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1. INTRODUCTION 

Considered as the most dreaded transmittable infection with no known cogent medical cure, the human 

immunodeficiency virus (HIV), which often transmute to terminal irreversible manifestation – the 

acquired immunodeficiency syndrome (AIDS) have posed a challenging treat to the scientific world. The 

amiable quest of tackling this life threatening disease – HIV/AIDS infection has been through the 

application of mathematical modeling, which allows the utilization of significant knowledge of numerical 

methods for the optimization of host target immune system cells and the minimization of systemic cost, 

while suppressing viral victors below detectable clinical assay, see for examples the studies of models [1-

4]. 

Furthermore, following the emerging new cases of multiplicity of HIV and its allies of pathogenic 

infections, it has become more unsafe and agreeably incomplete to mathematically and biological model 

eradication of HIV/AIDS infections without accounting for the epidemiological and biological behavior 

of the consequences of allying pathogenic infections. The seeming varying positive contributions from 

numerical methods in the dynamics of single strain HIV infection have considerably been extended to the 

diagnosis of the epidemiological and biological behaviors of dual HIV-pathogen infectivity as has been 

exemplified by models [5-9].  Consequentially, the varying results from these later models have been of 

immense importance in subduing the tenacity of the surging cases of dual viral infectivity. 

Application of quantum locally optimal algorithm of successive approximation as a concept of numerical 

methods, which accounted for the mathematical simulations of human immune systems problems using 

varying optimization control strategies for immune processes and HI-virus infections were adequately 

Abstract: In furtherance to the pursuit for the advent of more précised and acceptable preventive and 

suppressive approach to the continual de-replication of viral load and parasitoid-pathogen with presupposed 

maximization of both CD4
+
 T-lymphocytes and cytotoxic T-lymphocytes (CTLs), this present study using 

ordinary differential equation, formulated a set of nonlinear complex 10-Dimensional mathematical dynamic 

dual HIV-pathogen model. In addition to the embedded dual infectivity, the novelty of this present work is in 

the incorporation of the crucial role of delay intracellular and immune effectors response in the presence of 

multiple chemotherapeutic treatments. Presenting the model as an optimal control problem and saddle with 

terminal time objective functional, classical Hamilton-Pontryagin function was explored in the analysis of 

derived quantum locally optimal algorithm of successive approximation for healthy CD4
+
 T cells 

concentration. Using Runge-Kutter of order of precision 4 in a Mathcad surface, numerical validity of the 

model was conducted. Results of accompanying numerical simulations indicated the maximization of both 

healthy CD4
+
 T-lymphocytes and CTLs as a function of multiple chemotherapies with high toxicity and the 

presence of boosted immune effectors response under reduced systemic cost. Furthermore, maximal 

suppression of sensitive (infected T-cells and virions) state variables, which are daunted by persistent 

resistive infectious components suggests for a more articulated dual infectivity model.  

Keywords: Dual-HIV-Pathogen-Infection, Delay-Intracellular, Multiple-Chemotherapy, Quantum-Optimal-

Control, Successive-Approximation, Sensitive-State-Variable, Resistive-State-Variable.  

*Corresponding Author: Bassey, E. Bassey, Department of Mathematics /Statistics, Cross River University 

of Technology, Calabar, Nigeria 



Quantum Optimal Control Dynamics for Delay Intracellular and Multiple Chemotherapy Treatment (MCT) 

of Dual Delayed HIV - Pathogen Infections 

 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)                             Page 2 

discussed in the models [2, 10-15]. Of particular interest to this present paper, is the mathematical 

formulation by [16], which was based on the findings of model [11]. The model studied the numerical 

methods of optimal control of HIV-infection dynamics using quantum locally optimal algorithm of 

successive approximation technique. That model considered 7 – differential equations framed around 7 – 

subgroups of the populations. The study investigated the role of numerical methods in solving complex 

problems in medicine and was able to define the lifespan of infected patients in terms of continuous and 

intermittent application of therapy. The methodological key components of the model involves the 

uninfected target cells ( )T , infected sensitive cells ( )sT , infected cells resistant ( )rT , viral load sensitive

( )sV , viral load resistant ( )rV and the introduced treatment functions 1( )t and 2 ( )t . However, the above 

model lacks the finite biological attributive roles of delay intracellular and cell-mediated immune 

effectors response. Furthermore, the outcome of the result does not spelt the effects of allies of HIV 

infectivity.  

Articulating the above seeming silent but unavoidable epidemiological constraints and motivated by the 

studies [1, 5], the present paper proposes and formulates using ordinary differential equations, an 

improved complex nonlinear 10-Dimensional dual HIV-pathogen dynamic delay-differential model, 

prime with the task of not only overcoming the lapses of model [16] but also to account for the 

methodological application of multiple chemotherapy treatment (MCT) in dual delay HIV-pathogen 

infections incorporated with delay intracellular and immune effectors response. Therefore, the present 

model is studied under the auspices of 10-subpopulations, which includes the critical roles of immune 

effectors response and two treatment functions 1( )t and 2 ( )t . The methodology involves dual HIV-

pathogen infections on target cells distorted with reverse transcriptase inhibitors (RTI) and protease 

inhibitors (PIs) as treatment factors and clinically sandwich in two treatment discontinuation chambers 

denoted by { , }n s rG G G with which the index – infection delay intracellular is accommodated. The 

variations of the present model with those of [5-9] are the incorporation of well-defined treatment 

functions 1( )t and 2 ( )t (on RTI and PIs). Moreso, the present model clearly articulates the 

mathematical representation of the biological attributes of the model state variables (to be defined in 

section 2).  

Furthermore, to appreciate the critical functions of delay intracellular immune andeffectors response, we 

leap on the innovative ideas of the mathematical formulations studied by [1, 5]. Thus, in the quantitative 

analysis of our complex nonlinear model to be presented as on optimal control problemand applying from 

the vast branches of numerical methods, we explore Hamilton-Pontryagin’ function to establish the model 

quantum locally optimal algorithm for successive approximations. The approach of which had earlier 

been initiated in the vector of phase variables of [16]. 

The entire model is explicitly constituted into 6 sections with section 1 devoted to the introductory aspect. 

