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1. INTRODUCTION 

There are many studies about Lagrangian and Hamiltonian dynamics, mechanics, formalisms, systems 

and equations. There are real, complex, para-complex and other analogues. It is well-known that 

Lagrangian and Hamiltonian analogues are very important tools. They have a simple method to 

describe the model for mechanical systems. Welyczko generalized some of them to the case of 3-

dimensional normal almost contact metric manifolds, especially, quasi-Sasakian manifolds [1]. 

Tripathi et al. introduce the concept of ε-almost paracontact manifolds, and in particular, of ε-para-

Sasakian manifolds [2]. Atceken investigated the existence of warped product semi-invariant 

submanifolds in almost para contact metric manifolds [3]. Calin et al. studied slant curves of three-

dimensional f-Kenmotsu manifolds [4]. Calin and Crasmareanu examined slant curves of three-

dimensional normal almost contact manifolds as natural generalization of Legendre curves [5]. Kasap 

and Tekkoyun found Lagrangian and Hamiltonian formalism for mechanical systems using 

para/pseudo-Kähler manifolds [6]. Guvenc and Ozgur find the characterizations of the curvatures of 

slant curves in trans-Sasakian manifolds with C-parallel [7]. Welyczko studied the curvature and 

torsion of slant Frenet curves in 3-dimensional normal almost paracontact metric manifolds [8]. 

In the present paper, we present equations related to Lagrangian and Hamiltonian mechanical systems 

on Slant curves in 3-dimensional normal almost paracontact metric manifolds. 

2. PRELIMINARIES 

Definition 1. A (2n+1)-dimensional manifold M is said to be a contact manifold if it admits a global 

1-form η, such that η∧(dη)ⁿ≠0. 

Given such a form η, there exists a unique vector field ξ, called the characteristic vector field, such 

that η(ξ)=1 and dη(ξ, )=0. A semi-Riemannian metric g is said to be an associated metric if there 

exists a tensor ϕ of type (1,1), such that 

ϕ²X=X-η(X)ξ, 
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ϕξ=0, η(ϕX)=0, η(ξ)=1, 

g(ϕX,ϕY)=g(X,Y)-η(X)η(Y), 

η(X)=g(X,ξ), dη( , )=g( ,ϕ).              (1) 

Then, (ϕ,ξ,η,g) (more briefly, (η,g)) is called a paracontact metric structure, and (M,ϕ,ξ,η,g) or M a 

paracontact metric manifold [9]. 

Definition 2. Let M be an almost paracontact manifold with almost paracontact structure (ϕ,ξ,η,g) and 

consider the product manifold M×ℝ, where ℝ is the real line. A vector field on M×ℝ can be 

represented by (X,f(d/dt)), where X is tangent to M, f a smooth function on M×ℝ, and the coordinates 

of ℝ. For any two vector fields (X,f(d/dt)) and (Y,h(d/dt)) , it is easy to verify the following: 

[(X,f(d/(dt))),(Y,h(d/(dt))]=([X,Y],(Xh-Yf)(d/(dt))).                                      (2) 

Definition 3. If the induced almost product structure J on M×ℝ defined by 

J(X,f(d/(dt)))=(ϕX+fξ,η(X)(d/(dt)))                                                    (3) 

is integrable, then we say that the almost paracontact structure (ϕ,ξ,η,g) is normal. 

Definition 4. Let M be an almost paracontact manifold and for any vector fields X,Y on M if it is 

additionaly endowed with a pseudo-Riemann metric g of signature (n+1,n) and such that 

g(ϕX,ϕY)=-g(X,Y)+η(X)η(Y).                                                         (4) 

Definition 5. In normal almost contact metric manifold with Riemanian metric g, the value of g(γ,ξ) 

satisfied -1≤g(γ,ξ)≤1, so that we can define the structural angel of γ i.e. function θ: I→[0,2π) given by 

cosθ(t)=g( (t),ξ)=η( (t)).                                                               (5) 

Then, the curve γ is said to be a slant curve, (or θ slant curve) if θ is a constant function. 

