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1. INTRODUCTION 

Hepatitis B virus infection is one of the major health problems in the world today with over one-third 

of the world's population (over two billion people) acutely infected with Hepatitis-B Virus; more than 

240 million people are chronically infected by the virus. About 780,000 people die yearly as a result 

of the infection. Worse still, about 24-40 percent of the chronically infected carriers die from liver 

cirrhosis or Hepatocellular Carcinoma (HCC) a leading cause of cancer-related death worldwide and 

the burden of this devastating cancer is expected to increase further in coming years [13, 15]. Infact, 

hepatocellular cancer (HCC) alone accounted for over 500,000 deaths per year, making it the third 

leading cause of cancer mortality worldwide [1, 10, 11]. 

Usually, people living with Hepatitis B virus infection can fight off the infection within few months 

and develop a life-long immunity (this evidence has been shown through blood tests with an evidence 

of immunity and no signs of an active infection) [14]. 

Most people got infected early in life through perinatal transmission or during childhood and many of 

them are unaware they had been infected since they show no clinical symptoms and do not feel sick, 

so they can successfully transmit the virus to susceptible individual unconsciously. Carriers of this 

viral infection may not show any symptom of the disease even though they had been infected by the 

virus unknowingly and this made it more dangerous. Moreso, HBV is 50 times more contagious than  

HIV [5]. Hence, it is imperative for individuals to protect themselves.  

The outcome of HBV infection varies greatly from person to person. In most of the cases, the 

infection is cleared spontaneously. However, 5% - 10% of infected adults develop chronic infection. 

By contrast, 40% - 90% of children who are born to HBV-infected mothers will progress to develop a 

persistent liver disease. Children and adolescents are in greater risks than adults because adults upon 

exposure may show some clinical symptom and have about 90% chance of been acutely infected with 
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clinical symptoms immediately after infection but do not completely clear the virus and some of them 

become chronically infected. About 25% of chronic carriers die of liver cancer. Thus, Hepatitis B is 

one of the most common viral sources of cancer in the world today and also the most important 

carcinogen with Tobacco as the second [5]. 

Timely interventions also play a vital role in managing the progression of the infection in a patient 

and in controlling its spread in the society. For example, the incidence of Ebola Virus in Nigeria in 

2014 was eradicated due to timely intervention such as quarantine and screening of individuals that 

may have been exposed to the virus. Most diseases will remain endemic due to lack of adequate 

policies and timely interventions. In the past, some diseases that were previously endemic in some 

places have been eradicated in many areas of the world. Examples are Malaria, Small pox, Rubella, 

etc [2, 19]. 

Mathematical models are vital tools in understanding the dynamics of any epidemic and results 

obtained from such models further assist health policy makers to develop various control measures 

and preventive policies to avert incidences of infectious diseases.  In addition, optimal control theory 

is another powerful mathematical tool used in decision making for situations involving complex 

health or biological situations, Lenhart and Workman [9]. For example, Seth and Staats [12] 

formulated control problem subject to a simple deterministic epidemic models using levels of 

vaccination programmes as control measures.  

Bakare et al. [3] developed an SIR epidemic model with constant recruitment using educational 

campaign and treatment strategies as controls to minimize the total number of infective individuals 

and the cost associated with the use of the educational campaign and treatment. Their model due to its 

dynamical behavior is suitable for diseases like H1N1 (influenza), measles, chicken pox, mumps, etc. 

In a related study, Yusuf and Benyah [17] considered an SIR model with variable population size 

using vaccination and treatment as control strategies. They applied optimal control theory to optimally 

combine the two control measures. They concluded that the optimal way to control or drive an 

epidemic to extinction within a specific period of time is to use more of vaccination strategy 

(whenever it is available) and less of treatment as it is more cheaper and less risky to prevent the 

occurrence of an infection than to cure it. 

Behncke [4] studied the application of optimal control theory on a simple SIR epidemiological model 

which incorporates vaccination, quarantine and health promotion campaign as controls. Greenhalgh 

[8] considered the control of the spread of an epidemic in a homogeneously mixed population 

controlled by vaccination of susceptibles and isolation of infected. However, for case of controlling 

the spread of infections in a heterogeneously mixed population, he found that the optimal control 

strategy (vaccination policy) is linked to the changing growth rate. 