The material and methods adopted for this investigation, which involves the mathematical novelty of the 

study presented as problem statement model and transformed to an optimal control problem are develop 

in section 2. The analysis of the derived model is treated in section 3. Here, the model explores classical 

optimization technique known as Hamilton-Pontryagin’s function in the evaluation of the system 

quantum locally optimal algorithm of successive approximations. Numerical simulations using in-built 

Runge-Kutter of order of precision 4 in a Mathcad surface and results of investigations are contained in 

section 4. Section 5 discusses the implications of the applied model and analyzes the obtained results of 

section 4. Finally, we draw in section 6, succinct conclusion and recommendations on the basis of 

achieved result. It is therefore anticipated that this present study will to a greater extent address the 

curiosity to overcome the curative impediment of dual HIV-pathogen infections. 

2. MATERIAL AND METHODS 

Here, we shall accomplish the intents of this section with crystal focus on presentation of mathematical 

problem statement of the model and the transformation of the derive model to an optimal control problem. 

2.1. Mathematical Problem Statement for Uncontrolled Treatment 

As a led way, we shall as highlighted in section 1; formulate the mathematical problem statement from 

the viewpoints of model [1, 5, 8, 16]. From model [16], the study was formulated as a 7 – Dimensional 

vector of phase variables. The epidemiological derivation of the model was given as:  
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The epidemiological and biological descriptions of these state variables and parameters of model (1) will 

be reason out from the definition of our derived model (2) below. This becomes obvious in order to avoid 

the unnecessary repetition of definitions of some rerated biological parameters (functions). 

Suppose the key components of the state variables for the present study are define as: uT - uninfected 

CD4
+
 T cells concentration, sT - infected CD4

+
 T cells sensitive to chemotherapy, rT - infected CD4

+
 T 

cells resistant to chemotherapy, sV - viral load sensitive to chemotherapy, rV - viral load resistive to 

chemotherapy, as was the case for model (1). Incorporated in this present model are sP - parasitoid-

pathogen sensitive to chemotherapy, rP - parasitoid-pathogen resistive to chemotherapy, EM - immune 

effectors response, 1 - treatment function (i.e. RTI) on uT  and sT  ; and 2 - treatment function (i.e. PIs) 

on sV  and sP . Then, we are bound to derive an improved complex nonlinear 10-Dimensional dual HIV-

pathogen dynamic delay-differential model. Now, from model (1) and invoking the innovative idea from 

[1] in relation to delay intracellular; the articulated critical role of cell-mediated immune effectors 

response as investigated by [5] in conjunction with the versatile knowledge of dual HIV-pathogen 

infectivity of model [8], we thus arrive at a modified and reformulated epidemiological and biological 

model governed by 
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Thus, equations of model (2) constitute the basic model with which we conduct the current present study. 

Unlike model (1), the innovative aspect of model (2) is reveal by the incorporation of sixth, seventh and 

eighth equations, which also have its biological contributive effects on other equations of the model. The 
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The fourth and sixth equations having related terms represents the activities of the sensitive viral load and 

parasitoid-pathogen in the T-cells. Their respective first terms are the fractional replicative capacities of 

inflow of both viral load and pathogens into the infected T-cells, each having ( ) ( )v s uV t T t and 

( ) ( )p s uP t T t loss rates. Their respective last terms are the discontinuation chambers of inflow of 

lymphoid sources of sensitive virions ( , )s sV P due to cohesive application of treatment function 2 ( )t .  

In a like manner, fifth and seventh equationsrepresenting resistive viral load and resistive pathogen can be 

describe along same biological behaviors. Their respective first and second terms are the sum of 

replicative rates of both resistive virions and fractional replicative capacities of sensitive virions that 

becomes resistive to chemotherapy. These resistive virions are loss at the rates ( ) ( )v r uV t T t and

( ) ( )p r uP t T t , which are enhanced by the presence of discontinuation chambers as defined by their last 

terms. 

From the eighth equation, we articulate the role of the immune effectors response. Here, the clearance rate 

of infected T-lymphocytes is a function of the immune effectors response (CTLs) with dynamics of EM

adopted from the models [5, 17].  The first term Mb  denotes the replication of more effector cells from 

co-existence of infected cells and immune effector cells interactions. The second term
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rate with death saturation constant H , while the last term M EM describe immune effectors natural loss 

rate.  

Furthermore, it is biologically obvious that when virions concentration in the blood plasma is large 

enough, defense mechanism transmutes information to the T-lymphocytes following chemotherapy 

application. Thus, sensitive virions are transmuted to resistive virions. This interactive process in model 

(2) is defined by the inclusion of the discontinuation function nG , which is mathematically expressed as: 
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where, rG is the discontinuation chambers of resistant virions replaced by sensitive virions following the 

administration of chemotherapy.  

Drawing from model [11], where model [16] generated is basis, the treatment functions 1( )t and 2 ( )t  
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uncontrolled treatment i.e. the first five equations of model (1), the time function 1( )t and 2 ( )t  were 
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For dual HIV-pathogen virions as in the case of the present study, having parameter values as inscribed in 

table 2, the treatment functions is adequately describe by ninth and tenth equations of model (2). 

Therefore, from equations (4) and (5), the first functions defines the decreasing rate of T-cells infected by 

sensitive virions, while the second functions describe the effect of suppressed virions inflow in the blood 

plasma from lymphoid system. We must note that the resistive virions components are not affected by 

chemotherapy treatments. 

Remarkably, the functions 1( )t and 2 ( )t defines the dynamic characters of treatment interactions 

processes, which accounts for intermittent treatment schedules in our present model. Epidemiologically, it 

becomes accommodating to introduce as in model (2), treatment control variables 1r and 2r  denoting 

treatment switches. These variables are in the domain of 1,20 1ir  such that if 1,2 1ir   , medication is 

eminent for infected patients (i.e. treatment is switch on) and if 1,2 0ir   , medication is discontinued (i.e. 

treatment is switch off).   

Thus, in concretizing the validity of model (2); comparative test for equations (4) and (5) as well as the 

optimality system (to be determined in the later section), we establish a set of clinically compactible data 

for the state variables and parameters values as summarized in tables 1 and 2 below: 

Table 1. Description of state variables with values for model (2) 

Variables Dependent variables Initial values Units 

Description 

uT  Uninfected T-lymph cells population 0.5 

U
n

it
s/

cu
.m

m
 

sT  Infected CD4
+
 T cells sensitive to drug 0.2 

rT  Infected CD4
+
 T cells resistive to drug 0.1 

sV  Viral load sensitive to drug 0.2 

rV  Viral load resistive to drug 0.1 

sP  Pathogen sensitive to drug 0.1 

rP  Pathogen resistive to drug 0.1 

EM  Immune effectors response 10 

1  Treatment function (RTI) on uT and sT  [0,1]   

2  Treatment function (PIs) on and    

Note: the table is a reflections of models [1, 8, 16], clinically modified to meet the present novel model and 

compactible with RK4 software used in this investigation. 