3. THE THEORY OF J-HOLOMORPHIC CURVES 

The theory of J-holomorphic curves is one of the new techniques which have recently revolutionized 

the study of symplectic geometry, making it possible to study the global structure of symplectic 

manifolds. The methods are also of interest in the study of Kähler manifolds, since often when one 

studies properties of holomorphic curves in such manifolds it is necessary to perturb the complex 

structure to be generic. The effect of this is to ensure that one is looking at persistent rather than 

accidental features of these curves. 

Symplectic manifolds arise naturally in abstract formulations of classical mechanics and analytical 

mechanics as the cotangent bundles of manifolds, e.g., in the Hamiltonian formulation of classical 

mechanics, which provides one of the major motivations for the field: The set of all possible 

configurations of a system is modelled as a manifold, and this manifold's cotangent bundle describes 

the phase space of the system. 

Definition 6. J-holomorphic curve is a smooth map from a Riemann surface into an almost complex 

manifold that satisfies the Cauchy-Riemann equation. 

Definition 7. A symplectic manifold is a smooth manifold (M) equipped with a closed nondegenerate 

differential 2-form (ω) called the symplectic form. 

Example 1. An almost complex symplectic manifold is standard Euclidean space (ℝ²ⁿ,ω₀) with its 

standard almost complex structure J₀ obtained from the usual identification with ℂn. Thus, one sets 

zj=x2j-1+ix2j for j=1,...,n and defines J₀ by 

J₀(∂2j-1)=∂2j ,   J₀(∂2j)=-∂2j-1                                                        (6) 
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where ∂j=∂/∂xj is the standard basis of Txℝ²ⁿ [10]. 

Definition 8. Let M be a differentiable manifold of dimension (2n+1) and suppose J is a differentiable 

vector bundle isomorphism J:TM→TM such that J:TM→TM is a almost complex structure for TM. 

Definition 9. An almost complex structure J on M assigns to each p∈M a linear map Jp:TpM→TpM 

that is smooth in p and satisfies J
2
p=Id for all p. The pair (M,J) is called an almost paracomplex 

manifold.
 

Theorem 1. Any paracomplex manifold M is also an almost paracomplex manifold.
 

Lemma 1. Let M be a smooth manifold. If M admits a complex structure A , then M admits an almost 

complex structure J. Let dimℂM=m and (z,U) be any holomorphic chart inducing a coordinate frame 

∂x₁,∂y₁,...,∂xm,∂ym. Then J is given locally as 

Jp(∂xi|p)=∂yi|p  ,   Jp(∂yi|p)=-∂xi|p,                                            (7) 

where 1≤i≤m and p∈U [11]. 

A celebrated theorem of Newlander and Nirenberg [12] says that an almost (para)complex structure is 

a (para)complex structure if and only if its Nijenhuis tensor or torsion vanishes. 

Theorem 2. The almost (para)complex structure J on M is integrable if and only if the tensor NJ 

vanishes identically, where NJ is defined on two vector fields X and Y by 

NJ[X,Y]=[JX,JY]-J[X,JY]-J[JX,Y]-[X,Y].                                     (8) 

The tensor (2,1) is called the Nijenhuis tensor (8). We say that J is torsion free if NJ=0. An almost 

product structure is integrable if its Nijenhuis tensor vanishes. 

Theorem 3. (Newlander-Nirenberg) An almost complex manifold (M,J) is complex if and only if J 

is integrable. 

Slant curves are characterized through the scalar product between the normal at the curve and the 

vertical vector field [4, 5]. 

Definition 10. In three dimensions, the vector from the origin to the point with cartesian coordinates 

(x,y,z) can be written as [13]: r=x. i


+y. j


+z. k


=x(∂/(∂x))+y(∂/(∂y))+z(∂/(∂z)). 