Yusuf and Benyah [19] applied optimal control strategy for controlling the spread of HIV/AIDS in 

South Africa. They considered a deterministic model for the spread of HIV with a removed class 

made up of individuals who have sufficiently modified their sexual habits and they are therefore 

considered to be immune to the virus infection through sexual contacts. Their research work generally 

centered on finding an optimal strategy to minimize the cost of implementing combined control 

programme as well as the incidences of the disease. Their findings shows that the optimal way to 

mitigate the spread of the disease is for susceptible individuals to consistently practice a safe sex 

while ARV treatment should be initiated for infected individuals as soon as they progress to pre--

AIDS stage. Though, this strategy may appear expensive; its effect will positively benefit the society 

and the HIV/AIDS individuals in the long run. 

In 2014, Yusuf et al. [18] considered a model for the spread of HBV and used the model to evaluate 

the impact of strategies that includes changes in sexual habits and vaccination on the prevalence and 

incidence of HBV. Also, they evaluated investment (financial budget) in controlling the prevalence of 

the disease and they found that in places of high endemicity, the impact of investing in creating 

awareness and introduction of vaccine will effectively reduce the level of prevalence of the infection. 

Wiah et al. [16] used a non-linear extended deterministic model for accessing the impact of 

immigration on the spread of HBV infection in a population with acute and chronic HBV infected 

individuals. The impact of optimal control of the treatment and vaccination strategy on the 

transmission dynamics of the disease in a population with constant immigration and homogeneous 
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mixing is undeniably of great importance. Vaccination would not be cost effective in the population if 

the cost associated with preventing a small group of new infections in an adult community outweighs 

the cost of immunizing a large population and the cost of existing untreated chronic HBV infections. 

Thus, the treatment strategy was always more cost effective to implement than vaccination. 

However, it is important to state here that, the conclusion from this work cannot be generalized for all 

cases of controlling the spread of infectious disease, even HBV. Thus, each infectious disease and the 

prevailing epidemic situation in the location of interest may determine which combination of control 

measures would be optimally effective in curtailing the spread and containing an infectious disease. 

This paper is structured as follows: In section 2, we formulate the model for HBV transmission 

dynamics. In section 3, we reformulated the modeled situation as an optimal control problem and 

obtained the needed optimality system using Pontryagin's maximum principle. In section 4, we 

numerically solve the resulting optimality system and simulate our results for three scenarios of 

interest. We also discuss the results from the simulations. 

2. MODEL FORMULATION 

The model sub-divides the total population at time t denoted as N(t) into five epidemiological classes 

representing the susceptible S(t), the exposed E(t), the acute infection A(t), the chronic C(t) and the 

recovered R(t). Thus,  

𝑁(𝑡)  =  𝑆(𝑡)  +  𝐸(𝑡)  +  𝐴(𝑡)  +  𝐶(𝑡)  +  𝑅(𝑡) 

Individuals enters the susceptible population either birth or immigration at the constant rate Λ. The 

susceptible population decreases due to infection of the susceptibles by the infected individuals at the 

rate 𝛽. The susceptible class is further reduced due to natural death at the rate μ and vaccination of 

susceptible individuals leaving the group at the rate 𝑢1. Thus,  

𝑑𝑆

𝑑𝑡
= ᴧ −

𝛽𝑆

𝑁
 𝐴 + 𝛼𝐶 − 𝑢1𝑆 −  𝜇𝑆                                         (2.1) 

 

Based on the physiology of Hepatitis B virus, there are three stages of HBV infection represented by 

the epidemiological classes 𝐸, 𝐴, and𝐶. So, as soon as a susceptible individual is infected with HBV, 

he/she becomes a member of the exposed class  𝐸 at the rate β. Individuals in the exposed class could 

progress from the latent HBV stage to the acute Hepatitis B virus infection stage at the rate 𝜌1 or 

naturally recover from the infection at rate 𝛿 or die due to natural death at rate𝜇. Hence,  