The corresponding model parameter values are defined by table 2 below: 

Table 2. Summary of constants and parameter values of model (2) 

Parameter 

symbols 

Parameters and constants Values Units  

Description  

 Inflow of uninfected CD4
+
 T cells natural source 0.8 1.cu mmd 

 

2b  Proliferated uninfected CD4
+
 T cells inflow decrease 0.4 1.cu mmd 

 

1  Natural death rate of uninfected CD4
+
 T cells 0.05 1d 

 

2  Natural death rate of infected CD4
+
 T cells 0.02 1d 

 

sh  Rate CD4
+
 T cells becomes infected by sV  0.005 1.cu mmd 

 

rh  Rate CD4
+
 T cells becomes infected by rV  0.005 1.cu mmd 

 

sl  Rate CD4
+
 T cells becomes infected by sP  0.002 1.cu mmd 

 

rl  Rate CD4
+
 T cells becomes infected by rP  0.002 1.cu mmd 

 

v  Viral load clearance rate by immune effectors response 0.0062 1.cu mmd 
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p  Pathogen clearance rate by immune effectors response 0.0086 1.cu mmd 
 

uz  Replication rate of uninfected CD4
+
 T cells 0.025 1d 

 

vz  Replication rate of viral load 0.008 1d 
 

pz  Replication rate of pathogen 0.004 1d 
 

sz  Replication rate of infected CD4
+
 T cells 0.025 1d 

 

0V  Viral load resistance threshold 0.5 .cu mm  

0P  Pathogen resistance threshold 0.5 .cu mm  

1q  Resistance viral load fraction due to replication capacity 0.07  

2q  Resistance pathogen fraction due to replication capacity 0.03  

1,2ir   Treatment switches (control variables) [0,1]ir    

TS  Saturation coefficient of CD4
+
 T cells source 0.38 1.cu mm

 

vS  Saturation coefficient of viral load external source 0.20 1.cu mm
 

pS  Saturation coefficient of pathogen external source 0.10 1.cu mm
 

uS  Saturation coefficient of uninfected CD4
+
 T cells source 0.40 1.cu mm

 

iS  Saturation coefficient of infected CD4
+
 T cells source 0.40 1.cu mm

 

sG  Discontinuation chamber for external lymphoid source 

of sensitive virions sV and sP  

0.42 1.cu mm
 

rG  Discontinuation chamber for external lymphoid source 

of resistive virions rV and rP  

0.42 1.cu mm
 

1c  Rate of suppression of viral infected CD4
+
 T cells by drug 0.5  

2c  Rate of suppression of viral inflow from ext. lymphoid source by drug  0.025  

3c  maximum suppression of viral inflow from ext. lymphoid source by 

drug 

0.15  

1d  Rate of suppression of pathogen infected CD4
+
 T cells by drug 0.7  

2d  Rate of suppression of pathogen inflow from ext. lymphoid source by 

drug  

0.032  

3d  maximum suppression of pathogen inflow from ext. lymphoid source 

by drug 

0.25  

  Rate of death of infected CD4+ T cells induced by immune effectors 0.05 1.cu mmd 
 

Mw  Maximum birth rate of immune effectors 0.03 1.cu mmd 
 

M  Maximum immune effected death rate 0.02 1.cu mmd 
 

M  Death rate of CTLs effectors 0.01 1d 
 

  Time delay 0.5 day  

Mb  Immune effectors replication rate  0.06 1.cu mmd 
 

wH  Immune effectors saturation birth rate 10 1.cu mm
 

H  Immune effectors saturation death rate 30 1.cu mm
 

Note: table 2 is a clinical modification of established parameter values of models [1, 8, 16]. 
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According, the appreciation of the significance and slight variations (if any) of the treatment functions for 

the present study and those of models [11, 16] will be illustrated in section 4.  

2.2. Statement of Optimal Control for MCT 

The introduction of optimization control strategy to treatment of infectious diseases (i.e. HIV and it allied 

pathogenic infections) is primarily hinge on the objective of prolongation of lifespan of infected patients 

following the application of prescribed chemotherapy. The measure by which the resulting outcome of an 

optimal control is accessed particularly for HIV infection is the quantitative level of healthy CD4
+
 T cell 

count concentration and the production of adaptive natural anti-HIV immune cytotoxic T-lymphocytes 

(CTLs) in relation to reduction in cost of treatment. 

Therefore, in formulating the mathematical problem, which allows the investigation of the quantitative 

characteristics of these healthy T-cells and that of immune effectors response, the objective functional 

must be quantitatively formulated. For a study of model (2), having 10-Dimensional vectors phase space, 

the mathematical objective is considered in terms of its trajectories in a hypersurface bounds. From the 

study [18], the lowest severity category of T-cells concentration that leads to the development of AIDS 

ending with a lethal outcome is when viremia level is 200T cells  unit per .cu mm .   

So that if we let this low level viremia bound beT 
, then the optimal problem of prolongation of patients 

lifespanis achievable if we set the bound on immune system to obtain  

 ( ) 0uT t T   for all 200T   per .cu mm . (6) 

This is to say that the objective functional Q , that define the optimization treatment problem is derive as: 

 1 2[ ( ), ( )] { / ( ) }h uQ r t r t t t T t T     (7) 

for which the trajectory of model (2) attain hypersurface (6) at initial treatment of infection set-point. The 

value of ht in equation (7), is determined by the choice of treatment control functions 1( )r t and 2 ( )r t . 

Hence, the numerical algorithm is geared towards establishing the functions for which equation (7) attains 

its maximum value for ( ) [0,1]ir t  , i=1, 2 [ , ]i ht t t  , where it is the initial set-point time.  

