
International Journal of Scientific and Innovative Mathematical Research (IJSIMR) 

Volume 5, Issue 9, 2017, PP 1-21 

ISSN 2347-307X (Print) & ISSN 2347-3142 (Online) 

DOI: http://dx.doi.org/10.20431/2347-3142.0509001 

www.arcjournals.org 

 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)                         Page 1 

Quantitative Approximability of Optimal Control by Linear 

Programing Model for Asymptomatic Dual HIV - Pathogen 

Infections 

Bassey, E. Bassey
*
 

*
Department of Mathematics /Statistics, Cross River University of Technology, Calabar, Nigeria 

 

 

 

 

 

1. INTRODUCTION  

It has become obvious that the human race have been skewed to the realization of the painful fact that 

human immunodeficiency virus (HIV) in their negative affinity, have become an important integral 

component of the human immune systems with the later as primary victim. This negativity in 

affiliation has rather place the scientific community and beyond in a most seeming precarious 

dehumanization following the near insurmountable and colossal activities of the deadly disease, which 

have been without outright medical cure. A situation, which often transmute to full-blown acquired 

immunodeficiency syndrome (AIDS) with lethal outcome as final consequences. 

 Non-the-less, considerable height has been attained by research scientists towards the prolongation of 

lifespan of infected patients and in most cases, aimed at the eradication of the dreaded HIV/AIDS 

disease, see for example [1-7].  Of interest, these notable achievements have been fronted by the 

central role of mathematical modeling. However, mathematical modeling as a seeming panacea to the 

curative approach of HIV/AIDS infection are usually confronted with the difficulty of formulating 

simplified model with précised and coincides state variables and corresponding parameter functions 

[8-10]. A situation that has multifaceted dimensions and which are better handle by the judgmental 

abilities of professionals with the objectives of defining possible solutions to an epidemic. 

Modeling of epidemiological outbreak are usually determined by a set of compactible state variables, 

which in the case of HIV/AIDS, we are commonly concern with the maximization of the host target 

cells in the class of CD4
+
 T–lymphocytes, macrophages and follicular dendritic cells; 

suppression/elimination of the vectors – viral load and parasitoid-pathogen; maximization of natural 

anti-HIV (adaptive immune effectors response) known as cytotoxic lymphocytes (CTLs). Cytotoxic 

lymphocytes are often subdivided into precursors (CTLp) and effectors (CTLe). Other considered 

state components includes: critical role of time-delay immunity period (or delay intracellular) and the 
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functioning capacities of therapeutic chemotherapies, which are generally classified into two families 

of HAART – reverse transcriptase inhibitors (RTI) and protease inhibitors (PIs) [11-16]. In most 

recent dimensions, indepth evaluations of viral load have resulted to the inclusion of viral 

aggressiveness index denoted as r state variable. This component describes the intrinsic virulence 

and thus, has been accorded important stay in determining epidemiological state variables in HIV 

dynamic models [17-19]. 

In this present study, references are deduced from related and compactible models with which the 

scope of this investigation lies. In our attempt to analyze an all-inclusive model that sufficiently 

represent the biological interplay of acceptable key components for dual HIV-pathogen infections; we 

invoke a number of closely related models. For instance, model [17] had studied a set of mathematical 

model of HIV pathogenesis and treatment. The model not only established the usefulness of the 

application of mathematical model in the dynamics of HIV transmission but as well, affirmed the 

capability of linear programing model in understanding the correlations of long-term immunological 

control of HIV. The model [19] motivated by that of [17] had formulated an optimal control model, 

which accounted for single drug treatment factor and crucial role of immune response (recognized as 

effector and memory - CTLe/p) for the control of cellular infection rate. The task of model [18] was 

the maximization of symptomatic stage of fast progressive HIV infected patient using embedding 

method. The result of this investigation was in affirmation of the technique adopted. 

Resourcefully, a critical review of the aforementioned literatures shows that previous investigations 

have been on single viral load. This situation clearly could not account for the aggressiveness of 

diverse new cases of HIV and its allies of pathogenic infections. Furthermore, treatment mechanisms 

for these studies were either single treatment factor or more but never comprehensive. Even the 

studies [16, 20], where dual HIV infectivity was considered, only single and pair chemotherapies were 

respectively programmed. Thus, the present study equipped by the identified weakness of the 

aforementioned literatures, formulates using ordinary differential equations a set of novel 7-

Dimensional nonlinear mathematical dual HIV dynamic model, principally to account for the optimal 

control treatment of asymptomatic dual HIV-pathogen infections on target cells (CD4
+
 T-

lymphocytes) under clinical application of quadrupled treatment functions, which includes linear 

index of virions aggressiveness. The derive model is reformulated as an optimal control problem and 

analyzed using linear programing approximation method. 

The entire investigation is floated as a version of six sections with section 1 covering the introductory 

aspect. Section 2 defined the material and methods of study, which constitutes the formulation of 

model mathematical equations and schematic representation of the model. We shall also verify in this 

section, the non-negativity of model state variables and ensure that existence of solutions is bounded. 

We devote section 3 to the transformation of derived model to a time optimal control problem with 

analysis conducted using linear programing approximation method (LP-PM). We present in section 4, 

related procedures with specified functional and measure spaces. Affirmation of the model and its 

analysis are explicitly illustrated in section 5. This section also contains the discussion of the resulting 

outcome. Finally, in section 6, we draw succinct conclusion and remarks base on investigation. It is 

hoped that the method adopted here will provide some straightforward approach without the 

imposition of artificial conditions. 

2. MATERIAL AND METHODS 

We pre-occupy this section with the mathematical formulation of system basic model equations aided 

with schematic representation. Since the model is a complete representation of living organisms, the 

section also considers the positivity of model state variables and validity boundedness of solution. 