Example 2. Let ℝ³ be the Cartesian space and (x,y,z) be the cartesian coordinates in it. define the 

standart almost paracontact structure (ϕ,ξ,η) on ℝ³ by 

    ϕ(∂₁)=∂₂-2x∂₃,      

ϕ(∂₂)=∂₁, ϕ(∂₃)=0 

    ξ=∂₃,  η=2xdy+dz,                                                                           (9) 

where ϕ(∂/(∂x))=(∂/(∂y))-2x(∂/(∂z)), ϕ(∂/(∂y))=∂/(∂x), ϕ(∂/(∂z))=0 for ∂₁=∂/(∂x), ∂₂=∂/(∂y), ∂₃=∂/(∂z) 

    1. ϕ²(∂/(∂x))=ϕ((∂/(∂y))-2xϕ(∂/(∂z))=∂/(∂x), ϕ²=I, 

2. ϕ²(∂/(∂y))=(∂/(∂y))-2x(∂/(∂z)), ϕ²=I-η(X)ξ.                                                       (10) 

4. EULER-LAGRANGE DYNAMICS EQUATIONS 

Definition 11. Let M be an n-dimensional manifold and TM its tangent bundle with canonical 

projection τM:TM→M. TM is called the phase space of velocities of the base manifold M. Let 

L:TM→ℝ be a differentiable function on TM called the Lagrangian function [14, 15]. 
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Here, L=T-V such that T is the kinetic energy and V is the potential energy of a mechanical system. In 

the problem of a mass on the end of a spring, T=m
2x /2 and V=kx²/2, so we have L=(m

2x )/2-(kx²)/2. 

We consider the closed 2-form and base space (J) on TM given by ΦL=-d(dJL)=-d(J(d)). Consider the 

equation 

iξΦL=dEL.                                                                    (11) 

Where iξ  is reduction function and iξΦL=ΦL(ξ) is defined in the form. Then ξ is a vector field, we shall 

see that (11) under a certain condition on ξ is the intrinsical expression of the Euler-Lagrange 

equations of motion. This equation (11) is named as Lagrange dynamical equation. 

Definition 12. We shall see that for motion in a potential, EL=VL-L is an energy function and V=Jξ a 

Liouville vector field. Here dEL denotes the differential of E. The triple (TM,ΦL,ξ) is known as 

Lagrangian system on the tangent bundle TM. If it is continued the operations on (11) for any 

coordinate system then infinite dimension Lagrange's equation is obtained the form below. The 

equations of motion in Lagrangian mechanics are the Lagrange equations of the second kind, also 

known as the Euler-Lagrange equations; 

(∂/(∂t))((∂L)/( x ))=(∂L)/(∂x).                                           (12) 

Definition 13. We have (∂L)/( x )=mx and (∂L)/(∂x)=-kx, so eq. (12) gives xm  =-kx which is exactly 

the result obtained by using F=ma at Newton's second law for the mechanical problem. The Euler-

Lagrange equation, eq. (12), gives xm  =-(dV)/(dx). In a three-dimensional setup written in terms of 

cartesian coordinates, the potential takes the form V(x,y,z), so the Lagrangian is  L=m(
2x +

2y +
2z

)/2-V(x,y,z). So, the three Euler-Lagrange equations may be combined into the vector statement xm 
=-∇V. 

5. HAMILTON DYNAMICS EQUATIONS 

The Lagrangian formulation is an important springboard from which to develop another useful 

formulation of classical mechanics known as the Hamiltonian formulation. The Hamiltonian of a 

system is defined to be the sum of the kinetic and potential energies expressed as a function of 

positions and their conjugate momenta. 