Thus, equation (7) can be rewritten as: 

 1 2
( ), 1,2

[ ( ), ( )] { / ( ) max }
i

h u
r t i

Q r t r t t t T t T 


     (8) 

Then we are to analyze the objective functional (8) to establish the quantum locally optimal algorithm of 

successive approximation in our next section. 

3. QUANTUM LOCALLY OPTIMAL ALGORITHM FOR DUAL HIV-PATHOGEN INFECTIVITY 

In this section, we shall derive the phase coordinates of model (2) using the control technique of 

optimization control method to establish the equation for successive increment functional and the 

quantum algorithm of control. 

3.1. Phase Coordinates for the System Model 

Using the phase conjugate, we shall explore the optimization method initiated by [19] to transform the 10-

Dimensional state variables to phase coordinates typical of model (2), i.e.  

 
1 2

( ) { , , , , , , , , , }
u s r s r s r ET T T V V P P Mf t f f f f f f f f f f   (9) 

and state the Hamilton-Pontryagin’s function [20]  

1 2

1 2( , , , , , , , , , ,

, , , , , , , , , , , )
u s r s r s r E

u s r s r s r E

T T T V V P P M

H T T T V V P P M

f f f f f f f f f f r r t 

 
 =  

 

2
1 1

1

( ( ) ( ))
{ ( ) ( )[ ( ) ( )]

( ) ( ) ( ) ( )

[ ( )( ( ) ( )) ( ( ) ( ))] ( )}

u

uT T
T u u T T

T T T u T T

s s s s r r r r u

zb V t P t
f b T t T t V t P t

S V t P t S V t P t

t h V t l P t h V t l P t T t






   

   

   
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2

1 2{ ( ) ( )[( ( ) ( )) ( ( ) ( ))] ( )

( )[ ( ) ( )] ( ) ( )}
( ) ( )

sT u s s s s r r r r s

s
s T T E s

i T T

f e t T t h V t l P t h V t l P t T t

z
T t V t P t M t T t

S V t P t

  




    

  
 

 

2{[( ( ) ( ))] ( ) ( ) ( )[ ( ) ( )]}
( ) ( )r

s
T r r r r u r r T T

i T T

z
f h V t l P t T t T t T t V t P t

S V t P t
    

 
 

1 2

( )
{(1 ) ( )[ ( ) ( )] ( ) ( ) ( ) }

( ) ( ) ( ) ( )s

v s s
V s T T v u s

i T T v T T

z G V t
f q T t V t P t T t V t t

S V t P t S V t P t
     

   
 

1{ ( )[ ( ) ( )] ( )[ ( ) ( )]
( ) ( ) ( ) ( )

( )
( ) ( ) ( ( ) ( )) }

( ) ( )

r

v v
V r T T r T T

i T T i T T

r
v u r r T T

v T T

z z
f T t V t P t q T t V t P t

S V t P t S V t P t

V t
T t V t G V t P t

S V t P t


   
   

  
 

 

2 2

( )
{(1 ) ( )[ ( ) ( )] ( ) ( ) ( ) }

( ) ( ) ( ) ( )s

p s s
P s T T p u s

i T T p T T

z G P t
f q T t V t P t T t V t t

S V t P t S V t P t
     

   
 

2{ ( )[ ( ) ( )] ( )[ ( ) ( )]
( ) ( ) ( ) ( )

( )
( ) ( ) ( ( ) ( )) }

( ) ( )

r

p p

P r T T s T T

i T T i T T

r
p u r r T T

p T T

z z
f T t V t P t q T t V t P t

S V t P t S V t P t

P t
T t P t G V t P t

S V t P t


   
   

  
 

 

( ) ( )
{ }

( ) ( )E

M s M s
M M E E M E

s w s

w T t T t
f b M M M

T t H T t H


   

 
 (10) 

 1 1 1 1 1{( )[1 ( ) ( )]}f c d t r t     2 2
2 2 2 3 3

3 3

)
{ [1 ( ) ( )(( ) 1)]}
1 ( )

c d
f t r t c d

c d
 


    

 
. 

Next, we derive the corresponding system of delay-differential equations for the costate variables i.e.  

 
1 1

( ( ) ( ))
[ ( )( ( ) ( )) ( ( ) ( ))]

( ) ( )

u

u

T u T T
T s s s s r r r r

u T T

df z V t P t
f t h V t l P t h V t l P t

dt S V t P t
 


     

 
 

2

1[ ( ) ( ( ) ( ))] [ ( ) ( )] [ ( )]

[ ( )] [ ( )] [ ( )]

s r s

r s r

T s s s s T r r r r V v s

V v r P p s P p r

f t e h V t l P t f h V t l P t f V t

f V t f P t f P t

  

  


    

  
 , 

 
2 1 1

( ( ) ( )) ( ( ) ( ))
[ ( )] [ (1 ) ]

( ) ( ) ( ) ( )

s

s s r

T s T T v T T
T E V V

i T T i T T

df z V t P t z V t P t
f M t f q f q

dt S V t P t S V t P t
 

 
     

   
 

 
2 2 2 2

( ( ) ( ))
[ (1 ) ] [ ]

( ) ( ) ( ( ) ) ( ( ) )s r E

p T T M E M E
P p M

i T T s w s

z V t P t w M M
f q f q f

S V t P t T t H T t H


    

   
, 

2

( ( ) ( ))
[ ( ) ]

( ) ( )

r

r r r

T T T
T s V v P p

i T T

df V t P t
f z f z f z

dt S V t P t



   

 
, 

2 12

( )
[ ( ( )) ( )( ( ))]
( ( ) ( ))

s

u

V u T
T u u s u

T T T

df s P t
f b z T t t h T t

dt S V t P t
  

 
2

1[ ( ) ( ) ]
sT u sf t e T t h

  
  

 
2

( ( ))
[ ( ) ( )]

( ( ) ( )) s r

s i T
T s T r

i T T

z S P t
f T t f T t

S V t P t
 

 
  

 1 12

( ( ))
[ (1 ) ( ) ( ( ) ( ))] ( )

( ( ) ( )) s r

v i T
V s V r s r u

i T T

z S P t
f q T t f T t q T t T t

S V t P t
    

 
 

 
2 22

( ( ))
[ (1 ) ( ) ( ( ) ( ))]

( ( ) ( )) s r

p i T

P s P r s

i T T

z S P t
f q T t f T t q T t

S V t P t
   

 
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 12
[ ( ( ) ) ( ( ) ( ))]

