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Abstract: This paper aims at solving of a two ordinary differential models equations for cardiovascular-

respiratory system using a new recent method: Perturbation Iteration method. The description of this method 

for different orders of derivative in the Taylor Series expansion is discussed. This method provides the solution 

in the form of an infinite series for ordinary differential equation. The efficiency of the method used is 

investigated by a comparison of Euler method and Runge Kutta. The numerical simulations of all theses three 

methods are implemented in Matlab. The validation has been carried out by taking the values of determinant 

parameters of cardiovascular-respiratory system for a 30 years old woman who is supposed to do three in 

regular physical activity: Walking, Jogging and Running fast. The results are in good agreement with 

experimental data.  

Keywords: Perturbation iteration method, Cardiovascular/respiratory system, Heart rate, Alveolar 
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1. INTRODUCTION 

The behaviour of cardiovascular and metabolic disorders depend on the complex interplay of multiple 

anatomic and physiologic factors but the mechanism behind these factors and their impacts on the 

type or degree of the disorder, experimental observations or on the treatment responses remain poorly 

understood. Therefore, most patients today are being treated with general therapies regardless of the 

cause of dysfunction. We believe that combining experimental measurements with mathematical 

modeling provides an important information on the individual key dysfunction, making it possible to 

start developing personalized therapies. Similarly as observations from data can inspire new 

theoretical models, the models can translate the measurements first into new ideas, then into testable 

hypotheses and finally into medical knowledge. Such model-based investigations can therefore 

provide systematic strategies toward better understanding, predicting or even preventing the disorders. 

The aim of the modeling work is to use differential equations to describe the complex mechanisms of 

the cardiovascular-respiratory control system. The mathematical model equations contains a certain 

number of parameters to be estimated. The possibility of estimating them is use a simple, non-

invasive measurement techniques that would be of great clinical importance for better understanding 

the physiologic abnormalities underlying various disease conditions, including cardiovascular and 

metabolic diseases. In this way, the models could be used for translating the hidden information from 

the experimental measurements into physiologically meaningful individual parameters, providing 

novel features for diagnostic prediction and treatment outcomes when developing new therapies.  

Since 1950's, it has been developed a number of dynamic models of the human cardio-respiratory 

system. Most of them arise from the compartmental theory [1, 2, 3, 4]. The modeling approach done 

by Timischl [3] has been opportunity to show the role of physical activity in controlling 

cardiovascular-respiratory system. It shows also the role of pulmonary circulatory resistance during 

exercise. Based on existing global models of cardiovascular and respiratory system, the design of a 
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new mathematical model that provides global solutions by the use of inverse processes has been 

presented in [5]. The results obtained show that it possible to find approximately an optimal way to 

maintain blood partial pressures to its desired values that are clinically accepted. The numerical 

resolution of mathematical models of cardiovascular-respiratory system can be done using different 

numerical methods. The recent method that can be used has been derived in [6]: Perturbation Iteration 

method. This paper focuses on this new important method. 

This paper is organised as follows. In section 2, we present the mathematical model of ordinary 

differential equations. The section 3 deals with the the basic idea of the Perturbation Iteration method. 

The numerical simulation is presented in section 4 where the comparison is done using Euler method 

and Runge Kutta method to test efficiency of perturbation iteration method. The section 5 focuses on 

discussion while Section 6 rounds up and deals with the concluding remarks. 

2. THE MATHEMATICAL MODEL EQUATIONS 

The cardiovascular and respiratory system plays a crucial role in controlling the blood flow of human 

body. The main controls of pressures are heart rate and alveolar ventilation which control the systemic 

arterial pressures to prevent cardiac accidents [7]. For a healthy subject, it is well known that heart 

rate and alveolar ventilation depend on his/her level in training during physical activity. A global 

mathematical model for physical activity developed by S. Timischl-Teschl [8] shows the instability of 

equilibrium steady. It is governed by many differential equations and it doesn't permit to understand a 

long-term cardiovascular- respiratory system in the case of aerobic physical activities. A two 