Definitions 14. Let M is the configuration manifold and its cotangent manifold T∗M. By a symplectic 

form we mean a 2-form Φ on T∗M such that: 

(i) Φ is closed , that is, dΦ=0; (ii) for each z∈T∗M , Φ: T∗M×T∗M→ℝ  is weakly nondegenerate. If Φz 

in (ii) is nondegenerate, we speak of a strong symplectic form. If (ii) is dropped we refer to Φ as a 

presymplectic form. Let (T∗M,Φ) be a symplectic manifold. A vector field ZH: T∗M→T∗M is called 

Hamiltonian if there is a C¹ function H: T∗M→ℝ such that dynamical equation is determined by 


HZi =dH.                                                                    (13) 

We say that ZH is locally Hamiltonian vector field if iZHΦ is closed and where Φ shows the canonical 

symplectic form so that Φ=-dΩ, Ω=J∗(ω), J∗ a dual of J, ω a 1-form on T∗M. The trio (T∗M,Φ,ZH) is 

named Hamiltonian system which it is defined on the cotangent bundle T∗M [14, 15]. 

Recall from elementary physics that momentum of a particle, pi, is defined in terms of its velocity qi 

by pi= iiqm  . In fact, the more general definition of conjugate momentum, valid for any set of 

coordinates, is given in terms of the Lagrangian: pi=(∂L)/( iq ), ip =((∂L)/(∂qi)). Note that these two 

definitions are equivalent for Cartesian variables. In terms of Cartesian momenta, the kinetic energy is 
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given by T= i

n

i i mp 2/
1

2 
. Then, the Hamiltonian, which is defined to be the sum, H=T+V, 

expressed as a function of positions and momenta, will be given by H(qi,pi)= i

n

i i mp 2/
1

2 

+V(q₁,...,qn}) where p=p₁,...,pn. The function H is equal to the total energy of the system. In terms of 

the Hamiltonian, the equations of motion of a system are given by Hamilton's equations: 

iq =(∂H)/(∂pi), ip =-(∂H)/(∂qi).                                             (14) 

The solution of Hamilton's equations of motion will yield a trajectory in terms of positions and 

momenta as functions of time. Hamilton's equations can be easily shown to be equivalent to Newton's 

equations, and, like the Lagrangian formulation, Hamilton's equations can be used to determine the 

equations of motion of a system in any set of coordinates. 

6. EULER-LAGRANGE MECHANICAL SYSTEMS 

Lemma 2. The closed 2-form on a vector field and 1-form reduction function on the phase space 

defined of a mechanical system is equal to the differential of the energy function 1-form of the 

Lagrangian and the Hamiltonian mechanical systems [16, 17]. 

Theorem 2. If α and β are 1-forms, then α∧β is a 2-forms. 

Definitions 15. The vector field X on T∗M given by iXω=dH is called the geodesic flow of the metric 

g. 

Definitions 16. If γ:(a,b)→T∗M is an integral curve of the geodesic flow, then the curve p(γ) in M is 

called a geodesic. 

We, using Lemma 2, get Euler-Lagrange equations for quantum and classical mechanics on 3-

dimensional normal almost paracontact metric manifolds. 

Let take ϕ be as the local basis element on 3-dimensional normal almost-paracontact metric manifolds 

and (x,y,z) be its coordinate functions on 3-dimensional normal almost-paracontact metric manifolds; 

ϕ(∂/(∂x))=∂/(∂y)-2x(∂/(∂z)), ϕ(∂/(∂y))=∂/(∂x), ϕ(∂/(∂z)) =0.                   (15) 

Proposition 1. Let ξ be the vector field decided by 

ξ=X(∂/(∂x))+Y(∂/(∂y))+Z(∂/(∂z)).                                                (16) 

Then the following differential equations are obtained. 

   dif1. (∂/(∂t))((∂L)/(∂y))+(∂/(∂t))(2x((∂L)/(∂z)))+(∂L)/(∂x)=0, 

   dif2. -(∂/(∂t))(((∂L)/(∂x)))+((∂L)/(∂y))=0, 

  dif3. ((∂L)/(∂z))dz=0,                                                                    (17) 

Proof: The vector field described by 

V=ϕ(ξ)=X(∂/(∂y))-2xX(∂/(∂z))+Y(∂/(∂x))                                      (18) 

is said to be Liouville vector field on 3-dimensional normal almost-paracontact metric manifolds. The 