2.1. Formulation of Mathematical Model 

Drawing from the innovative ideas of section 1, it is of essence that the derivation of the present 

model takes its offspring from two compactible established models of [18, 20]. From model [18], the 

interplay of single HIV infection with target cells – CD4
+
 T cells and natural anti-HIV defense 

mechanism was investigated. The governing equations for this model were obtained as: 
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where ( ), ( ), ( ), ( ), ( )x t y t w t z t v t and ( )r t  denotes the key state components of the model. We refer 

readers to the cited reference for detail description of used parameter. 

An extension of infection dynamics to dual infectivity was considered by model [20], where dual 

HIV-pathogen model studied using single treatment function - reverse transcriptase inhibitors (RTI) 

was investigated. The epidemiological optimal control model was derived as: 
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with equation description as contain in cited reference. Thus, for the derivation of standard equations 

that adequately guarantee the scope of this present study, we utilize the ideas of models (1) and (2) 

guided by the following assumption. 

Assumption 2.1 

i. The dynamics between virions and cytotoxic T-lymphocytes (CTLs) is dependent on host 

target cells and virions parameters. 

ii. Precursors of CTLs exhibit dual characteristic behavior for immune memory replication 

and effective contamination by virions. 

iii. The effective development of CTL memory by precursor of CTL depends on the efficacy 

and threshold of therapy at initiation point. 

iv. High re-establishment of CTL memory is dependent on early initiation of chemotherapy 

treatment. 

Therefore, from the above synopsis, we formulates a novel epidemiological model that accounts for 

an asymptomatic dual HIV-pathogen infections on host target cells – CD4
+
 T-lymphocytes under 

articulated subdivided CTLs and critical role of virulence linear index R with multiple chemotherapies 

– reverse transcriptase inhibitors (RTI) and protease inhibitors (PIs). So, if the concentration of the 

present model as characterized by 7-subpopulations is measured in cells per ul , then TU - 

uninfected CD4
+
 T cells count, TI - infected CD4

+
 T cells (by both virions),V -free viral load, P - free 

pathogen virus, W - precursor (CTLp), Z - effectors (CTLe) and R - intrinsic virulence index 

represents the biological state variables. Furthermore, if we let 1q and 2q denote chemotherapies 

control functions, then the epidemiological interactions of the components yields the following derive 

mathematical equations:  
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with initial conditions            ( )0 ( )0 0 0 0 00 , 0 , 0 , 0 , 0 ,Z 0T T T TU U I I V V P P W W Z     

and   00R R  at 0t t and satisfying the biological state variables and parameters as describe in 

tables (1 & 2) . Thus, model (3) is the standard equation system that satisfies the scope of the present 

study with biological behavior schematically represented as in fig. 1, below: 

Remark 1 It is worth to note that the quadrupled treatment function as applied here includes: reverse 

transcriptase inhibitors ( )RTI , protease inhibitors ( )PIs , cytotoxic T-lymphocytes (CTLs) subdivided 

into precursors ofCTLp  and effectors ofCTLe .  

 
Fig. 1 Schematic representation of dual HIV-pathogen infection with quadruple treatment functions

( , , , )RTI PIs CTLp CTLe  

An indepth appreciation of model (3) is informed by the following explicit description of each of 

terms of the equations. For instance: in the first equation, the first term 
1

b

V P 
 denotes natural 
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source of uninfected CD4
+
 T cells having a logistic term

max

1 T T
T

U I
gU

U

 
 

 
. This term account for 

the fact TU is always never larger than maxU . Uninfected cells die natural death at a rate 1 TU and is 

loss due virions at the rates 1h V and 2h P , while 1(1 ( )) Tq t U R is the infection rate associated with 

linear index of virions aggressiveness in the presence of control chemotherapy function 1( )q t . 

In the second equation, the first term 1 1 2(1 ( ))[ ] Tq t hV h P U R   define the inflow of virions 

infection into susceptible T-cells leading to transmutation to infectious T-cells. The second term 

  2v p Tz z I  describes the clearance rate of infectious cells, which are sustained by virions 

replication rate vz and pz respectively. The last term TI Z explain the critical role of active immune 

effectors response in clearing significant amount of infected T-cells. 

From third and fourth terms, we define the behavioral tendencies of both virions V and P with inflow 

of 2 2(1 ( )) v Tq t z I and 2 2(1 ( )) p Tq t z I  as replicated infectious cells, which are subjected to 

chemotherapy distortion 2 ( )q t . Both equations experience clearance rate of 3V and 4P . Taking 

lead from [16, 20], the present model incorporates CTLs population, which is subdivided into 

precursor of cytotoxic T-lymphocytes – CTLp (w) and effector of cytotoxic T-lymphocytes – CTLe 

(z). Thus, from fifth equation, the first term T TcU I W denotes the proliferation of CTLp population, 

which is proportional to both infected T-cells TI and quantified amount of uninfected T-helper cells

TU . CTLp is differentiated into effectors at the rate TI W , which becomes inflow in the sixth 

equation. CTLp and CTLe are loss at the rates 5W and 6Z . 

Finally, the seventh equation describe the dynamics of the intrinsic dual virulence (or aggressiveness 

of dual virions) denoted by R . This index increases linearly for an untreated dual HIV-pathogen 

infected patient with growth rate that depends on the constant 0R  and are cleared due to 1( )q t  at the 

rate 1( )q t R . 

Remark 2 Precursor of CTLp are responsible for the development of immune memory, while 

effectors of CTLe are responsible for the active defense of foreign agents i.e. elimination (killing) of 

virions. 

Remark 3 The functions 1q and 2q are control variables for RTI and PIs with 1q acting as active 

inhibitors that reduces infection rate on healthy CD4
+
 T cells and growth rate of intrinsic dual 

virulence. The term 2q acts in virions reproduction by inhibiting virions replications from infectious 

cells. 

Remark 4 The constants 1h , 2h  and the R -state variable of first, second and seventh equations of 

present model represents the coefficient  of model [17] and state variable of model [21].  