compartmental mathematical model has been developed in [5] to solve this problem. We consider the 

functions  Pvs   and  Pas   as respectively mean blood pressures in systemic arterial region and in 

systemic venous region.  H and AV   denote the control functions. For a cardiovascular- respiratory 

system, they design heart rate and alveolar ventilation respectively. The mechanism of this control is 

not direct and can be represented by outflow functions between systemic arterial and venous 

compartments that depend on heart rate and alveolar ventilation. The equations model arise from 

straightforward development of mass balance between arterial systemic arterial and systemic venous 

compartments. For three physical activities (Walking, Jogging and Running fast), the ODE 

mathematical model is  
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where the constants of the model equations (1) are given as  0.0112,    0.1724     and the 

functions  f   and  g   have been identified as follows [5]. 

1) Walking case: 

 ),( AVHf     )4921.36812.2exp( 0943.00479.0   HVA
  , 

 )0881.0exp(),( 7207.30  HVVHg AA
   

2) Jogging case: 

 ),( AVHf     )1522.19990.0exp( 2280.01179.0 HVA    , 

 )8699.0exp(),( 3245.0  HVVHg AA
   

3) Running fast: 

 ),( AVHf     exp    )7518.05472.0( 2869.03820.0 HVA   , 

 ( , ) expA Ag H V V     )7521.1( 0992.0 H  . 
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Taking eH and 
eAV  heart rate and alveolar ventilation at the equilibrium states, the system (1) is 

written as 
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where where  ( , )
ee e Af f H V    and  ( , ).

ee e Ag g H V    

3. PERTURBATION ITERATION ALGORITHM (PIA) 

Perturbation-iteration method has been developed recently by Aksoy and al. [6]. This new method of 

solving a system of first order of nonlinear ordinary differential equations uses a combination of 

perturbation expansions and Taylor series expansions to give rise to an iteration scheme where Aksoy 

and al. [6] and Pakdemirli [9] introduced expansion and correction terms of only first derivatives in 

the Taylor series expansion and one correction term in the perturbation. Therefore, the Perturbation-

iteration algorithm is named by  )1,1(PIA .  Let us be interested in the description of )1,1(PIA . 

First of all, we discuss the PIA(1,m) which is constructed by taking one correction term in the 

perturbation expansion and correction terms of m
th
 order derivatives in the Taylor Series expansion. 

We consider a system of first order of  K   nonlinear ordinary differential equations. We note  

T

Kxxxx ),...,,( 21  

a vector state. The system first order of  K   nonlinear ordinary differential equations can be written as 

follows 
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where   is the perturbation parameter and t  denotes the independent variable. That is the system 
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Taking an approximate solution of the system (3) as 

c

nknknk xxx ,,1, 
                                                                                                                 (4) 

where subscript n  represents the n
th
 iteration over this approximate solution, we have a solution with 

one correction term in the perturbation expansion. The system can be approximated with a Taylor 

series expansion in the neighborhood of  0   
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is defined for the  (n+1)
th
 iterative equation 
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 .,,, 1,1, txxE njnkk 
  

Substituting (6) into (5), we obtain an iteration equation 
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which is a first order differential equation and can be solved for the correction terms .,

c

nkx   Then 

using (4), the (n+1)
th
 iteration solution can be found. Iterations are terminated after a successful 

approximation is obtained. 

Note that for a more general algorithm, n correction terms instead of one can be taken in expansion 

(4) which would then be a ),( mnPIA  algorithm. The algorithm can also be generalized to a 

differential equation system having arbitrary order of derivatives (See [10] for more details). 

After the discussion of  ),,1( mPIA   now we focus on  )1,1(PIA   which is its simple case of 

perturbation-iteration method  ( , ).PIA n m   

We consider the general cause of first order of differential equation as 

0),,( xxE                                                                                                                                         (8) 

where  ( ).x x t   Taking one correction term in perturbation expansion, we have 

c

nn xxx 1                                                                                                                                       (9) 

where n   denotes the nth iteration over this approximate solution such that for the perturbation 

parameter   the expression  cx   represents the correction term. Substitution of (9) into (8) we obtain 
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Reorganizing the equation (10), we have 
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Substitution of (12) into (9) and constructing the iteration scheme yields 
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4. NUMERICAL SIMULATION  

To show the effectiveness of  )1,1(PIA  , we focus on the numerical simulation of the system () by 

taking the observed values presented in the table 1 [5] for three case of physical activities that is 

walking, jogging, running fast.  