( ( ) ( )) s r

v
V s V r r T

v T T

s
f t G f G V t P t

S V t P t
 

 
 

 
22

[ ( ( ) ( ) ( )) ( ( ) ( ))]
( ( ) ( )) s r

p

P s s T P r r T

p T T

s
f t G P t V t f G P t P t

S V t P t
 

 
,  

2

2 2

( )( ( ))( ( ))
[ ( )]
( ( ) ( )) ( ( ) ( ))

r

u

V u u u TT T
T r u

T T T u T T

df z T t s P tb s P t
f h T t

dt S V t P t S V t P t
  

   
2

1[ ( ) ( ) ]
sT u sf t e T t h

  
  

 
2

( ( ))
[ ( ) ( )] ( ( ))

( ( ) ( )) s r r

s i T
T s T r T r u

i T T

z s P t
f T t f T t f h T t

S V t P t
  

 
  

 1 12

( ( ))
[ (1 ) ( ) ( ( ) ( ))] ( ( ))

( ( ) ( )) s r r

v i T
V s V r s V r u

i T T

z s P t
f q T t f T t q T t f T t

S V t P t
    

 
 

 
12

[ ( ( ) ) ( ( ) ( ))]
( ( ) ( )) s r

v
V s V r r T

v T T

s
f t G f G V t P t

S V t P t
 

 
 

2 22

( ( ))
[ (1 ) ( ) ( ( ) ( ))]

( ( ) ( )) s r

p i T

P s P r s

i T T

z S P t
f q T t f T t q T t

S V t P t
   

 
 

 
22

[ ( ( ) ( ) ( )) ( ( ( ) ( )) ( ))]
( ( ) ( )) s r

p

P s s T P r s r T

p T T

s
f t G P t V t f G V t P t P t

S V t P t
  

 
,  

2 12

( )
[ ( ( )) ( )( ( ))]
( ( ) ( ))

s

u

P u T
T u u s u

T T T

df s V t
f b z T t t l T t

dt S V t P t
  

 
     

  2

1 2

( )
[ ( ) ( ) z ( ) ]

( ( ) ( ))s

i T
T u s s s

i T T

sV t
f t e T t l T t

S V t P t

  
 

 
 

2 22 2

( )( ( )) 1
[ ] [ ((1 ) ( ) ( ) ( ) )]
( ( ) ( )) ( ( ) ( ))r s

s r i T
T V v s s s v

i T T i T T

z T t sV t
f f q z T t t G V t S

S V t P t S V t P t
   

   

12 2

( ( )) ( ( ))
[ ( ( ) ( )) ( ) ]
( ( ) ( )) ( ( ) ( ))r

v i T v T
V r s r r

i T T v T T

z sV t s V t
f T t q T t G V t

S V t P t S V t P t
  

   
 

2 22 2

( )( ( ))
[(1 ) ( ) ( ) ]

( ( ) ( )) ( ( ) ( ))s

p s i T s p

P p u

i T T p T T

z T t S P t G S
f q T t t

S V t P t S V t P t
    

   
 

22 2

( ( )) ( ) ( )
[ ( ( ) ( )) ]
( ( ) ( )) ( ( ) ( ))r

p i T r p T

P r s r

p T T p T T

z S V t P t S V t
f T t q T t G

S V t P t S V t P t
  

   
, 

2

2 2

( )( ( ))( ( ))
[ ( )]
( ( ) ( )) ( ( ) ( ))

r

u

P u u u TT T
T r u

T T T u T T

df z T t S P tb S P t
f l T t

dt S V t P t S V t P t
  

   
 

 
2

( ( ))
[ ( ) ( )] ( ( ))

( ( ) ( )) s r r

s i T
T s T r T r u

i T T

z sV t
f T t f T t f l T t

S V t P t
  

 
  

 1 22 2

( ( )) ( ) ( )
[(1 ) ( ) ( ) ]

( ( ) ( )) ( ( ) ( ))s

v i T s v T
V s r

i T T p T T

z S V t V t S P t
f q T t t G

S V t P t S V t P t
  

   
 

12 2

( )( ( )) ( )
[ (1 ) ( ( ) ( )) ]
( ( ) ( )) ( ( ) ( ))r

v r i T r v
V r T T

i T T v T T

z T t S V t V t S
f q G V t P t

S V t P t S V t P t
   

   
 

2 22 2

( )( ( )) ( ) ( )
[(1 ) ( ) ]

( ( ) ( )) ( ( ) ( ))s

p s i T s p T

P s

i T T p T T

z T t S V t P t S P t
f q t G

S V t P t S V t P t
  

   
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22 2

( ) ( ) ( )
[ ( ( ) ( )) ( ) ( ( ) ( )) ]
( ( ) ( )) ( ( ) ( ))r

p i T p T

P r s p u r T T

p T T p T T

z S V t V t P t
f T t q T t T t G V t P t

S V t P t S V t P t
    

   
,  

2 2
( ( )) ( ) ( M)

( ( ) ) ( ( ) )

E

s E E

M M E w M E
T s M M

s w s

df w M H M H
f T t f f

dt T t H T t H






     

 
,  (11) 

 21
1 1 1[ ( ) ( )] ( ( )( ( ) ( )) ) ( )

u sT s s s s T u s s s s

df
f h V t l P t f T t h V t l P t e f c d

dt

 


       

 2 2 2
2

3 3

( ) ( ) )
[ ] [ ] ( )

( ) ( ) ( ) ( ) 1 ( )s s

s s s s
V P

v T T p T T

G V t G P tdf c d
f f f

dt S V t P t S V t P t c d





  

     
. 

Equations (10) and (11) indicate that with the application of the optimization methods of [16, 19], we can 

solve the maximization problem of equation (7) by successive increase in the values of the functional Q of 

equation (6), based on solutions of model (2) and costate equation (11). Therefore, the boundary 

conditions on costate variable at the right side of the trajectory are given as: 

 

0

1

0( )
u

u
T

t t

dT
f t

dt





 
  

 
 

 , (12) 

 
1 20 0 0 0 0 0 0 0 0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0

s r s r s r ET T V V P P Mf t f t f t f t f t f t f t f t f t           

and which corresponds to the problem of the maximization of the functional (7) on hypersurface (6). 