𝑑𝐸

𝑑𝑡
=

𝛽𝑆

𝑁
 𝐴 + 𝛼𝐶 − 𝛾𝐸 − 𝜌1𝐸 −  𝜇𝐸                                     (2.2) 

The population of the acute class is increased by individuals whose infection did not clear off after a 

short infectious period at the rate 𝜌1.  However, acute-HBV infected individuals undergoing treatment 

do not recover completely from the infection, thus they could eventually progresses to the chronic 

stage of the infection (since there is no permanent cure for the disease). Therefore, the Acute-HBV 

infected population decreases due to progression from the acute-infected class and due to natural 

death at rate𝜇. So, 

𝑑𝐴

𝑑𝑡
= 𝜌1𝐸 −  1 − 𝑢2 𝜌2𝐴 −  𝜇𝐴                                       (2.3) 

The population of the chronic class with clinical symptoms increases at the rate 𝜌2 due to the disease 

progression from the acute stage while it decreases as a result of deaths which could disease induced 

or natural at the rates 𝛿 and 𝜇 respectively. Thus, 

𝑑𝐶

𝑑𝑡
=  1 − 𝑢2 𝜌2𝐴 −  𝜇𝐶 − 𝛿𝐶                                                      (2.4) 

The population of the recovered class increases following vaccination of individuals in the susceptible 

class at rate 𝑢1 and natural recovery of exposed\latent class individuals the rate 𝛾 while individuals in 

this class die at rate𝜇. Thus,  
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𝑑𝑅

𝑑𝑡
= 𝑢1𝑆 + 𝛾𝐸 − 𝜇𝑅                                                      (2.5) 

Summarily, the model for the transmission dynamics of Hepatitis B virus is given by the following 

system of deterministic coupled differential equations: 

𝑑𝑆

𝑑𝑡
= Λ −

𝛽𝑆

𝑁
 𝐴 + 𝛼𝐶 − 𝑢1𝑆 −  𝜇𝑆 

𝑑𝐸

𝑑𝑡
=

𝛽𝑆

𝑁
 𝐴 + 𝛼𝐶 − 𝛾𝐸 − 𝜌1𝐸 −  𝜇𝐸 

 
𝑑𝐴

𝑑𝑡
= 𝜌1𝐸 −  1 − 𝑢2 𝜌2𝐴 −  𝜇𝐴                                                                                                              (2.6) 

𝑑𝐶

𝑑𝑡
=  1 − 𝑢2 𝜌2𝐴 −  𝜇𝐶 − 𝛿𝐶 

𝑑𝑅

𝑑𝑡
= 𝑢1𝑆 + 𝛾𝐸 − 𝜇𝑅  

However, we derived the disease basic reproduction number R0 using the next generation matrix 

approach as: 

R0 =
βμρ1

 ρ1 + μ + γ   1 − u2 ρ2 + μ  μ + u1 
+

βμρ1ρ2α 1 − u2 

 ρ1 + μ + γ   1 − u2 ρ2 + μ  μ + u1  μ + δ 
 

This is an important threshold quantity to demonstrate that the situation under consideration is an 

endemic one (i.e. a case whereR0 > 1). 

3. OPTIMAL CONTROL PROBLEM FORMULATION 

We define our objective functional as 

𝐉 = min
 𝑢1,𝑢2 

  
1

2
𝑤1𝑢1

2 +
1

2
𝑤2𝑢2

2 +  𝑤3𝑆 + 𝑤4𝐴 + 𝑤5𝐶 
𝑡1

𝑡0

𝑑𝑡                (3.1) 

subject to the state equations (2.6)  with appropriate state initial conditions, 𝑡0 is the initial time and 

𝑡1 is the terminal time, while the control set 𝑼 whose elements are Lebesque measurable is defined as 