From remarks (1and 2), validation of model (3) follows the establishment of realistic values for both 

state components and parameters as seen in tables 1 and 2 below: 

Table 1. Description of model state variables with values 

Variables Dependent variables Initial 

values 

Units 

Description 

TU  Uninfected T-lymph cells population 0.4 1cells l 
 

TI  Infected CD4
+
 T-lymphocytes population 0.2 1cells l 

 

V  Infectious free viral load population 0.2 1copiesml  

P  Infectious free pathogen population 0.1 1copiesml  
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W  Precursors of CTLp 0.02 1cells l 
 

Z  Effectors of CTLe 0.04 1cells l 
 

R  Intrinsic virulence index 0.025 1 1mlcopies d 
 

maxU  Maximum saturation of CD4
+
 T cells [0,1]   

Note: Table 1is a modification of validated models of [18, 20, 21] 

Table 2. Summary of constants and parameter values of model (3) 

Parameter 

symbols 

Parameters and constants Initial 

values 

Units  

Description  

b  Natural source of uninfected CD4
+
 T cells  0.6 1 1.cells l d  

 

g  Growth rate of  uninfected CD4
+
 T cells  0.04 1 1.cells l d  

 

1  Natural death rate of uninfected CD4
+
 T cells 0.02 1d 

 

1,2iq   Treatment control functions for , , ,T TU I V P  [0,1]iq    

1h  Rate of viral load infection on uninfected CD4
+
 T cells  0.0044 1 1.cells l d  

 

2h  Rate of pathogen infection on uninfected CD4
+
 T cells  0.0016 1 1.cells l d  

 

vz  Replication rate of viral load by TI  cells 0.5 1 1

1

copiesml cells

ld




 

pz  Replication rate of pathogen by TI  cells 0.3 1 1

1

copiesml cells

ld




 

2  Death rate of infected CD4
+
 T cells 0.09 1d 

 

  Clearance rate of infected cells by immune effectors 

response 

2.5 1 1lcells d  
 

3  Natural death rate of viral load 0.04 1 1mlcopies d 
 

4  Natural death rate of pathogen 0.05 1 1mlcopies d 
 

c  CTLp proliferation 0.005 2 1lcells d  
 

  CTLp differentiation 0.006 1 1lcells d  
 

5  Natural death rate of CTLp 0.017 1d 
 

6  Natural death rate of CTLe 0.006 1d 
 

0R  Growth rate of virulence 710
 

1 2copies mld 
 

1  Optimal weight ratio 1q  10  

2  Optimal weight ratio 2q  100  

Note: Table 2 is a clinical modification of [18, 20, 21] to accommodate the present novel dual HIV-pathogen 

model solvable using RK4 software 

Epidemiological analysis of tables (1 & 2) in comparison to model [18, 20], reveal the critical role of 

susceptible growth rate g ; the effect of treatment function 1(1 ( ))q t , which inhibits further invasion 

by virions on healthy CD4
+
 T cells. Remarkably, the presence of logistic term in the first equation 

clearly defines the limit of CD4
+
 T cells under investigation. Furthermore, natural source of 

uninfected cells is seen been differentiated with respect to viral load and pathogen following the fact 

that infected T-cells once infected, is continuously infiltrated by virions. Next, been spur by the above 

analysis, we are bound to show that our state variables constitute set of living organisms and are 

therefore positive with bounded characterized solutions. 

2.2. Positivity of State Variables and Boundedness of Solution 

Suppose
7([ ,0], )S D     be the Banach space of continuous mapping in the interval [ ,0] into 
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7 equipped with the sup-norm (topology of uniform convergence). Then, from [22, 23], applying the 

fundamental theory of functional differential equations (FDEs), there exist unique solutions:

( ( ), ( ), (t), ( ), ( ), ( ), ( ))T Tu t i t v p t w t z t r t to model (3) and having initial conditions  

   ( ( ), ( ), (t), ( ), ( ), ( ), ( ))T Tu t i t v p t w t z t r t S .     (4) 
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Then, the positivity of state variables and boundedness of solution for model (3) with initial functions 

satisfying condition (4) and (5) is presented in the theorem hereof. 

Theorem 2.1 Let ( ( ), ( ), (t), ( ), ( ), ( ), ( ))T Tu t i t v p t w t z t r t be the solutions of model (3) satisfying 

conditions (4) and (5). Then ( ), ( ), ( ), ( ), ( ), ( ), ( )T Tu i v p w z r       are all non-negative and 

bounded for all 0t   of which solution exists. 

Proof Invoking the result of (Thm. 2.1, p514-515, [23]), it is obvious to see from model (3) that  
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Positivity immediately follows from the above integral forms and conditions (4) and (5) satisfied. 

For boundedness of the solution, we define 
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v t p t z z w t z t

 
  


     

( ) ( )
1 ( ) ( )

v p

b
c z z bU t

v t p t
  

 
. 

This implies that ( )U t  is bounded and so are ( ), ( ), ( ), ( ), ( ), ( )T Tu t i t v t p t w t z t and ( )r t . Hence, this 

completes the proof.           

Remark 5 The consequences of Thm. 2.1 in conjunction to conditions (4) and (5) is that if (0) 0Ti 

or{ (0), (0)} 0v p  , then ( ), ( ), ( ), ( ), ( ), ( )T Tu t i t v t p t w t z t and ( )r t are actually positive. Furthermore, 

the boundedness as validated in Thm. 2.1 ensures the existence of solution for all 0t  .  

At this point, we next validate the inclusion of two chemotherapy control measures and the crucial 

role of dual CTLs as immune system enhancement agent. The optimality control immediately comes 

to bear. 

3. OPTIMAL CONTROL PROBLEM FOR QCT 

For a quadrupled chemotherapy treatment (QCT), we invoke the epidemiological investigation of 

model [9], where minimum count of CD4
+
 T cells for an infected patient with which treatment is 

bound to commence is at
3

0 (3) 0.25t mm for [3,30]t months. Moreso, in the absence of 

medication transmutation of HIV to full-blown AIDS for infected patient is bound to occur if CD4
+
 T 

cells count fall below 4 AIDSCD 
 count of 200 /cell l .  