Furthermore, it is observed that due to the discontinuation function (3), the right hand side of model (2) 

makes sharp changes when the trajectory passes across the hypersurface 

 
1 0

2 0

( , ) 0

( , ) 0

s r s r

s r s r

V V V V V

P P P P V

     


     
 (13) 

Then, it can be said that once the trajectories model (2) passes hypersurface (13), the costate variable 

vector-valued function (9) satisfies the jump conditions [19] 

 1( 0) ( 0) ( 0)
s s sV V V

s

f t f t v f t v
V


      


, 

 1( 0) ( 0) ( 0)
r s rV V V

r

f t f t v f t v
V


      


,  

 2( 0) ( 0) ( 0)
s s sp p p

s

f t f t p f t p
P


      


, (14)  

 2( 0) ( 0) ( 0)
r r rp p p

r

f t f t p f t p
P


      


.  

The corresponding coefficients of jump v and p are determined by the expressions 

 

0

1 1

( )
( 0) [ ( 0) ( 0) ]

( ) ( )

[( ( ), ( ), )] [( ( ), ( ), )]

r

s r

s r
v s r

V T T

v v

G V t
f t sign V t V t V

S V t P t
v

g x t r t t g x t r t t 

    
 




 

and            (15)   

 

0

1 1

( )
( 0) [ ( 0) ( 0) ]

( ) ( )

[( ( ), ( ), )] [( ( ), ( ), )]

r

s r

s r
p s r

P T T

p p

G P t
f t sign P t P t P

S V t P t
p

q x t r t t q x t r t t 

    
 




. 

From equation (15), the functions
1

svg
,

1

rvg
,

1

spq
 and 

1

rpq
 are the right-hand sides of the fourth-seventh 

equations of hypersurface (13).  
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3.2. Equation for Successive Increment Functional  

For a specific optimal control problem, one approach of resolving the problem of healthy CD4
+
 T –

lymphocytes maximization is the process of successive increment of control functional constructed as 

follows: Let the control functions be 1 1( )r r t and 2 2 ( )r r t , then we can solve the Cauchy problem for 

model (2) having initial conditions as specified in model (2). Then, the trajectory of the control functional 

is obtained as: 

1 2 0( ) { ( ), ( ), ( ) , ( ), ( ), ( ), ( ), ( ), ( ), ( )},u s r s r s r E fx t T t T t T t V t V t P t P t M t t t t t t    

 

(16)

 is determined in conjunction with the values of functional (7) on the supersurface (6). Therefore, we 

present the functional (7) with changed control functions i.e. 1 1 1( ) ( )cr r t r t    and 2 2 2( ) ( )cr r t r t   . 

Then equation (7) can be rewritten as: 

 1 1 2 2[ ( ) ( ), ( ) ( )]Q r t r t r t r t    . (17)  

The variation of functional (17) and (7) is thus: 

1 1 2 2 1 2[ ( ) ( ), ( ) ( )] [ ( ), ( )]Q Q r t r t r t r t Q r t r t     ,   (18) 

which is computed using equations (11)-(15) for costate variables. 

Commutatively, if we let 1 1( )r r t and 2 2 ( )r r t in equation (10) and its trajectory corresponding to the 

right-hand side of equation (11) such that we integrate using boundary conditions (12) and accounting for 

equations (14) and (15) with reversed time. Then the vector-valued functional of costate variables to be 

computed are: 

1 2
( ) { ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( ), ( )}

u s r s r s r ET T T V V P P Mf t f t f t f t f t f t f t f t f t f t f t  0, ft t t    (19) 

In this considered problem, the change in functional (12), which is determined with the aid of equations 

(16) and (19), is obtained as follows: 

1 2 1 20[ ]Q Q Q Q Q           (20) 

where  

 
0

0

1 1 1 1 1

2 2 2 2 2

[( ) ( ) ( )]

[( ) ( ) ( )]

f

f

t

t

t

t

Q c d t r t dt

Q c d t r t dt






      





      






 (21) 

with 1 20[ ]Q Q   as the system error, determined by a higher order infinitesimal than 1Q and 2Q . 

Of note, is the fact that for a nonlinear delay-differential equation as model (2), the method of successive 

increment of control measure is achieved provided the following two conditions are satisfied: i) – the 

trajectory iteration is superimposed by any external source, ii) – the change in the control measure values 

are sufficiently small. The proof is standard and could be found in [4, 9]. 

3.3. Quantum Locally Optimal Algorithm 

A satisfactory application of equation (20) in simulation of successive increment control requires the 

clinical conduct of both the choice of magnitude of the change controls and the rational localization of 

these changes. Condition (ii) above is provided by the localized small time interval i.e. 1,2it   such that 

the magnitude of the changes in 1,2iQ   is proportional to the control quanta defined by 

 1 1 1R r t     ; 2 2 2R r t    .  (22) 

If we then substitute the above control quanta (22) into equation (21), the resulting control quanta 

become: 

1 1 1 1 1 1

2 2 2 2 2 2

( ) ( ) ,

( ) ( )

Q c d f t R

Q c d f t R





     


     
 .    (23) 
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The control quanta (23) is a clear indication of the fact that the magnitudes of changes in 1,2iQ  for a 

given fixed values of quanta (13) can be determined by the values of treatment functions 1( )t and 2 ( )t

for a time instants 1t and 2t , achieved by the introduction of control quanta (22).  

Remarkably, it is convenient that the time instants for iterations satisfies the condition 

1 1 1 1 1 1

2 2 2 2 2 2

max[ ( ) ( ) ],

max[ ( ) ( ) ]

Q c d f t R

Q c d f t R





     


     
 .    (24) 

Condition (24) is applicable if we explicitly defined 1R and 2R taken from quanta (22) with the help of 

the following notations:  

 

1 1 1 1 1
[ , ]

1 1 1 1 1

[ , ]

[( ) ( )(2 ( ) 1]

[( ) ( )(2 ( ) 1]arg

max

max
i h

i h

t t t

t t t

D c d f t r t

t c d f t r t









  

  
 , 

and  

 

2 2 2 2 2
[ , ]

2 2 2 2 2

[ , ]

[( ) ( )(2 ( ) 1]

[( ) ( )(2 ( ) 1]arg

max

max
i h

i h

t t t

t t t

D c d f t r t

t c d f t r t









  

  
 . 

