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Abstract: The concept of Normal ADL was introduced in my earlier paper Normal Almost Distributive 

Lattices[2]. In this Paper, we introduce the concept of a dually normal ADL and we characterize Dually Normal 

ADLs in terms of dual annihilators. Throughout this Chapter we consider ADL R  means an ADL with at least 

one maximal element. 
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Introduction 

The concept of Normal lattice was introduced by W.H.Cornish [4] as a distributive lattice with 0 

in which every prime ideal contains a unique minimal prime ideal. In [2], we introduced the concept 

of an ADL R  being normal through its principal ideal lattice  .PI R  That is, an ADL R with 0 is a 

Normal Almost Distributive Lattice if its principal ideal lattice  PI R is a normal lattice. 

1. DUAL ANNIHILATORS  

In this section, we introduce a dual annihilator and study some of its properties. First we start with the 

following definition. 

1.1. Definition : Let R  be an ADL with maximal elements and S  be  any non-empty subset of R . 

Define (   ) {S x R s x   ∣  is maximal for all  s S  }. 

On routine verification, we can prove the following result. 

1.2. Lemma : For any , ,a b R  if a b  is a maximal element in R  then for any x R  , the 

elements x a b   and a x b   are also maximal  in .R   

In the following theorem, we prove that  the set (   )S 
 is a filter in R . 

1.3. Theorem : For any non-empty subset  S  of ,R  the set (   )S 
 is a filter of R  

Proof :  Let S  be any non-empty subset of an ADL  R and  , (   ) .a b S    

Then for any ,s S  the elements ,s a s b   are maximal in R . 

 Consider the element ( )s a b  ,   for some  s S . 

Now, for any ,[ ( )]  x R s a b x     =  ( ) ( )s a s b x     =  ( ) )s a x   = x  .  

Therefore (   )a b S   .  Again, let x R  and (   ) .s S   Clearly,  s a  is maximal for every 

,s S and hence the element ( )s x a   is maximal for every x R . Therefore, (   )x a S   . 

Therefore (   )S 
 is a filter in R . 

In the following, we define a dual annihilator in an ADL R . 
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1.4. Definition : If { }S s  in the above theorem, then we write  (   ) ( )S s   instead of ({ })s 
 and 

we have  ( ) {s x R s x   ∣    is  maximal in R }. Clearly, ( )s 
 is a filter in R and we call this 

filter as a dual annihilator of s  in R . 

In the following theorem, we prove some important properties of dual annihilators in an ADL R  

1.5. Theorem : Let R  be an ADL with maximal element. Then for any ,a b  in R  

   1). (   ) (    )a b a b      

   2).  (   ) (   )a b b a      

   3).  (   ) (   )a b b a      

   4). (   ) (   ) (   )a b a b       

   5).  (   ) (   ) (   )a b a b       

   6).  (   ) (   ) (   )a x x a       

   7).  [   ) (   ) (   )a b b a      

   8).  (   ] (   ] (   ) (   )a b b a     

 Proof :  

(1) : Let ,a b R  such that a b  . Then .a b b b a      

Now, (   )      x a a x    is maximal in R     b a x     is maximal in R  

                                                                        b x   is maximal (sinceb a b   ) 

        (   )x b     

                                  Therefore (   )  (   )a b    

(2) : Let ,a b  be any two elements of R .      Now, ( )      x a b a b x      is maximal in R                                                                

           b a x   is maximal in R      ( ) .x b a   
 
Therefore   ( ) ( )a b b a      

(3) : Let ,a b   be any two elements of R .   Now,    ( )     ( )  x a b a b x    
  
is maximal  in R    

         ( )  b a x    is maximal in R   ( ) .x b a      Therefore ( )   ( )a b b a      

(4) :  Let ,a b  be any two elements of R . 

        We have         a b b    ( ) (   )  a b b     (from (1)) 

        Similarly,       ( ) (   )b a a b a a            ( ) (   )   a b a      (from (3)). 

          Therefore ( ) (   ) (   ) .a b a b       

      Again      (   ) (   )    x a b     (   )  x a   and   (   )x b    

    a x  and    b x  are maximal in R  

     x a   and    x b  are maximal in R   

 
 ( ) ( ) x a x b     is maximal in R  

  ( ) x a b    is maximal in R   ( )  a b x    is maximal in R  

  ( )x a b      Therefore (   ) (   ) ( ) .a b a b         

                  Hence  ( )    (   ) (   )a b a b       
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(5) : Proof follows from (1) and (2). 

(6) : Let ,a x  be any two elements of R . Suppose (   )a x    

        Now     (   )       t x s t    is maximal for all   (   ) .s x    

                                        a t   is maximal in R  ( since   (   ) )   (   ) .a x t a      

                     Therefore (   ) (   )x a    

(7) : Let ,a b  be any two elements of R . Suppose [ )a b  . Then .a b a    

        Now    (   )       t b b t    is maximal in R  

                                     a b t    is maximal 

                                      a t    is maximal in R (since )a b a    (   ) .t a     

                           Therefore   (   ) (   ) .b a    

(8) : Proof follows from (7). 

