUTION OF THE PROBLEM 

The set of non-linear coupled differential equations (2.11)-(2.13) subject to the boundary conditions 

equation (2.14) constitute a two-point boundary value problem. In order to solve these equations 

numerically we follow most efficient numerical shooting technique with fifth-order Runge-Kutta-

integration scheme. In this method it is most important to choose the appropriate finite values of

 . To select  we begin with some initial guess value and solve the problem with some 

particular set of parameters to obtain ''f and 1/ (0) . The solution process is repeated with another 

large value of   until two successive values of ''f and 1/ (0)  differ only after desired digit 

signifying the limit of the boundary along . The last value of   is chosen as appropriate value of 

the limit  for that particular set of parameters. The three ordinary differential equations (2.11)-

(2.13) were first formulated as a set of seven first-order simultaneous equations of seven unknowns 

following the method of superposition [23]. Thus, we set 
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Eqs. (2.11) - (2.13) then reduced into a system of ordinary differential equations, i.e., where 1 2,   

and 3  are determined such that it satisfies    2 40, 0y y    and  6 0y   . The shooting 

method is used to guess 1 2,   and 3  until the boundary conditions    2 40, 0y y    and 

 6 0y   are satisfied. Then the resulting differential equations can be integrated by fifth-order 

Runge-Kutta integration scheme. The above procedure is repeated until we get the results up to the 

desired degree of accuracy, 
610
. 

4. RESULTS AND DISCUSSION 

The governing equations (2.11) - (2.13) subject to the boundary conditions (2.14) are integrated as 

described in section 3. In order to get a clear insight of the physical problem, the velocity, temperature 

and concentration have been discussed by assigning numerical values to the parameters encountered 

in the problem. The effects of various parameters on velocity profiles in the boundary layer are 

depicted in Figs. 1-2. The effects of various parameters on Angular velocity profiles in the boundary 

layer are depicted in Figs.3-4. The effects of various parameters on temperature profiles in the 

boundary layer are depicted in Figs. 5-10.  

 

Fig.1 Velocity for different values of K                     Fig.2 Velocity for different values of n 

The effect of material parameter (K) on the velocity is illustrated in Fig.1. It is noticed that the 

velocity increases with increasing values of the material parameter.   Fig. 2 shows the variation of the 

velocity with the boundary parameter (n). It is noticed that the velocity thickness decreases with an 

increase in the boundary parameter. 

 

Fig.3 Angular velocity for different values of K           Fig.4 Angular velocity for different values of n 

Fig. 3 depicts the angular velocity with the material parameter. It is noticed that the angular velocity 

thickness decreases neat the wall and increases for away the wall with an increase in the material 

parameter. The effect of the boundary parameter on the angular velocity is illustrated in Fig.4. It is 

observed that as the boundary parameter increases, the angular velocity boundary layer thickness 

increases.   
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Fig.5 Temperature for different values of K                Fig.6 Temperature for different values of n 

 

Fig.7 Temperature for different values of γ             Fig.8 Temperature for different values of R 

                  

Fig.9 Temperature for different values of β            Fig.10 Temperature for different values of Pr 

Fig. 5 depicts the thermal boundary-layer with the material parameter. It is noticed that the thermal 

boundary layer thickness decreases with an increase in the material parameter.  Fig.6 illustrates the 

effect of the boundary parameter on the temperature.  It is noticed that as the boundary parameter 

increases, the temperature increases. Fig. 7 depicts the thermal boundary-layer with the conjugate 

parameter (γ). It is noticed that the thermal boundary layer thickness increases with an increase in the 

conjugate parameter.  Fig. 8 depicts the thermal boundary-layer with the radiation parameter (R). It is 

noticed that the thermal boundary layer thickness increases with an increase in the radiation 

parameter.   Fig. 9 shows the variation of the thermal boundary-layer with the heat generation 

parameter (β). It is observed that the thermal boundary layer thickness increases with an increase in 

the heat generation parameter.  Fig. 10 shows the variation of the thermal boundary-layer with the 

Prandtl number (Pr). It is noticed that the thermal boundary layer thickness decreases with an increase 

in the Prandtl number.  
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Table 1. Comparison of 
1/ 2Rex fxC  for different values of K when Pr=0.7, Q=R=0, γ=1. 