Table 1: The mean value of the heart rate, the alveolar ventilation, venous and arterial systemic pressure for 

the rest and three cases of physical activities. A part the rest, other numbers represent equilibrium values 

related to 30 years old woman three physical activities. A part the rest, other numbers represent equilibrium 

values related to 30 years old woman three physical activity. 

Exercise intensity Rest Walking Jogging Running Fast 

Ventilation (L/min) 6 8.5 15 25 

Heart rate (Beats /min) 70 85 140 180 

Arterial Pas(mmHg) 104 110 135 170 

Venous Pvs(mmHg) 3.566 3.46 3.28 3.23 

Taking  104)0( asP   and  566.3)0( vsP   as given, the system (2) is solved by using )1,1(PIA . 

The perturbation parameter    is artificially introduced as 
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Setting  
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.2,1  ,,,1,  kXXX c

nknknk                                                                                                          (14) 
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where nC ,1  and nC ,2   are constants of integration that have to be determined at each iteration from 

initial guess satisfying the initial condition if (14) is applied. 

Using the values from the table 1, we obtain the values of  f e   and  ge   as shown the table 2 for three 

cases of physical activity.  

Table 2. The values fe and ge for three cases of physical activity. 

Function f and g at steady state Walking Jogging Running Fast 

fe 111.818 138.3524 182.4921 

ge 7.7057 7.6454 7.89951 

After substituting initial guess in (15) and with the help of equation (14), the first following 

approximation has been obtained in applying the iteration formula (16) and (17). 
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 Jogging case: 
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 Running fast case: 
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To test the efficiency of perturbation iteration algorithm  )1,1(PIA   we compare the results with two 

others obtained using two different methods which are Euler method and Matlab approach for solving 

system of ordinary differential equations (ODEs). The Matlab approach has been implemented using 

its ODEs solver from Runge-Kutta of order 4 and 5, this is ode45. The numerical results are illustrated 

in the figure 1, 2 and 3.  

 

Figure 1. Variation trajectory of blood systemic arterial pressure, asP (a) and blood systemic venous 

pressure, vsP (b) for a 30 years old woman during walking physical activity. Three curves are compared using 

three different methods: Perturbation iteration algorithm (Solid line), Euler method (dashed line) and Matlab 

approach (Dot line) 
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Figure 2: Variation trajectory of blood systemic arterial pressure, asP (a) and blood systemic venous pressure, 

vsP (b) for a 30 years old woman during jogging physical activity. Three curves are compared using three 

different methods: Perturbation iteration algorithm (Solid line), Euler method (dashed line) and Matlab 

approach (Dot line). 

 

Figure 3. Variation trajectory of blood systemic arterial pressure, asP (a) and blood systemic venous pressure, 

vsP (b)  for a 30 years old woman during running fast physical activity. Three curves are compared using three 

different methods: Perturbation iteration algorithm (Solid line), Euler method (dashed line) and Matlab 

approach (Dot line) 

5. DISCUSSION 

The heart rate and the alveolar ventilation are two controls of the cardiovascular-respiratory system. 