Then, the validity of condition (24) is determined by the equations for , 1, 2iR i  : 

 

1 1 1 1

1

2 2 2 2

2

[1 2 ( )] , 0

0, ;

[1 2 ( )] , 0

0,

r t t if D
R

otherwise

r t t if D
R

otherwise

  
  



  
  



 . (25) 

Available computational case study, which agree with the present study (but for a single HIV infection), 

is provided by [16]. The result of the experiment indicates that consistent convergence of successive 

iteration requires that control quanta (22) should necessary satisfy the inequalities: 1
51R   and

1
52R   with values of , 1, 2it i  chosen from the basis of integration of model (2) and equation (4).The 

implication from equation (25) is that for each iteration of1 5  a day, a decision for drug administration 

should be taken in favor of either of the following three alternatives: i) treatment is unaltered and is 

continuous; ii) treatment is to be altered/change; and iii) treatment to be completely discontinued. 

4. NUMERICAL ILLUSTRATIONS 

A number of maximal illustrations to cover a range of equations derived are conducted in this section. 

First, we’re required to draw the importance of this present study by simulating a comparative view of the 

treatment functions of this present investigation and those of related prior models by [11, 16]. Using in-

built Runge-Kutter of order of precision 4 in Mathcad surface, we at once simulate these functions as 

presented by fig. 1(a-c) below. For the compatibility of state components with software, the state 

variables are converted to read: 

 
10

1 2

1

{ ( ), ( ), ( ) , ( ), ( ), ( ), ( ), ( ), ( ), ( )}u s r s r s r E i

i

T t T t T t V t V t P t P t M t t t H 


  

such that 
10

1 10

1

( )T

i

i

H H H


  with values as contains in table 1 and parameter values in table 2 

respectively. From models [11, 16] we have 0 1 2 30, 50, 0.5, 0,025, 0,15ft t c c c     . Then the 

graphical simulations are as follows:  
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Fig. 1(a-c) Comparative simulations of treatment  

Functions for models 11,16] and present model 

From the graphical view of fig. 1(a) representing [11], the function 1( )t  having
5

11.0 ( ) 1.2 10t     

for 50ft  months, reflect the gradual decrease in the last term of first equation of model (1). This 

explains the rate of effect of sensitive virions on infected T-lymphocytes. The second function 2 ( )t  

having 21.0 ( ) 24.618t   for 50ft  months represent the effect of suppression of virions inflow into 

the blood plasma. 

In model (1), this circumstance is define and treated by sixth and seventh equations and in our present 

model (2), equations ninth and tenth adequately define the dual treatment functions. In both later models, 

two treatment control variables are introduced with domain 0 and 1. The treatment function of model (1) 

is illustrated as in fig. 1(b) above [16]. The first function of fig. 1(b) exhibits sharp concave declination at 

the first 3 months with value 1( ) 0.3t  and attain stability thereafter and for the duration of 

investigation. The second function 2 ( )t exhibit slight linear inclination with value 2 ( ) 1.196t  for

50ft  months.  

In our present model (2), we illustrate the treatment function as presented by fig. 1(c). Here, the first 

function 1( )t exhibit sharp reduction for drug required i.e. 1(t) 0.3  for treatment of infected T-

lymphocytes at the 2
nd

 month and then assume stability for the rest of investigation interval. The second 

function 2 ( )t exhibits initial small increase and then attain stability in the amount of chemotherapy 

required for the suppression of virions i.e. 2 ( ) 1.18t  for 30ft  months. Of note, fig. 1(b and c) 

demonstrate similar behavior in their treatment functions with that of present model exhibiting a more 

improve reduced amount of required therapy when compared with those of previous models. 

Moving further, we consider the case of untreated dual infectivity as presented by fig. 2 (a-c).  
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Fig. 2(a-c)Simulation dynamics of untreated dual  

 delay HIV-pathogen model with 1 20r r   

Clearly, fig. 2(a-c) above illustrates the biological behaviors of untreated dual HIV-pathogen infections, 

which is subjected to only the critical role of CTLs. Sustaining the values of tables (1 & 2), fig. 2(a) 

represent the numerical integration of uninfected T- cells and infected sensitive T-cells. The function

( )uT t  exhibits gradual initial increase having sustained population of 0.5 ( ) 7.02uT t  / .unit cu mm  

after set-point for 10ft  months of infection period. This outcome is attributed to the initial defense 

established by the immune effectors response.  uT t declinedsubsequently due to consistent replication of 

dual virions and infected T-cells. Uninfected T-cells thus decline to
3( ) 3.85 10uT t   / .unit cu mm after 

20 months. CD4
+
 T cells are seen to increase again at the 30

th
 month of investigation, which signifies the 

sudden rebounds of CTLs. The second function ( )ST t , diminished in trajectory and is a consequence of 

the critical role of CTLs defense mechanism such that 0.025 ( ) 0.2sT t   for 3ft  months and remain 

at near zero for the rest of investigation period. 

For fig. 2 (b), viral load under no chemotherapy and with rapid rate of viral load replication result to 

continuous viral load increase from 0.2 1.233  for 10ft  months and then decline to stability with

( ) 0.6sV t  / .unit cu mm after 18ft  months and through duration of investigation. The second function

( )sP t exhibit similar behavior with increasing value 0.1 ( ) 0.64sP t  for 10ft  months. Infectious 

pathogen attains stability at ( ) 0.58sP t  for 18ft  months. Fig. 2(c) demonstrates the efficacy of the 

immune effectors response in the absence of any other treatment factors. Of interest, CTLs always remain 

positive following the natural replicative ability, which is a function of virions concentration. The 

reduction in CTLs is due to its clearance rate of virions and possible natural death i.e.

8.983 ( ) 10EM t  for 30ft  months.  

For the case of treatment application, we simulates as in fig. 3(a-c) below: 
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Fig. 3(a-c) Simulation dynamics of optimal treatmentregiments 

of dual delay HIV-pathogenmodel 

with 1 20.7, 0.3r r   

Here, sustaining state and parameters values of tables (1 & 2), with slight variations i.e.  