3-dimensional normal almost-paracontact metric manifolds form is the closed 2-form which is given 

by ΦL=-d(dϕL) such that 

dϕ=((∂/(∂y))-2x(∂/(∂z)))dx+(∂/(∂x))dy                                            (19) 
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Then we have 

                            ΦL=-d(dϕL)=-d(((∂L)/(∂y)-2x((∂L)/(∂z))dx+((∂L)/(∂x))dy) 

                              =-((∂/(∂x))dx+(∂/(∂y))dy+(∂/(∂z))dz)(((∂/(∂y))-2x(∂/(∂z)))dx+(∂/(∂x))dy) 

           -((∂²L)/(∂x∂y))dx∧dx+2x((∂²L)/(∂x∂z))dx∧dx-((∂²L)/(∂x∂x))dx∧dy 

                                  -((∂²L)/(∂y∂y))dy∧dx+2x((∂²L)/(∂y∂z))dy∧dx-((∂²L)/(∂y∂x))dy∧dy 

                                   -((∂²L)/(∂z∂y))dz∧dx+2x((∂²L)/(∂z∂z))dz∧dx-((∂²L)/(∂z∂x))dz∧dy.               (20) 

We calculate 

         iξΦL=ΦL(ξ) 

=(-((∂²L)/(∂x∂y))dx∧dx+2x((∂²L)/(∂x∂z))dx∧dx-((∂²L)/(∂x∂x))dx∧dy-((∂²L)/(∂y∂y))dy∧dx 

+2x((∂²L)/(∂y∂z))dy∧dx-((∂²L)/(∂y∂x))dy∧dy-((∂²L)/(∂z∂y))dz∧dx+2x((∂²L)/(∂z∂z))dz∧dx 

-((∂²L)/(∂z∂x))dz∧dy) (X(∂/(∂x))+Y(∂/(∂y))+Z(∂/(∂z))) 

=-((∂²L)/(∂x∂y))Xdx+((∂²L)/(∂x∂y))Xdx+2x((∂²L)/(∂x∂z))Xdx-2x((∂²L)/(∂x∂z))Xdx 

-((∂²L)/(∂x∂x))Xdy+((∂²L)/(∂y∂y))Xdy-2x((∂²L)/(∂y∂z))Xdy+((∂²L)/(∂z∂y))Xdz 

-2x((∂²L)/(∂z∂z))Xdz+((∂²L)/(∂x∂x))Ydx-((∂²L)/(∂y∂y))Ydx+2x((∂²L)/(∂y∂z))Ydx 

-((∂²L)/(∂y∂x))Ydy+((∂²L)/(∂y∂x))Ydy+((∂²L)/(∂z∂x))Ydz-((∂²L)/(∂z∂y))Zdx 

+2x((∂²L)/(∂z∂z))Zdx-((∂²L)/(∂z∂x))Zdy.                                                                            (21) 

Energy function and its differential are like the following: 

EL= ϕ(L)-L 

= X((∂L)/(∂y))-X2x((∂L)/(∂z))+Y((∂L)/(∂x))-L                         (22) 

and 

       dEL= ((∂/(∂x)) dx+(∂/(∂y)) dy+(∂/(∂z)) dz)(X((∂L)/(∂y))-X2x((∂L)/(∂z))+Y((∂L)/(∂x))-L) 

= ((∂²L)/(∂x∂y))Xdx-2x((∂²L)/(∂x∂z))Xdx+((∂²L)/(∂x∂x))Ydx-((∂L)/(∂x))dx 

+((∂²L)/(∂y∂y))Xdy-2x((∂²L)/(∂y∂z))Xdy+((∂²L)/(∂y∂x))Ydy-((∂L)/(∂y))dy 

+((∂²L)/(∂z∂y))Xdz-2x((∂²L)/(∂z∂z))Xdz+((∂²L)/(∂z∂x))Ydz-((∂L)/(∂z))dz.                      (23) 