2. DUALLY NORMAL ADLS  

In this section we introduce a dually normal and we characterize dually normal ADLs in terms of dual 

annihilators and in terms of maximal elements. 

First we define a dually normal ADL in the following. 

2.1. Definition : An ADL R with maximal element  is said to be dually normal if for any prime filter 

F of R , ( ) {C F x R y x  ∣  is maximal, for some  y F   is a prime filter of R . 

In the following theorem, we characterize a dually normal ADL in terms of dual annihilators.\\ 

2.2. Theorem : Let R be an ADL with maximal elements. Then the following are equivalent. 

 1). R is dually normal. 

 2). For any , ,x y R  if x y  is maximal then ( ) ( )x y R     

 3). For any , ,x y R  ( )x y   = ( ) ( )x y    

Proof : 

(1)    (2) : Assume that R is a dually normal ADL. Let ,x y R  such that x y  is maximal. We 

have to prove that ( ) ( )x y R    . Suppose ( ) ( )x y R    . Then there exists a maximal filter G 

of R such that ( ) ( )x y G    . Since G is a prime filter and R is dually normal, we have  C(G) is a 

prime filter of R . Therefore   ( )x y C G   implies that either ( )x C G  or ( ).y C G  If ( )x C G  

, then by definition, there exists some t G  such that x t  is maximal and hence ( )t x G   . 

This is a contradiction. Therefore x G . Similarly, we get y G  . Thus we get x y G   . This is a 

contradiction. Therefore we get ( ) ( ) .x y R     

(2)    (3) :  Let ,x y R  . We have to prove that ( ) ( )x y   = ( )x y    

 From (5) of Lemma 1.2, we have ( ) ( ) ( )  .x y x y       

 Now,      ( )t x y        x y t   is maximal 

                                           t x y    is maximal 

                                           t x t y     is maximal 

                                         ( ) ( )t x t y     = R from condition (2). 
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Now   t R    1 2  t s s   where 1  ( )  s t x    and 2  ( ) .s t y     

                       1 2  t s s   where 1   t x s   and 2   t y s   are maximal in R . 

                       1 2  t s s   where 1   x t s   and 2   y t s     are maximal in R . 

                       1 2  t s s   where 1  ( )  t s x    and 2  ( )t s y     

Therefore  1 2( )t t s s    = 1 2( ) ( )t s t s    ( ) ( )x y     

Thus  ( ) ( ) ( )  x y x y      and hence   ( ) ( ) ( )x y x y       

(3)    (1) : Assume  condition (3). Let F be a prime filter of R . We have to prove that R is dually 

normal. From Lemma 2.1.5, we have  ( )C F  is a filter of R . 

Now, let ,x y R  and ( )x y C F   .  Then  t x y   is maximal for some . t F   

Now   t x y   is maximal           x y t   is maximal 

                                                         ( )t x y     

                                                        ( ) ( )   t x y     [from (3)] 

                                                        1 2   t t t   where 1 2( ) ,  ( )t x t y     

                                                         1 2   t t t   where 1x t  ,  2 y t  are maximal in R . 

                                                         1 2   t t t    where 1 2, t x t y   are maximal in R . 

Since F is prime and 1 2t t t F    , we get 1t F  or 2 .t F   

Suppose  1t F  .  Since  1t x  is maximal and 1t F  , we get ( )x C F . 

Similarly,  if 2t F  ,   we get  ( )y C F  . Thus, we have ( )C F    is a prime filter of R . 

     We conclude this chapter with the  following theorem in which we characterize a dually normal 

ADL in terms of maximal elements. 

 2.3. Theorem :  An ADL R is dually normal if and only if for , ,x y R   if x y  is maximal then 

there exist 1 1,x y R  such that 1x x  , 1y y  are maximal in R and 1 1 0x y  . 

Proof : Assume that R is dually normal. Let ,x y R  and x y  is maximal in R .Then from 

Theorem 2.2, we have (   ) (   ) . x y R     

Now,   0 R       1 10      x y   where 1 (   )  x x   and 1 (   )y y                1 1 0      x y   and 1x x  , 

1  y y  are maximal in R . That is, if for any ,x y R  such that x y  is maximal, then there exist 

1 1,x y R  such that 1 1,  x x y y    are maximal in R and 1 1 0.x y    

Conversely, assume the given condition. 

Let ,x y R  and x y   is maximal in R . Now we prove that (   ) (   ) .x y R     

Since x y  is maximal, from our assumption, there exist 1 1,x y R  such that 1 1,x x y y   are 

maximal in R and 1 1 0.x y    

Clearly, 1 (   )x x   and 1 (   )y y   and hence 1 1  0    (   ) (   )x y x y        

Now,    0 (   ) (   )    [0) (   ) (   )x y x y           (   ) (   ) .R x y      

Therefore    (   ) (   ) .R x y     Thus R is dually normal. 
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