Accounting for this sort of precarious situation, the present study is therefore prime with the 

proposition of treatment regimen that aim at maximizing asymptomatic stage of dual HIV-pathogen 

infections. This is to say that we seek to maximize the performance index, which is the benefits base 

on CD4
+
 T cells and CTLs (= CTLp + CTLe) levels with ascertained minimization of systemic cost. 

In a balance situation, suppose HIV-pathogen infection transmute to AIDS after ft , then we are 

confronted with the equation 

 
0( ) 4 , ( ) 4 , [ , ]T AIDS T AIDS fU t CD U t CD t t t     .                             (6)  
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Now, suppose systemic cost of chemotherapy is proportional to
2

1 ( )q t and 
2

2 ( )q t for all 0[ , ]ft t t then 

the overall cost of treatment, which defines the objective functional, is given by  

 

0

2 2

1 2 1 1 2 2( , ) { ( ) ( ) ( ) [ ( ( )) ( ( )) ]}

ft

T

t

J q q U t Z t W t q t q t dt                      (7)  

where 1,2 1i   are the optimal weight factors necessary to balance the variation of drug toxicity. 

Furthermore, accounting for emergence of drug resistance, we observe that fixing a maximum cost of 

chemotherapy regimen amount to restricting the quantity of chemotherapeutic application. This is to 

say that the limit of chemotherapy should be sufficiently small positive integer. If we let this integer 

be , such that risk of drug resistivity is sufficiently ignored, then equation (7) can be rewritten as:  

0

2 2

1 2 1 1 2 2( , ) { ( ) ( ) ( ) [ ( ( )) ( ( )) ]}

ft

T

t

J q q U t Z t W t q t q t dt                          (8)

  

Setting ( , , , , , , ), 1,.....,7i T Ty u i v p w z r i  and 1 2( ) ( ( ), ( ))q t q t q t the differential equations of 

model (3) can be represented as: 

1 2
1 1 1 1 1 4 2 5 1 7

3 4 max

1 1 4 2 5 1 7 2 2 2 6

2 2 2 3 3

2 2 2 4 4

1 2 5 2 5 5 5

2 5 6 6

0 1

(1 ) (1 )[ ]
1

(1 )[ ] ( )

(1 )
( ) ( , ( ), ( ))

(1 )

v p

v

i

p

y yb
g y y q h y h y y y

y y y

q h y h y y y z z y y y

q z y y
y t j t y t q t

q z y y

cy y y y y y

y y y

R q R



 

 

 

 

 

 
      

 
     
 

   
  


 
 

  









             (9) 

Therefore, from equations (7), (8) and (9), the optimal chemotherapy control (regimen) problem can 

be derive as: 

 

0

,
max

f

f

t

q t
t

dt                                                      (10) 

subject to  

 
0

2 2

1 1 2 2

1 0 0 1

1 0

( , , )

{ ( ) ( ) ( ) [ ( ) ( ) ]}

( ) , ( ) 4

( ) 4 , [ , ]

ft

T

t

f AIDS

AIDS f

y j t y q

u t z t w t q q dt

y t y y t CD

y t CD t t t

  





 



     



  
  





                           (11)  

Equations (10) and (11) represent a linear optimal control time problem (LOCTP)
*
. 

For most cases, control function ( )q  and corresponding state ( )y  for final time ft  that satisfy equation 

(11) may not exist. Then, overcoming such constraints, the problem of an LOCTP is conveniently 

solve using linear programing approach known as measure space. 
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4. LINEAR PROGRAMMING MODEL FOR LOCTP 

The appreciation of a linear programing approach for an LOCTP requires the transformation of the 

LOCTP to a functional space, which is further transform to a measure space of infinite dimensional 

linear programing problem. Finally, the solution of this problem is then approximated by the solution 

of a finite dimensional LP of sufficiently large dimension. This classical measure theory for the 

computation of optimal control problem was first adopted by [24], applied by [25, 26] and extensively 

improved by [27]. Of note, model [18] recently applied the method in the calculation of time optimal 

control problem (TOCP), which led to the approximation of linear programing model. 

4.1. Transformation of LOCTP to Functional Space 

Let the compact set
7

1 7.......X X X    and
2

1 2Q Q Q    be the respective values of the 

model state variables ( )y  and control input ( )q  , such that we set 0[ , ]fN t t .  

Definition 4.1 We define a triple [ , , ]fk t y q to be admissible if the following conditions hold: 

i. The vector function ( )y  be absolutely continuous and contain in X for all t N  

ii.  The function ( )q   takes its values in the set Q and is Lebesgue measurable on N  

iii.  The function q satisfies in system (11), i.e. on
0T , the interior of N .   

Then, we assume that the set of all admissible triple is non-empty and is denoted by m . Let k be an 

admissible triple and B be an open ball in
7 containing N X and ( )D B be the space of all real-

valued continuous differential equation on it. Let ( )D B  and define
g as follows:  

 
( , ( ))

( , ( ), ( ))g d t y t
t y t q t

dt


   

 
7

1

( , ( )) ( , ( ))
( , ( ), ( ))n

n n

t y t t y t
g t y t q t

y t

 



 
 

 
  (12) 

for each[ , ( ), ( )]t y t q t  , where N X Q   . The function
g is in the space ( )D  , the set of 

all continuous functions on the compact set . Since [ , , ]fk t y q is an admissible triple, we obtain  

0

0 0( , ( ), ( )) ( , ( )) ( , ( ))

f

t

t

g

ft y t q t dt t y t t y t                                                             (13) 

for all ( )D B  . 