If we use iξΦL=ΦL(ξ) we obtain the equations given by 

-((∂²L)/(∂x∂y))Xdx+((∂²L)/(∂x∂y))Xdx+2x((∂²L)/(∂x∂z))Xdx-2x((∂²L)/(∂x∂z))Xdx 

-((∂²L)/(∂x∂x))Xdy+((∂²L)/(∂y∂y))Xdy-2x((∂²L)/(∂y∂z))Xdy+((∂²L)/(∂z∂y))Xdz 

-2x((∂²L)/(∂z∂z))Xdz+((∂²L)/(∂x∂x))Ydx-((∂²L)/(∂y∂y))Ydx+2x((∂²L)/(∂y∂z))Ydx 

-((∂²L)/(∂y∂x))Ydy+((∂²L)/(∂y∂x))Ydy+((∂²L)/(∂z∂x))Ydz-((∂²L)/(∂z∂y))Zdx 

+2x((∂²L)/(∂z∂z))Zdx-((∂²L)/(∂z∂x))Zdy 
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                       = 

((∂²L)/(∂x∂y))Xdx-2x((∂²L)/(∂x∂z))Xdx+((∂²L)/(∂x∂x))Ydx-((∂L)/(∂x))dx 

+((∂²L)/(∂y∂y))Xdy-2x((∂²L)/(∂y∂z))Xdy+((∂²L)/(∂y∂x))Ydy-((∂L)/(∂y))dy 

+((∂²L)/(∂z∂y))Xdz-2x((∂²L)/(∂z∂z))Xdz+((∂²L)/(∂z∂x))Ydz-((∂L)/(∂z))dz.           (24) 

From here 

-((∂²L)/(∂x∂y))Xdx+2x((∂²L)/(∂x∂z))Xdx-((∂²L)/(∂x∂x))Xdy 

-((∂²L)/(∂y∂y))Ydx+2x((∂²L)/(∂y∂z))Ydx-((∂²L)/(∂y∂x))Ydy 

-((∂²L)/(∂z∂y))Zdx+2x((∂²L)/(∂z∂z))Zdx-((∂²L)/(∂z∂x))Zdy 

+((∂L)/(∂x))dx+((∂L)/(∂y))dy+((∂L)/(∂z))dz 

= 0,                                                                                                                             (25) 

and 

(-((∂²L)/(∂x∂y))X+2x((∂²L)/(∂x∂z))X-((∂²L)/(∂y∂y))Y+2x((∂²L)/(∂y∂z))Y 

-((∂²L)/(∂z∂y))Z+2x((∂²L)/(∂z∂z))Z+((∂L)/(∂x)))dx ((∂²L)/(∂z∂z))Z+((∂L)/(∂x)) 

+(-((∂²L)/(∂x∂x))X-((∂²L)/(∂y∂x))Y-((∂²L)/(∂z∂x))Z+((∂L)/(∂y)))dy+((∂L)/(∂z))dz=0, 

(∂/(∂t))(-((∂L)/(∂y))+2x((∂L)/(∂z)))dx+((∂L)/(∂x))dx= 0, 

(∂/(∂t))(-((∂L)/(∂x)))∂y+((∂L)/(∂y))dy= 0, 

((∂L)/(∂z))dz= 0,                                                                                                       (26) 

or 

[(X(∂/(∂x))+Y(∂/(∂y))+Z(∂/(∂z)))(-((∂L)/(∂y))+2x((∂L)/(∂z)))+((∂L)/(∂x))]dx 

+[(X(∂/(∂x))+Y(∂/(∂y))+Z(∂/(∂z)))(-((∂L)/(∂x)))+((∂L)/(∂y))]dy 

+((∂L)/(∂z))dz= 0.                                                                                                      (27) 

Considering the curve α=(x,y,z), an integral curve of ξ, i.e. ξ(α(t))= )(t =(∂α)/(∂t). 