 

K 

1/ 2Rex fxC  

Qasim et al. [12] Present study 

n=0 n=0.5 n=0 n=0.5 
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4 

-1.000000 

-1.367872 

-1.621225 

-2.004133 

-1.000000 

-1.224741 

-1.414218 

-1.732052 

-1.00006 

-1.36832 

-1.62249 

-2.02322 

-1.00006 

-1.22514 

-1.41972 

-1.74890 

For validation of the numerical method used in this study, results for skin friction were compared with 

those of Qasim et al. [12] for various values of K. The quantitative comparison is shown in Table 1 

and it is found to be in excellent agreement. It is found that the magnitude of skin friction coefficient 

increases for large values of K. 

Table 2. Computation of 
1/ 2Rex xNu

 for different values of K, Pr, R, β when γ=1. 

K Pr R β 1/ 2Rex xNu
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0.01 

0.487271 
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0.268446 
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0.6 

0.329214 

0.208165 

0.0331674 

-0.284422 

Table 2 shows the variation of the Nusselt number with for different values of material parameter, 

Prandtl number, radiation parameter and heat generation parameter. It is observed that the Nusselt 

number increases with an increase in the material parameter or Prandtl number and decreases with 

increasing the radiation parameter or heat generation parameter.  

5. CONCLUSIONS 

In the present prater, steady, two dimensional flow of an incompressible micropolar fluid over a 

stretching sheet with Newtonian heating by taking heat generation and radiation effects into account, 

are analyzed. The governing equations are approximated to a system of non-linear ordinary 

differential equations by similarity transformation. Numerical calculations are carried out for various 

values of the dimensionless parameters of the problem. It has been found that 

1. The velocity and the angular velocity increases as well as, the temperature decreases with an 

increase in the material parameter. 

2. The heat generation and radiation enhances the temperature. 

3. The skin friction enhances the material parameter. 

4. The heat generation and radiation reduces the heat transfer rate. 

REFERENCES 

[1] Eringen, A.C., (1964), Simple micropolar fluids, Int J Eng Sci., Vol.2, pp.205–207. 

[2] Eringen, A.C., (1966), Theory of micropolar fluids, J Math Mech., Vol.16, pp.1-18. 

[3] Eringen, A.C., (2001), Microcontinuum field theories II, Fluent Media. Springer, Newyork. 



Effect of Heat Generation and Radiation on Heat Transfer in a Micropolar Fluid over a Stretching Sheet 

with Newtonian Heating 

 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)                       Page 28 

[4] Lukaszewicz, G., (1999), Micropolar fluids: Theory and applications, Brikhauser Basel. 

[5] Peddieson, J., McNitt, R.P., (1970), Boundary layer theory for micropolar fluid, Recent Adv Eng Sci., 

Vol.5, pp.405-426. 

[6] Willson, A.J., (1970), Boundary layers in micropolar liquids, Proc. Camb Phil Soc., Vol.67, pp.469-476. 

[7] Siddheshwar, P.G., Manjunath, S., (2000), Unsteady convective diffusion with heterogeneous chemical 

reaction in a plane-Poiseuille flow of a micropolar fluid, Int J Eng Sci., Vol.38, pp.765-783. 

[8] Merkin, J.H., (1999), Natural-convection boundary-layer flow on a vertical surface with Newtonian 

heating, Int. J. Heat. Fluid Flow, Vol.15, pp.392-398. 

[9] Lesnic, D., Ingham, D.B., Pop, I., (1999), Free convection boundary layer flow along a vertical surface in a 

porous medium with Newtonian heating, Int. J. Heat Mass Transf., Vol.42, pp.2621-2627. 

[10] Chaudhary, R.C., Jain, P., (2007), An exact solution to the unsteady free convection boundary layer flow 

past an impulsive started vertical surface with Newtonian heating, J. Eng. Phys., Vol.80, pp.954-960. 

[11] Salleh, M.Z., Nazar, R., Pop, I., (2010), Boundary layer flow and heat transfer over a stretching sheet with 

Newtonian heating, J Taiwan Inst Chem Eng., Vol.41, pp.651-655. 

[12] Qasim, M., Khan, I., Shafie, S., (2013), Heat Transfer in a Micropolar Fluid over a Stretching Sheet with 

Newtonian Heating, PLoS ONE, Vol.8(4): e59393. doi:10.1371/journal.pone.0059393, pp.1-6. 

[13] Uddin, M.J., Khan, W.A., Ismail, A.I., (2012), MHD Free Convective Boundary Layer Flow of a Nanofluid 

past a Flat Vertical Plate with Newtonian Heating Boundary Condition, PLoS ONE, Vol.7(11): e49499. 

doi:10.1371/journal.pone.0049499, pp.1-8. 