Let
0( )H N be the space of infinitely differentiable all real-valued function with compact support in

0N . Define:  

 
0( , ( ), ( )) ( ) ( ) ( , ( ), ( ) ( ), 1,...,7 ( )n

n nB t y t q t y t t g t y t q t t n H N        (14)  

Then, if [ , , ]fk t y q be admissible triple for 1,...,7n  and
0( )H N  , by equation (14), we 

obtain   

0 0 0

( , ( ), ( )) ( ), ( ) ( , ( ), ( )) ( )

f f f

t t t

t t t

n

n nt y t q t dt y t t dt g t y t q t t dt       

0

0 0

( ) ( ) ( ), ( ) ( , ( ), ( )) ( )

f f

f

t t

t t

t

n n nt
y t t y t t dt g t y t q t t dt       
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since the function ( )   has compact support in
0N , so 0( ) ( ) 0ft t   and n ny g . So,   

0

( , ( ), ( )) 0

f

t

t

n t y t q t dt  .                                                                     (15) 

Furthermore, by adopting the functions of time dependent, we have: 

0

( , ( ), ( )) , ( )

f

t

t

t y t q t dt a D                                                                          (16) 

where
1( )D  is the space of all functions in ( )D  that depend only on time linearly and a is the 

integral of on N . Equations (13), (15) and (16) are really weak form of the first, third and fourth 

equations of equation (11). It’s obvious that third constraint of equation (11) is considered on the right 

side of equation (13) with functions ( )D B  , which are monomials of 1y . Similarly, the fourth 

constraint is considered by appropriate definition of set X . Then, we can now consider the following 

linear functional on ( )D  . Define:  

 : ( , ( ), ( )) , ( )k G G t y t q t dt G D


                   (17)  

Proposition 4.1  The transformation kk   of admissible triple in M into the linear mappings k

defined in (17) is an injection.  

Proof Here, we start by showing that if 1 2k k , then
1 2k k   . Let [ , , ], 1, 2n f n nk t y q n  be 

different admissible triples. If
1 2f ft t then there is a subinterval of 0[ , ]ft t , say 1n , where

1 2( ) ( )y t y t for each 1t n . A continuous functionG can be constructed on so that the right-hand 

side of (17) corresponding to 1k and 2k are not equal. In the same requirement, assume G  b is 

independent of q such that foe all 1t N , the function is non-negative for the graph of 1( )y t but zero 

on 2 ( )y t , then the linear functional are not equal. In other words, if 1 2t t , then
1k and

2k have 

different domains and are not equal. 

Thus, the LOCTP of (10)-(11) is converted to the following optimization problem in functional space:  

 Maximize (1)k           (from (10))                                        (18)  

Subject to 

 

0

( ) , ( )

( ) 0, 1,...7, ( )

( ) , ( )

( )

g

k

n

k

k

k

D B

n H N

a D

E



  

 

 



  

   

   

 



                                        (19)  

where
2 2

1 1 2 2( , ( ), ( )) ( ) ( ) ( ) [ ( ( )) ( ( )) ]TE t y t q t u t z t w t q t q t      and equation (19) generated 

from equations (13, 15, 16 and 10) respectively. 

4.2. Transformation to Measure Space 

Let ( )L   denotes the space of all non-negative Radon measures on . By the Riez representation 

theorem, there exists a unique positive Radon measure on   such that: 

 ( ) ( , ( ), ( )) ( , , ) ( ), ( )k

N

G G t y t q t dt G t y q d G G 


       .              (20)  

Then, we can transform the space of optimization problem to measure space. Conveniently, this 

implies that optimization problem in functional space (18)-(19) can be transform to the following new 

problem in measure space:  
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( )L

Maximize
  

(1)                                                      (21)  

Subject to 

 

0

1

( ) , ( )

( ) 0, 1,...7, ( )

( ) , ( )

( )

g

n

D B

n H N

a D

E



   

  

  

 

 

  

  





.                                        (22) 

Thus, we see at once that we’re now considering the maximization of (21) over a set of all positive 

Radon measure on  denoted by A and which satisfies equation (22). 

Remark 6 We opt for the exploration of this measure theoretical approach for the problem following 

the existence of an optimal measure in the set A , which can be solve in a straightforward manner 

without having imposition of conditions of artificial convexity. The following theorem further 

buttresses the above assertion. 

Theorem 4.1 Revoking ([18], Thm. 4.2.1, p.52) 

The measure theoretical problem of maximizing (21) with equality and inequality constraints (22) has 

an optimal solution
* . 

Proof Here, we show that second and third equations of (22) are special version of the first equation 

of (22). Therefore, the set A can be written as 1 2A A A  , where   

 1
( )

{ ( ) : ( ) }g

D B

A L


   



      

and  

 2 { ( ) : ( ) }A L E       

Assume that [ , , ]fk t y q is an admissible triple. It is well-known that the set 

0{ ( ) : (1) }fL t t     is compact in weak* - topology. Furthermore, 1A as intersection of 

inverse image of closed singleton set{ } under continuous function ( )g   is also closed. It 

can be shown in a similar way that 2A is closed. Thus, A is a close subset of a compact set. This 

proves the compactness of the set A . Since the functional as intersection (1)  mapping the 

compact set A on the real line is continuous and so has a maximum on the compact set A . 

Next, following the analysis in [26], the problem (21)-(22) is approximated by a LP problem and a 

triple k 
, which approximate the action of A   is achieved.        

4.3. Approximation for Measure space Problem 

Of interest, the problem in measure space (21)-(22) is an infinite dimensional linear programing 

problem of which all the functions in (22) are linear with respect to measure  . This is obvious 

following the fact that ( )L  is infinite dimensional space. Remarkably, approximation of solution of 

this problem is overcome by the solution of a finite dimensional LP of sufficiently large dimension. 

Then, from the solution of this new finite dimensional LP, we induce an approximated admissible 

triple in a suitable manner. 

The simplification of these processes requires us to construct an intermediate problem still infinite-

dimensional for (21) but not over the set A . Rather, over a subset ( )L  and having only a finite 
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numbers of constraints with (22) being satisfied. We achieve this by choosing countable sets of 

functions whose linear combinations are dense in the sets
1( ), ( )D B D  and

0( )H N from which we 

then select a finite number of them. 