𝑼 =   u1, u2  | 0 ≤ u1 ≤ u1max
, 0 ≤ u2 ≤ u2max

 .                 (3.2) 

and the 𝑤1 , 𝑤2 , 𝑤3 , 𝑤4 , 𝑤5  are the relative weight constants which balances each term in the integrand 

to reduce the  dominance of any of the term in the integral. The weight constants 𝑤1  and 𝑤2 measures 

the cost or effort required for the implementation of each of the two control measures adopted while  

𝑤3 , 𝑤4 and 𝑤5 measures the relative importance of reducing the associated classes on the spread of 

the disease. The control u1 represents the proportion of susceptible individuals that is effectively 

vaccinated and hence have full immunity per unit time, while u2 is the proportion of individuals in the 

acute class who are currently being effectively managed so that their case do not deteriorate into the 

chronic stage. Hypothetically, we set u1max
= 0.9 andu2max

= 0.5. 

3.0.1Existence of an Optimal Control Pair 

Here, we examine the sufficient conditions for the existence of a solution to the optimal control 

problem. 

Theorem 3.0.1 

 There exists an optimal control set u1
∗, u2

∗ with a corresponding solution  S∗, E∗, A∗, C∗ R∗  to 

the model system that minimizes 𝐽 𝑢1, 𝑢2  over 𝐔. 

Proof 

 Based on the Flemming and Rishel theorem [6], we establish the existence of the optimal 

control by showing   the compactness of the control and the state space and that the stated problem is 

convex and bounded. The Flemming and Rishel theorem are as highlighted below:   
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 i. The sets of all solutions of the state equations and its associated initial controls with 

   the corresponding control function in 𝑼 is nonempty. 

 ii.  The state system can be written as a linear function of the control variables with  

   coefficients dependent on time and the state variables. 

 iii. The integrand of the objective functional  3.1  is convex on 𝑼 and 

   it satisfies 

𝑲 ≥ 𝑤 ∥ 𝑢1 , 𝑢2 ∥2−𝑤1𝑢1
2 + 𝑤2𝑢2

2 + 𝑤3𝑆 + 𝑤4𝐸 + 𝑤5𝐴                  3.0.1  

where 

𝑤 > 0,𝑤1 > 0 and 𝑲 =
1

2
 𝑤1𝑢1

2 + 𝑤2𝑢2
2 + 𝑤3𝑆 + 𝑤4𝐸 + 𝑤5𝐴 

Let the integrand be𝑲. In order to prove the above stated theorem, it suffices to show that 𝑲 is 

bounded and convex. Using the approach of Yusuf and Benyah [19], if the solutions to the states 

equations in  2.6  are a priori bounded and if the state equations are continuous and Lipschitz in the 

state variables, then ∃ a unique solution corresponding to the controls𝑢1 , 𝑢2 ∈ 𝑼. Since 

 𝑆, 𝐸, 𝐴, 𝐶, 𝑅 ∈ 𝛺, then all the state variables of the model (2.6) are bounded (i.e bounded below and 

above). Thus, the system is Lipschitz with respect to the state equations hence, the condition (1) holds. 

In addition, the state equations are linearly dependent on the controls 𝑢1, 𝑢2 therefore the condition 

(2) also holds.  

In order to establish condition (3), we observe that the integrand 𝑲 is convex because of the 

quadratic nature of the control term. In addition,  

 𝑲 =
1

2
 𝑤1𝑢1

2 + 𝑤2𝑢2
2 + 𝑤3𝑆 + 𝑤4𝐸 + 𝑤5𝐴                                                                  3.0.2       

≥
1

2
 𝑤1𝑢1

2 + 𝑤2𝑢2
2                                       𝑠𝑖𝑛𝑐𝑒 𝑤𝑖 > 0,   𝑖 = 1,2,… ,5 

≥
1

2
 𝑤1𝑢1

2 + 𝑤2𝑢2
2 − 𝑤1                            𝑠𝑖𝑛𝑐𝑒 𝑤1𝑢1

2 −𝑤1 < 0 ,      

≥ 𝑚𝑖𝑛  
1

2
𝑤1 ,

1

2
𝑤2  𝑢1

2 + 𝑢2
2 − 𝑤1 ,                                                            

            ≥ 𝑤 ∥ 𝑢1 , 𝑢2 ∥2 −𝑤1,                                                                                                          3.0.3  

 where 𝑤 = 𝑚𝑖𝑛 1
2
𝑤1, 

1

2
𝑤2   . 