Then, we can find the equations as follows: 

ξ(-((∂L)/(∂y))+2x((∂L)/(∂z)))dx+((∂L)/(∂x))dx 

+ξ(-((∂L)/(∂x)))dy+((∂L)/(∂y))dy+((∂L)/(∂z))dz=0, 

(∂/(∂t))(-((∂L)/(∂y))+2x((∂L)/(∂z)))dx+((∂L)/(∂x))dx 

+(∂/(∂t))(-((∂L)/(∂x)))dy+((∂L)/(∂y))dy+((∂L)/(∂z))dz=0, 

(∂/(∂t))(-((∂L)/(∂y))+2x((∂L)/(∂z)))dx+((∂L)/(∂x))dx=0, 

(∂/(∂t))(-((∂L)/(∂x)))dy+((∂L)/(∂y))dy=0, 

((∂L)/(∂z))dz=0,                                                                                           (28) 
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or 

   dif1. (∂/(∂t))((∂L)/(∂y))+(∂/(∂t))(2x((∂L)/(∂z)))+(∂L)/(∂x)=0, 

   dif2. -(∂/(∂t))(((∂L)/(∂x)))+((∂L)/(∂y))=0, 

  dif3. ((∂L)/(∂z))dz=0,                                                                    (29) 

such that these equations are called Euler-Lagrange Equations constructed on 3-dimensional normal 

almost-paracontact metric manifolds and thus the triple (M,ΦL,ξ) is named as a mechanical system on 

3-dimensional normal almost-paracontact metric manifolds (M,g,ϕ). 

7. HAMILTONIAN MECHANICAL SYSTEMS 

We, using Lemma 2, present Hamilton equations and Hamiltonian mechanical systems for quantum 

and classical mechanics constructed on 3-dimensional normal almost-paracontact metric manifolds. 

Proposition 2. Let (M,g,ϕ∗) be the on 3-dimensional normal almost paracontact metric manifolds. 

Suppose that the structures, a Liouville form and a 1-form on 3-dimensional normal almost-

paracontact metric manifolds are shown by ϕ∗, Ω and w, respectively. Consider a 1-form such that 

w=(1/2)[dx+dy+dz]                                                             (30) 

Then the following differential equations are obtained. 

          dif4. (dx)/(dt)=(∂H)/(∂z), 

          dif5. (dy)/(dt)=0, 

dif6. (dz)/(dt)=(∂H)/(∂x).                                                       (31) 

Proof: Then we obtain the Liouville form as follows: 

Ω =ϕ∗(w)= (1/2)[ϕ∗(dx)+ϕ∗(dy)+ϕ∗(dz)]. 

   =(1/2)[dx+dy-2xdz)].                                                         (32) 

and 

d(Ω)=((∂/(∂x))dx+(∂/(∂y))dy+(∂/(∂z))dz)(1/2)[dx+dy-2xdz].                    (33) 

Let's calculate Φ from here. 

Φ=-d(Ω)=-(1/2)[((∂(1))/(∂x))dx∧dx+((∂1)/(∂x))dx∧dy-((∂2x)/(∂x))dx∧dz 

+((∂(1))/(∂y))dy∧dx+((∂1)/(∂y))dy∧dy-((∂2x)/(∂y))dy∧dz 

+((∂(1))/(∂z))dz∧dx+((∂1)/(∂z))dz∧dy-((∂2x)/(∂z))dz∧dz, 

=-1/2[0dx∧dx+0dx∧dy-2dx∧dz 

+0dy∧dx+0dy∧dy-0dy∧dz 

+0dz∧dx+0dz∧dy-0dz∧dz], 

=dx∧dz.                                                                                                                 (34) 

It is well known that if Φ is a closed on 3-dimensional normal almost-paracontact metric manifolds 

(M,g,ϕ∗), then Φ is also a symplectic structure on (M,g,ϕ∗). Therefore the 2-form Φ indicates the 
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canonical symplectic form and derived from the 1-form Ω to find to mechanical equations. Then the 

2-form is calculated as Φ=dx∧dz. 