Assume the set{ : 1,2,.....}i i  be such that the linear combinations of the functions ( )i D B  are 

uniformly dense in ( )D B . For instance, these functions can be taken to be monomials in t and the 

components of the vector y . Next, we show that these monomials are suitable for our problem i.e.  

 1 1 , {0,1}, {1,2,.....}, {2,3,..,7}i n n i

ht y y y i n h    .                           (23)  

We set{ : 1,2,......}i i  such that the linear combinations of the functions
0( )i H N  are uniformly 

dense in
0( )H N . For 1,2,......s    with some function designated as [27]:  

 
0

1

2 1

2 ( )
sin( )

( )

0
s

s t t
t t

t T
otherwise



 




 



  

and              

 
0

1

2

2 ( )
1 cos( )

( )

0
s

s t t
t t

t T
otherwise








 



                            (24) 

where 1 0T t t  and 1t is a lower bound for optimal time, which can be obtain via controllability. 

Finally, let the set{ : 1,2,......}i i  be such that the linear combinations of the functions
1( )i D  

are uniformly dense in
1( )D  . These functions are monomials in t and are given as: 

( ) , 0,1,2..........w

w t t w                                                                        (25)  

Remark 7 From the basis of (12) and (14), it is obvious that second and third equations of (11) are 

also derived from the first equation of (11) if we set ( , ( )) ( ) ( )nt y t y t t  and 

0

( , ( )) ( )

t

t y t d    

respectively.  

Therefore, completion of approximation approach for the measure space is subject to the following 3 

propositions: 

Proposition 4.2  Assuming the linear program is consisting of maximizing function (1)  over 

the set LU of measures in ( )L  and satisfying: ( ) , 1,......,g

i i i L    and ( )E  . Then

max (1)
LL U  tends to max (1)U  as L . 

Proof Given that 1 2 ...... ......LU U U U    , then 1 2 ...... ......L       . Hence,{ }r is 

non-increasing and bounded sequence, which converges to the number , such that  .  

Set
1

L

L

R U




 , then R U and max (1)R  . It is sufficient to show R U . Assume R and

( )D B  . Since linear combinations of the functions{ , 1,2,......}n n  are uniformly dense in

( )D B , there is the sequence{ } { , 1,2,......}p nspan n   such that
p
 tends to  uniformly as

p . Hence, 1 2,W W and 3W tends to zero as pwhere 1 2sup , sup
y ty p t pW W       



Quantitative Approximability of Optimal Control by Linear Programing Model for Asymptomatic Dual 

HIV - Pathogen Infections 

 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)                       Page 14 

and
3 sup pW     . Then, we have R and functional ( )g g is linear. Therefore, 

( )g

p p    and ( ) ( ) ( )g g

p p                 

{[ ( , ) ( , )] ( , , ) [ ( , ) ( , )]} ( )
y ty p t p pt y t y g t y q t y t y d      



           

   1 2 3( , , ) 2 .W g t y q d W d W 
 

     

Since the R.H.S. of the above inequality tends to zero as p , while L.H.S. is independent of p , 

then ( )g   . Thus, R U and  , which implies  .    

   

Proposition 4.3  The measure optimal solution in the set LU at which the functional (1) 

attains its maximum has the form  

 
1

* *

1

( )
L

n n

n

z 




                                                       (26)  

where
* *0, 0n nz   and ( )z is unitary atomic measure with the support being the singleton set

*{ }nz , 

characterized by ( )( ) ( ),z G G z z   . 

Proof  In restricting our attention to finding measure in the form
1

1

( )
L

n

n

z  




 , which maximizes 

functional (1)  and satisfies last equation (22) and L number of constraints in the form of first-

third of equation (22), we invoke the result of appendix of [25]. Clearly,
1

1
( ) ( ), ( )

L

n nn
G G z G D 




    . Therefore, by choosing L number of functions in the form of 

(23), W number of functions in the form of (24), which leads to 2 27L L  number of functions of the 

kind (16) for which we have numbers sequentially as 2, 1,........,h h Lю  . Then, the infinite 

dimensional problem (21)-(22) is approximated with the aid of finite dimensional non-linear 

programing (NLP) problem: 

0, ( )n nz L

Maximize
   

1

1

L

n

n






                                                      (27)  

Subject to 

 

1

1

1

1

2

1

(z ) , 1,....,

(z ) 0, 1,....,

g
L

n i n i

n

L

n h n

n

i L

Ю h L

  











 

 







.                                        (28) 

    

1

1

1

1

(z ) , 1,....,

(z )

L

n w n

n

L

n n

n

a w W

E

 

 









 






      

where 1 2L L L W   . We are then confronted with NLP with more than 2( 1)L unknown

, , 1,...., 1n nz n L   . 
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Finally, using the finite dimensional linear programing problem, the following last proposition 

guarantees the approximation of the problem.  

Proposition 4.4 Let 1 2{ , ,......, }j jx x x  be a countable dense subset of , for any J  sufficiently 

large number. Given 0  , a measure ( )L   can be found such that  

 

1

2

( ) *( ) , 1,....

(ю ) *( ) , 1,....

( ) *( ) , 1,....

( ) *( )

g g

i i

h h

w w

i L

h L

w W

E E

    

   

    

  

  

  

  

 

                                        (29) 

where is a measure with the form: 

 
1

*

1

( )
L

n n

n

z  




                                                      (30)  

and having the coefficient
*, 1,....., L 1n n    been the same as optimal measure (26) and

, 1,...., 1n Jz U n L   .  

Proof Suppose functions ' , ' , 'g

i h ss ю s s  and E are sequentially rename as , 1,......, 1nG n L  . 