This establishes the fact that K is bounded. Hence, we have a unique solution of the optimality system 

for any small time interval. Moreover, the uniqueness of the solution of the optimality system 

guarantees the uniqueness of the optimal control if it exists. 

3.1 Characterization of the Optimal Control pair  𝑢1
∗, 𝑢2

∗  

We characterize the optimal control pair  𝑢1
∗, 𝑢2

∗  for the two control measures adopted and the 

corresponding states 𝑆∗, 𝐸∗, 𝐴∗, 𝐶∗, 𝑅∗ . The necessary conditions for an optimal control pair are 

obtained using Pontryagin's maximum principle (PMP) [9]. 

Theorem 3.1 Necessary Conditions for the existence of an Optimal control pair 

Let 𝑢1
∗, 𝑢2

∗𝜖𝑼 be an optimal control pair with the corresponding states 𝑆∗, 𝐸∗, 𝐴∗, 𝐶∗, 𝑅∗ , then there 

exists the adjoint variables λi   for i = 1,2,⋯ ,5 satisfying  

𝜆1
′ = −𝑤5 + 𝜆1  

𝛽𝑁 𝐴 + 𝛼𝐶 + 𝛽𝑆 𝐴 + 𝛼𝐶 

𝑁2
 +  𝑢1

∗ + 𝜇                          

−𝜆2  
𝛽𝑁 𝐴 + 𝛼𝐶 + 𝛽𝑆 𝐴 + 𝛼𝐶 

𝑁2
 − 𝜆5𝑢1

∗,                                            
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𝜆2
′ = −𝜆1  

𝛽𝑆 𝐴 + 𝛼𝐶 

𝑁2
 − 𝜆2  

𝛽𝑆 𝐴 + 𝛼𝐶 

𝑁2
−  𝜌1 + 𝜇 + 𝛾  − 𝜆3𝜌1 + 𝜆5𝛾              

𝜆3
′ = −𝑤3 + 𝜆1  

𝛽𝑆𝑁 + 𝛽𝑆 𝐴 + 𝛼𝐶 

𝑁2
 − 𝜆2  

𝛽𝑁𝑆 + 𝛽𝑆 𝐴 + 𝛼𝐶 

𝑁2
                             3.1.1  

+𝜆3  1 − 𝑢2
∗ 𝜌2 + 𝜇 − 𝜆4  1 − 𝑢2

∗ 𝜌2                                                                   

𝜆4
′ = −𝑤4 + 𝜆1  

𝛽𝑆𝑁𝛼 + 𝛽𝑆 𝐴 + 𝛼𝐶 

𝑁2
 − 𝜆2  

𝛽𝑁𝛼𝑆 + 𝛽𝑆 𝐴 + 𝛼𝐶 

𝑁2
 + 𝜆4 𝜇 + 𝛿      

𝜆5
′ = −𝜆1  

𝛽𝑆 𝐴 + 𝛼𝐶 

𝑁2
 + 𝜆2  

𝛽𝑆 𝐴 + 𝛼𝐶 

𝑁2
 + 𝜆5𝜇                                                         

and the transversality conditions 

λ1 tf = λ2 tf = ⋯ , λ5 tf = 0                                     3.1.2  

as the terminal conditions at the final time tf while the optimal control variables are defined as: 