 
0.045, 0.004, 0.002, 0.005, 0.005,

0.005, 0.002, 0.002, 0.05, 0.005,

u v p s s

r s r M

z z z h h

h l l wM b

    

    
 

which is due to induced treatment factors, the following results were achieved: in fig. 3(a), the function 

 uT t  exhibits accelerated trajectory parabola in healthy CD4
+
 T cells with value 0.5 ( ) 14.569uT t 

/ .unit cu mmmaximal for 12ft  months. CD4
+
 T cells thereafter decline to stability of ( ) 0.056uT t 

/ .unit cu mm at 27 30ft  months. The second function  sT t  indicates sharp and rapid decline after 

3 months of cohesive chemotherapy application. Infected T cells thereafter decline to stability near zero 

for the rest duration of investigation. 

From fig. 3(b), we illustrate the hypersurface of the effect of interplay of multiple chemotherapies 1( )r t

and 2 ( )r t  on both sensitive viral load and pathogen viruses. The first function  sV t  represents the docile 

behavior of the sensitive viral load with linear trajectory inclination of value 0.2 ( ) 1.297sV t   for

2 10ft  months. At19 30ft  months, ( )sV t decline to stability value 0.56 . The second function  

 sP t  exhibited similar biological progression as that of  sV t . This represents the sensitive pathogen 

with inner trajectory having value 0.1 ( ) 0.695sP t   for 2 12ft  months. Reduction of  sP t  

infection to stability is 0.28  at the interval 19 30ft  months. 

Taking on fig. 3(c), we again illustrate the impact of immune effectors response under delay intracellular 

and boosting multiple chemotherapies. Remaining always on the positive value, the minimal decline of 

immune effectors response is in the range 9.489 ( ) 10EM t   for 30ft  months, which is a 

manifestation of the maximized CD4
+
 T cells and maximal sustainability of the CTLs with drastic 

suppression of ( ), ( )s sT t V t and ( )sP t respectively. 
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Next, we present the simulation of the costate variables as seen in fig. 4(a-c) below: 

 

 

 

 
Fig. 4(a-c) Simulation dynamics of costate variables for 

optimal treatment regiments of dual delay 

HIV-pathogen model with 1 20.7, 0.3r r   

With parameter variables as in table 2, we use fig. 4(a-c) to illustrate the concentration of uninfected cells 

and immune effector response in the presence of infected T-cells, sensitive virions and other costate 

components of the investigation. Of note, from the graphical representations of fig. 4(a-c), which shows 

the reverse in the increase (or decrease) as is the treated case (in fig. 3(a-c)), signifies the existence of the 

overall outcome of the investigation.   

5. DISCUSSION  

In the literature of this present study, we had used ordinary differential equations to seek for the 

determination of optimal treatment strategies for a complex nonlinear 10-Dimensional dynamic dual HIV-

pathogen delay-differential model. The intents of the model were to overcome the constraints of defining 

the critical roles of delay intracellular and immune effectors response for dual delay HIV-pathogen 

infections. Moreso, we formulated the model to account for the methodological application of multiple 

chemotherapies on incorporated dual delay HIV-pathogen infections. 

Importantly, under allowable dual treatment discontinuation chambers, which suggested successive 

approximation processes with step-wise variations of predominant parameters till desired convergence are 

achieved, the model was presented as an optimal control problem with terminal time objective functional. 

The method of analysis explored was classical Hamilton-Pontryagin function for the evaluation of the 

derived system quantum locally optimal algorithm. 

For simplicity and significant comparative analysis, numerical simulations for both untreated and treated 

cases were demonstrated along with the outcome of the co-state variables. Furthermore, the essence of 

enhanced treatment functions were simulated in comparison to those related prior studies of models [11, 

16]. 
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Results of numerical simulations showed that treatment functions for model [11], where control variable 

was not introduced resulted to very large utilization in the amount of RTI and PIs required in the duration 

of investigation. With the introduction of control variables as was the case in [16], lesser amount of 

treatment functions (RTI and PIs) was required. The present model in addition to state components of 

model [16], further incorporated delay intracellular and immune effectors response, which completely 

saw to a more reduced amount of treatment functions for the entire investigation duration – see fig. 1(a-c). 

The consequences of uncontrolled treatment function were evaluated in fig 2(a-c). The solution of which 

could not guarantee the attainment of global maximum of optimized functional. The local maximum 

attained here, was the direct consequence of the only natural anti-HIV-pathogen, the immune effectors 

response. 

Agreeably, the introduction of control variables as simulated by fig. 3(a-c) and affirmed by fig. 4(a-c) 

illustrated successive approximations of control quanta by ways of choice variations of predominant 

parameters. This result validated the convergence control quanta of equation (22). Of note, the inclinative 

parabolic trajectory of the hypersurface of ( )uT t  was a clear indication of the embedded novelty of the 

study when compared with those of models [8, 11, 16].  

Furthermore, the optimal drug treatment protocol led to desired maximal healthy CD4
+
 T cells, immune 

effectors and suppressed infectious viral load and pathogen. The late decline in CD4
+
 T cells suggested 

possible drug resistance and high presence of resistive infectious cells and virions. Finally, the never 

eliminated immune effectors response is arguably a function of the toxicity of the presence of dual virions 

infectivity. Suggestively, we note that this present quantum locally optimal algorithm for successive 

approximation for maximal concentration of healthy T-lymphocytes is not necessarily the only or most 

efficient technique but was inevitably sufficient to produce an accurate solution in an acceptable amount 

of drug validity period for dual delay HIV-pathogen infections. 

6. CONCLUSION 

We present a necessary and sufficient quantum locally optimal algorithm for successive approximation 

technique, which produced an accurate solution in an acceptable amount of drug validity period for the 

treatment of dual delay HIV-pathogen infections. The model was formulated as an optimal control 

problem structured on a nonlinear complex 10-Dimensonal mathematical differential model with terminal 

time objective functional. The result of numerical simulations not only affirmed the maximization of 

healthy T-lymphocytes and maximal sustained cytotoxic T-lymphocytes as a function of high intensity of 

successive iterations of multiple chemotherapy, which were more rewarding at onset of infection but is 

sufficiently attributed to the immense critical role of incorporated delay intracellular and boosted natural 

adaptive immune effectors response. Furthermore, the enhanced significant reduction in systemic cost 

was a function of delay intracellular, which accounted for intermittent chemotherapy discontinuation. 

Decline in healthy CD4
+
 T cells suggests systemic discontinuation or change in chemotherapy 

administration. Therefore, the study advocates for a more articulated mathematical model and medical 

innovations that could address the persistent resistive infectious components, which were a thwarting 

factors. 
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