Then for 1,......, 1n L  ,  

 
1

* *

1

( * ) [ ( ) ( )]
L

n n n n n n

n

G G z G z  




    

 
1

* *

,
1

max ( ) ( )
L

n n n n n
i n

n

G z G z




 
  
 
  

with 'nG s continuous. Therefore,
,

max
i n

can be made less than 
1

*

1

L

n

n









 by choosing , 1,...., 1iz i L  , 

sufficiently near
*

iz . We then construct the dense subset J , such that N is divided intoW

subintervals as follows:  

 0 0

( 1)
, , 1, 2,....., 1

1 1
w

w T w T
N t t w W

W W

   
       

 

and  

,w fN t t  .      (31)  

Furthermore, the intervals 'iP s and 'nQ s are divided into iu and jv subintervals respectively. Then, the 

set is divided into 1 2 3 4 5 6 1 2J Wu u u u u u v v cells. One point is chosen from each cell, yielding a grid 

of points, which are numbered sequentially as 1 7 1 2( , ,....., , , ), 1,....,
n n n nn nx t y y q q n J  .   

Remark 8 The function of the kind (25) can be conveniently approximated by a linear combination of 

characteristic function of subintervals of N . Therefore, in reality, we observe the function

( ) ( ), 1,....,
ww Nt t w W   instead of the function (25), where 'wN s are represented by (31) and 

wN denotes the characteristic function of wN . This is obvious for the choice of 'w s because of it 

crucial role in construction of control functions [24, 25]. 
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Therefore, considering the equation (30), the NLP (27)-(28) is transformed to LP of the form: 

0n

Maximize
  1

J

n

n




                                                      (31)  

Subject to 

 

1

1 1

( 1)

2

1 ( 2) 1

1 ( 1) 1

( ) , 1,...., ,
1

( ) 0, 1,...., ,
1

( ) , , ( ) , 2,3,4,5,6,7

g
J u

n i n i n

n n

W uJ

n h n n

n n W u

J Wu

n n n f u i f i

n n W u

T
i L

W

T
Ю h L

W

E t t y t P i

    

  

   

 



   

   


  




  



    

 

 

 



              (33) 

where 
J

u
W

  . So, more importantly we need only to construct the function ( )q  , since ( )y  is simply 

the corresponding solution of differential equations of the system (3), which can be numerically 

estimated.  

Thus, by simplex method approach, nonzero optimal solution
1 2

* * *, ,....
ki i i   of LP (32)-(33) can be 

obtain with k not exceeding the number of constraints i.e. 1 2 1k L L W    . By setting
0

*

0i t  , 

piecewise control pair 1 2( ) ( ( ), ( ))r t r t r t , which thus approximate the action of the optimal control 

base on the nonzero coefficients i.e.  

1
* *

1 2

0 0

( , ) ,
( ) , 1,2,....,

0

i in n h h

n n

i i

h h

q q t
q t n k

otherwise

 


 

  
    




 
 

where
1in

q and 
2in

q are respectively 8
th
 and 9

th
 components of

ni
x . 

5. NUMERICAL SIMULATIONS AND DISCUSSION 

In affirmation of our established model, we shall simulate a number of illustrative examples for a no 

treatment situation and then for the application of chemotherapy. This is followed by the analyses 

(discussion) of the achieved results. 

5.1. Numerical Simulations  

We set to perform a number of numerical simulations to account for our analysis in sections 2, 3 and 4 

respectively. First, we illustrate the viability of the methodological application of treatment functions 

by considering the case when treatments were not initiated i.e. 1 2, 0q q  . Then, the implication is that 

for a standard model of equation (3), we investigate the crucial role of natural adaptive immune 

effectors response and the intrinsic virulence of dual viruses. 

For simplicity and compatibility with Runge-Kutter of order 4 in Mathcad surface, we convert the 

state variables to read
7

1

{ , , , , , , } , 1,..,7T T i

i

U I V P W Z R H i


  , such that for 1 2, 0q q  and applying 

[9] with time interval of 0[ , ] (3,30]ft t   and model values as in tables (1 & 2), we investigate as 

depicted by fig. 2(a-d) an infected patient with only immune effectors response as the only anti-HIV 

antigens.  
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Fig. 2 (a-d) Simulation of untreated dual HIV-pathogen with 0.2CTLp CTLe  and 1 20q q   

Specifically, fig. 2(a) depicts two key state components – the epidemiological behavior of healthy 

CD4
+
 T cells, ( )TU t  and the corresponding ravage infected CD4

+
 T cells ( )TI t . Here, we observe that 

the first function ( )TU t  exhibits gradual inclination with geometric peak value 

10.4 ( ) 23.641TU t cell l    only at the interval14 16ft  months. Healthy CD4
+
 T cells 

thereafter decline to minimal value of
1( ) 2.5TU t cell l  for16 30ft  months. The second 

function denoting infected T-cells are characterize by gradual decline due to active immune effectors 

response with minimal value 
14.364cell l   at 18 21ft  months and thereafter incline slightly to

1( ) 3.72TI t cell l   .  

From fig. 2(b), we see infectious patient with high adaptive natural immune effectors response 

combating replication of virions at the early set-point of infection i.e. 10ft   , following possible 

self-restriction and adherent to medicated conditions. Both virions (viral load and pathogen) achieve 

zero elimination at the time interval 10ft  months due to concentration of CTLp and CTLe. Fig. 2(c) 

reveals an undulating trajectory decline of precursors of CTLs with 
10.01 ( ) 0.02W t cell l   at

16ft   months. The component further decline upon prolong observation with

3 1( ) 4.203 10W t cell l   at16 30ft  months. The second state component 

1( ) 0.04Z t cell l 
 
representing active effectors of CTLs exhibits slight linear decline at initial 

period at 16ft   months with sharper decline to
1( ) 0.03Z t cell l   at16 30ft  months. 

Furthermore, under the auspices of only adaptive immune effectors response, the aggressiveness of 
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virions (intrinsic virulence) remains slightly on the increase as depicted by fig. 2(d). Here, ( )R t

increases from
1 1( ) 0.025 0.025003R t mlcopies d    at3 30ft  months.  