Take a vector field ZH so that called to be Hamiltonian vector field associated with Hamiltonian 

energy H and determined by 

ZH=X(∂/(∂x))+Y(∂/(∂y))+Z(∂/(∂z)).                                        (35) 

So, we have 

HZi φ = φ(ZH) 

                    = (dx∧dz)(X(∂/(∂x))+Y(∂/(∂y))+Z(∂/(∂z))) 

      = Xdz-Zdx.                                                                               (36) 

Furthermore, the differential of Hamiltonian energy H is obtained by 

dH=X((∂H)/(∂x))+Y((∂H)/(∂y))+Z((∂H)/(∂z))                                     (37) 

From 
HZi φ=dH, the Hamiltonian vector field is found as follows: 

ZH=((∂H)/(∂z))(∂/(∂x))+((∂H)/(∂x))(∂/(∂z))                                        (38) 

Consider the curve and its velocity vector α:I⊂ℝ→M, α(t)=(x(t),y(t),z(t)), 

)(t =((dx)/(dt))(∂/(∂x))+((dy)/(dt))(∂/(∂y))+((dz)/(dt))(∂/(∂z))          (39) 

such that an integral curve of the Hamiltonian vector field ZH, i.e., ZH(α(t))=(∂α)/(∂t), t∈I, t shows the 

time. 

((∂H)/(∂z))(∂/(∂x))+((∂H)/(∂x))(∂/(∂z))=((dx)/(dt))(∂/(∂x))+((dy)/(dt))(∂/(∂y))+((dz)/(dt))(∂/(∂z))  (40) 

Then, we can be found the following equations;  

          dif4. (dx)/(dt)=(∂H)/(∂z), 

          dif5. (dy)/(dt)=0, 

dif6. (dz)/(dt)=(∂H)/(∂x).                                                       (41) 

Hence, the equations introduced in are named Hamilton equations on 3-dimensional normal almost-

paracontact metric manifolds and then the triple (M,Φ,XH) is said to be a Hamiltonian mechanical 

system on (M,g,ϕ∗). 

8. EQUATIONS SOLVING WITH COMPUTER 

The location of each object in space represented by three dimensions in physindcal space. These three 

dimensions can be labeled by a combination of three chosen from the terms length, width, height, 

depth, mass, density and breadth. These found (17) and (31) are partial differential equations on 3-

dimensional normal almost-paracontact metric manifolds such that it solved with Maple computation 

program. 

Example 3. Let's solve the system of differential equations (17) by Maple. Euler-Lagrangian 

equations implicit solution for special values of F₁(t)=t, F₂(y+x=y+x, F₃(y-x)=y-x, 
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(1) L(x,y,z,t)=F₁(t)+exp(t)∗F₂(y+x)+exp(-t)∗F₃(y-x), 

  =t+exp(t)∗(y+x)+exp(-t)∗(y-x); 

                          (42) 

Graph 1 

Example 4. Hamilton equations: implicit solution (31). 

(2) H(x,y,z,t)=z∗exp(t)+x-F₁(y,t) 

for special values of x(t)=exp(t), z(t)=t and F₁(y,t)=0 

                                   (43) 

Graph 2 
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9. DISCUSSION 

It is well-known that a classical field theory explains the study of how one or more physical fields 

interact with matter which is used quantum and classical mechanics of physics branches. Also, the 

classical theory of electromagnetism deals with electric and magnetic fields and their interaction with 

each other and with charges and currents. An electromagnetic field is a physical field produced by 

electrically charged objects. How the movement of objects in electrical, magnetically and 

gravitational fields force is very important. For instance, on a weather map, the surface wind velocity 

is defined by assigning a vector to each point on a map. So, each vector represents the speed and 

direction of the movement of air at that point. 

In this study, the Euler-Lagrange and Hamilton mechanical equations (17) and (31) derived on 3-

dimensional normal almost-paracontact metric manifolds may be suggested to deal with problems in 

electrical, magnetical and gravitational fields for the path of movement (42) and (43) of defined space 

moving objects [18, 19]. 
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