[14] Uddin, M.J., Khan, W.A., Ismail, A.I.M., (2013), MHD Forced Convective Laminar Boundary Layer Flow 

from a Convectively Heated Moving Vertical Plate with Radiation and Transpiration Effect, PLoS ONE, 

Vol.8(5): e62664. doi:10.1371/journal.pone.0062664,pp.1-10. 

[15] Singh, G., Sharma, P.R., and Chamkha, A.J., (2010), Effect of Volumetric Heat Generation/Absorption on 

Mixed Convection Stagnation Point Flow on an Isothermal Vertical Plate in Porous Media, Int. J. Industrial 

Mathematics, Vol.2(2), pp.59-71. 

[16] Das, S.S., Satapathy, A., Das, J.K., and Panda, J.P., (2009), Mass transfer effects on MHD flow and heat 

transfer past a vertical porous plate through a porous medium under oscillatory suction and heat source, Int. 

J. Heat Mass Transfer, Vol.52, pp.5962-5969.  

[17] Ibrahim, F.S., Hassanien, I.A., Bakr, A.A., (2004), unsteady magnetohydrodynamic micropolar fluid flow 

and heat transfer over a vertical porous plate through a porous medium in the presence of thermal and mass 

diffusion with a constant heat source, Can.J.Phys., Vol.82, pp.775-790. 

[18] Rahman, M.M., Sattar, M.A., Magnetohydrodynamic convective flow of a micropolar fluid past a 

continuously moving porous plate in the presence of heat generation/absorption, ASME.J. Heat transfer, 

Vol128, pp.142-153. 

[19] Raptis, A., (1998), Flow of micropolar fluid past a continuously moving plate by the presence of radiation, 

Int. J. Heat Mass Transfer, Vol.41, pp.2865-2866.  

[20] Abo-Eldahad, E.M., and Ghonaim, A.F., (2005), Radiation effect on heat transfer of a micropolar fluid 

through a porous medium, App. Mathematics and Computation, Vol.169, No.1, pp.500-516.  

[21] Ishak, A., (2010), Thermal boundary layer flow over a stretching sheet in a micropolar fluid with radiation 

effect, Meccanica, Vol.45, No.3, pp.367-373.  

[22] Mohammed Ibrahim, S., & Bhaskar Reddy, N., (2013), Mass transfer and thermal radiation effects over a 

stretching sheet in a micropolar fluid with heat generation, International Journal of Mathematical Archive, 

Vol.4(1), pp.94-102. 

[23] Na, T.Y., (1979), Computational Methods in Engineering Boundary Value Problems, Academic Press, New 

York. 

 

 

 

 

 

 



Effect of Heat Generation and Radiation on Heat Transfer in a Micropolar Fluid over a Stretching Sheet 

with Newtonian Heating 

 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)                       Page 29 

AUTHORS’ BIOGRAPHY 

Dr. Vijaya Lakshmi S, holds a PhD in Mathematics by the University of JNTUA 

and is   lecturer for the Department of Mathematics. Her main area of interest is the 

study of Fluid Dynamics. She has an experience of 11 years in academics and 1 

year in Software Industry. She had published more than 5 paper s in reputed 

International Journals. 

 

Dr.  Amarnatha Reddy T, holds a PhD in Physics by the University of Acharya 

Nagarjuna University and is an associate professor   in the Department of Physics. 

His main areas of interest is the study of atmospheric physics. He has an experience 

of 10 years in academics. He had published more than 5 paper s in reputed 

International Journals. 

  

Dr.  Suryanarayana Reddy M, holds a PhD in Mathematics by the University of 

JNUTA and is an assistant professor   in the Department of Mathematics, JNTUA 

Pulivendua. His main areas of interest is the study of Fluid Dynamics. He has an 

experience of 16 years in academics. He had published more than 15 paper s in 

reputed International Journals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Citation: S. Vijaya Lakshmi et al., " Effect of Heat Generation and Radiation on Heat Transfer in a 

Micropolar Fluid over a Stretching Sheet with Newtonian Heating s ", International Journal of Scientific 

and Innovative Mathematical Research, vol. 6, no. 1, p. 21-29, 2018., http://dx.doi.org/10.20431/2347-

3142.0601004 

Copyright: © 2018 Authors. This is an open-access article distributed under the terms of the Creative 

Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited. 