Further investigation is conducted following the introduction of treatment functions, which ensure that

1,2 0iq   and with parameter values as prescribed by tables (1 & 2). Clearly, we investigate the 

initiation of highly toxic chemotherapy at set-point, i.e. 1 2( ) 0.5, ( ) 0.3q t q t  , such that the optimal 

weight factors regulating these chemotherapies is given by 1 210, 100   . Then, fig. 3(a-d) below 

represents the linear programing for treated asymptomatic dual HIV-pathogen infected patient under 

multiple chemotherapy and dual cytotoxic T-lymphocytes.  

 

                                           

 

                                 

Fig.3(a-d) Behavioral dynamics of treated state components , , , , , ,T TU I V P W Z R with 1 20.5, 0.3q q   

From fig. 3(a), we investigate the healthy and infected CD4
+
 T cells progression given the above 

medical conditions. In the first case for ( )TU t , we observe overall initial slight concave inclinatory 

trend in the interval 3 14ft  months and then assume slant convex inclination achieving maximum 

value of 
1( ) 9.328TU t cell l  at 30ft  months. The second state function – the infected CD4

+
 T 

cells shows smooth linear decline of infectious particles to complete zero in the time interval

16 30ft  months. In fig. 3(b), the first function representing viral load ( )V t is seen to exhibit 

initial sharp concave declination with minimal zero value at 16ft  months. The second state function 

– parasitoid-pathogen ( )P t , exhibits similar declining behavior with shallow initial decrease when 

compared to viral load. Of note, the elimination of both virions is achieved at 16ft  months (i.e. 

480ft days ). 

From fig. 3(c), we investigate the contributive roles of two sub-CTLs (CTLp and CTLe). The first 

state function ( )W t representing the passive immune precursor of CTLs exhibits slight concave 

declination with value
3 16.833 10 ( ) 0.02W t cell l    at3 30ft  months. Similarly, the active 
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immune effectors of CTLs shows linear decline with value
10.032 ( ) 0.04Z t cell l   in the 

interval3 30ft  months of clinical investigation. Finally, from fig. 3(d), following the introduction 

of multiple chemotherapies functions and dual cytotoxic T-lymphocytes concentration, virions 

aggressiveness (intrinsic virulence) denoted by ( )R t is seen subdue to near zero value at10 30ft 

months. 

5.2. Discussion  

The present study seek using ODEs the formulation of 7-Dimensional nonlinear mathematical dual 

HIV-pathogen dynamic model for the determination of time optimal control problem for a fast 

progressing asymptomatic HIV-pathogen infected patient. The treatment functions as applied in this 

study involve quadrupled treatment controls with model transformed to a time optimal control 

problem. The model analyses explored approximation approach of linear programing method 

followed by quantitative numerical simulations. The study is an explicit extension of related scientific 

investigations as was carefully highlighted in literature of this paper. 

In the circumstance of our formulated model, investigation was initiated for situation where infected 

patients had no access to medicated treatment but were rather left to the critical role of adaptive 

natural immune effectors response. Results showed that for a patient with harmonized immune 

effectors, quantifiable healthy CD4
+
 T cells are sustained with flash peak value of 

1( ) 23.641TU t cell l   at the interval14 16ft  months. On the other hand, infected CD4
+
 T cells 

reduced to near zero in the same time interval but thereafter submerges. The toxicity of both virions 

exhibited slight sustainability at the early time interval of 10ft  months and thereafter declined. The 

critical role of both CTLp and CTLe is evidence by the ever positive values with slight decline due to 

possible natural clearance rate. This situation affirmed the minimal sustainability of healthy CD4
+
 T 

cells by infected patient. Moreso, increase sustenance of virions aggressiveness ascertains the absence 

of chemotherapy at this situation.   

Further deduction following the introduction of treatment functions resulted to enhanced 

maximization of healthy CD4
+
 T cells with steady increase to 

1( ) 9.328TU t cell l  while infected 

CD4
+
 T cells were eliminated after 16ft  months. This situation was visualized with the elimination 

of both virions at the 16
th
 month of active chemotherapy application. The model thus aligned the study 

by [18], which had set upperbounds time benefit on cost to be 480 16days  months. This outcome 

suggests possible termination of chemotherapy administration and concurrently accounted for any 

possible drug side-effects. Furthermore, the ascertainment of the present investigation is ascertained 

by the complete elimination of intrinsic virulence of infectious viruses as in fig. 3(d). The implication 

is that with the application of chemotherapy treatments, linear growth of intrinsic virulence is 

reversed. Moreso, we as well observed that prolongation of chemotherapies, which boosted CTLs 

leads to significant maximization of healthy CD4
+
 T cells and are in collaboration with the 

experimental findings of [14, 29, 30]. 

Thus, the overall results which indicated 16ft  months of cohesive treatment administration, 

translate to the desired minimization of cost of medication. Moreso, the decline in infected CD4
+
 T 

cells following the presence of treatment functions were comprehensively vindicated by the sharp 

decline of dual virions to very low level with healthy CD4
+
 T cells sustained at maximum level and 

linear expansion of both precursors and effectors of CTLs. 

6. CONCLUSION  

In overcoming the weakness identified from a number of related scientific investigations, this paper 

had formulated using ODEs, a novel 7-Dimensional non-linear mathematical dynamic model for the 

optimal control treatment of asymptomatic dual HIV-pathogen infections on host target CD4
+
 T cells. 

The study adopted quadrupled treatment functions with model constructed as a time optimal control 

problem and analyzed using linear programing approximation method. Results of numerical 

simulations affirmed the maximization of healthy CD4
+
 T-lymphocytes, suppression of dual HIV-
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pathogen infectivity, increase sustainability of dual CTLs critical role, early elimination of virions 

aggressiveness with an overall minimization of benefit on cost. Therefore, the result which justified 

the application of linear programing approximability approach, strongly advocates the inclusion of 

delay intracellular component on state variables as an enhancement in future studies. 
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