The stability of each of them at the equilibrium value allows other determinant parameters of 

cardiovascular-respiratory system to reach a stabilized state. The response of these controls to the 

blood systemic arterial pressure and the blood systemic venous pressure are represented in figure 1, 2 

and 3 where all methods used show that blood systemic arterial pressure increases at the beginning of 

physical activity and it is stabilized when it reaches the corresponding equilibrium value (See figure 

1(a), 2(a) and 3(a). This shows a perfect representation of the importance of physical activity in the 

regulation of the cardiovascular respiratory system, particularly the increase of the blood systemic 

arterial pressure during exercise. The ventilation rate plays an important role in the gas supply and 
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regulation through the body. An increase in heart rate and ventilation rate results in an adequate and 

regular supply of both oxygen and carbon dioxide in the body. The figures 1(b), 2(b) and 3(b) show a 

decrease of blood systemic venous pressure at the beginning of physical activity until is reaches the 

equilibrium value where it is stabilized. This results from the brut increase of ventilation during the 

initial stage of the physical activity which allows a gradual increase of blood systemic venous 

pressure. The results obtained in this work are rather satisfactory. In particular, the reaction of the 

cardiovascular-respiratory system to physical activity can be modelled and a feedback can be 

approximated by the solution of its mathematical model governed by ordinary differential system. 

Physical activity reduces any cardiovascular-respiratory system disease and it induces important 

changes in the stabilization of cardiac, vascular and blood tissue. 

6. CONCLUDING REMARKS 

We have investigated in this work a new numerical method for solving a system of ordinary 

differential equations: Perturbation Iteration method. The efficiency of this method is tested using two 

other convergent methods that is Euler method and Runge-Kutta method. Those all method are 

implemented using Matlab packages. The numerical simulations illustrate the responses of the blood 

systemic arterial pressure and blood systemic due to the controls heart rate and alveolar ventilation of 

cardiovascular-respiratory system. The numerical results confirmed the analytical analysis for a 30 

years old woman during three different physical activities: Walking, Jogging and Running fast. 

REFERENCES 

[1] F. Kappel, and R. O. Peer, A mathematical model for fundamental regulation processes in the 

cardiovascular model, J. Math. Biol. 31(6), pp. 611- 631, 1993. 

[2] F. Kappel, S. Lafer, and R. O. Peer, A model for the cardiovascular system under an ergometric 

workload, Surv. Math. Ind. 7, pp.239-250, 1997. 

[3] S. Timischl, A global Model for the Cardiovascular and Respiratory System, PhD thesis, Karl-

Franzens-Universit of Graz, August 1998. 

[4] S. Timischl-Teschl, Modeling the human Cardiovascular-Respiratory Control System: An 

optimal Control Application to the Transition to Non-REM Sleep, Mathematical Biosciences and 

engineering - Volume 7, Number 07, 2004. 

[5] Jean Marie Ntaganda and Benjamin Mampassi, Modelling blood partial Pressures of the human 

cardiovascular respiratory system, Applied Mathematics and computation, Vol.187,  pp 1100-

1108, 2007. 

[6] Aksoy Y. and Pakdemirli M. New perturbation-iteration solutions for Bratu-type equations, 

Computers and Mathematics with Applications, vol. 59, no. 8, pp.2802-2808, 2010. 

[7] S. Sepehris, Physical model of human respiration, Young Researchers club, Islamic Azad 

university of Shiraz, 12-17, 2007. 

[8] S. Timischl, A global Model for the Cardiovascular and Respiratory System, PhD thesis, Karl-

Franzens-Universit of Graz, August 1998. 

[9] Pakdemirli M., Aksoy, Y. and Boyaci, H. A new perturbation-iteration approach for first order 

differential equations, Mathematical and Computational Applications, vol. 16, no. 4, pp.890-899, 

2011. 

[10] Pakdemirli M, Review of the perturbation-iteration method, Mathematical and Computational 

Applications, Vol. 18, No. 3, pp. 139-151, 2013 

AUTHOR’S BIOGRAPHY 

Prof. Ntaganda Jean Marie, PhD holder in Numerical Analysis from Cheikh 

Anta Diop University of Dakar, Senegal (2004-2006) and Ouagadougou 

University, Burkina Faso (2004-2007).  He is Associate Professor in Applied 

Mathematics at University of Rwanda, College of Science and Technology, 

School of Sciences, Department of Mathematics where he is module leader of 

computation modules including Numerical Analysis and Programming. Since 2005 he is active 

researcher in Biomathematics where at least 35 publications have been published in international 

peer-reviewed journals. 

 