𝑢1
∗ = min max 0,

𝑆 𝜆1 − 𝜆5 

𝑤1
, 𝑢1𝑚𝑎𝑥   ,                                                            3.1.3  

𝑢2
∗ = min  max 0,

𝐴 𝜆4𝜌2 − 𝜆3𝜌2 

𝑤2
, 𝑢2𝑚𝑎𝑥   .                                                  3.1.4  

Proof 

Using the Pontryagin's maximum principle (PMP), we obtain Equation  3.1.1  from  

𝜆1
′ = −

𝜕𝐇

𝜕𝑆
, 𝜆1

′ = −
𝜕𝐇

𝜕𝐸
, 𝜆1

′ = −
𝜕𝐇

𝜕𝐴
, 𝜆1

′ = −
𝜕𝐇

𝜕𝐶
, 𝜆1

′ = −
𝜕𝐇

𝜕𝑅
                                        3.1.5   

where the Hamiltonian 𝐇 is given by 

ℋ =  
1

2
𝑤1𝑢1

2+ 
1

2
 𝑤2𝑢2

2+𝑤3𝐴1𝑤4𝐶 + 𝑤5𝑆 + 𝜆1  ᴧ −
𝛽𝑆

𝑁
 𝐴 + 𝛼𝐶 − 𝑢1𝑆 −  𝜇𝑆                                           

+𝜆2  
𝛽𝑆

𝑁
 𝐴 + 𝛼𝐶 − 𝛾𝐸 − 𝜌1𝐸 −  𝜇𝐸 + 𝜆3 𝜌1𝐸 −  1 − 𝑢2 𝜌2𝐴 −  𝜇𝐴       𝑚                        (3.1.6) 

+𝜆4  1 − 𝑢2 𝜌2𝐴 −  𝜇𝐶 − 𝛿𝐶 + 𝜆5 𝑢1𝑆 + 𝛾𝐸 − 𝜇𝑅                                                                           

Using the transversality condition of the PMP yields 

𝜆1 𝑡𝑓 = 𝜆2 𝑡𝑓 = ⋯𝜆5 𝑡𝑓 = 0                                                                                                          3.1.7  

Also, solving for 𝑢1
∗, 𝑢2

∗ based on the optimality condition of the PMP gives: 

𝑢1
∗ =

𝑆 𝜆1 − 𝜆5 

𝑤1
,                                                                                                         3.1.8  

𝑢2
∗ =

𝐴 𝜆3𝜌2 − 𝜆5𝜌2 

𝑤2
                                                                                               3.1.9  

respectively. By imposing the bounds 0 ≤ 𝑢1   ≤ 𝑢1𝑚𝑎𝑥  and  0 ≤ 𝑢2 ≤ 𝑢2𝑚𝑎𝑥  on the control 

variables, we have 
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𝑢1
∗ = 𝑚𝑖𝑛  𝑚𝑎𝑥  0,

𝑆 𝜆1 − 𝜆5 

𝑤1
  , 𝑢1𝑚𝑎𝑥                                                3.1.10  

𝑢2
∗ = 𝑚𝑖𝑛  𝑚𝑎𝑥  0,

𝐴 𝜆3𝜌2 − 𝜆5𝜌2 

𝑤2
  , 𝑢2𝑚𝑎𝑥  .                                             3.1.10  

Thus, the required optimality system consists of the state variables system of equations  2.6  with its 

initial conditions and the adjoint variables system of equations  3.1.1  with its terminal conditions 

which incorporates the optimal control variables characterization in its dynamics.   

4. SIMULATION RESULTS AND DISCUSSION 

We numerically solve the resulting optimality system using Runge Kutta fourth order scheme by 

adopting Forward--Backward Sweep approach. This approach solves the state equations forward in 

time with an initial guess for u1 and u2 while the adjoint equations are solved backward in time. 

Thereafter, the control variables are updated based on equations  3.1.10 .This procedure is done 

iteratively until convergence is achieved. 

4.1 Data 

The table  4.1  specifies the parameter values and table  4.2  indicates the initial conditions for each 

of the state variables used in carrying out our simulation.  

Table 4.1. The model parameter description and their corresponding values 

PARAMETER DEFINITION VALUE  REFERENCE 

Λ Recruitment rate 2.0 Estimate 

𝜇 Natural death rate 0.002 Estimate 

𝛿 HBV induced death rate 2.5 Estimate 

ρ1 Movement rate from Exposed to Acute 6 per year [5] 

ρ2 Movement rate from Acute to Chronic 4 per year [5] 

𝛼 Transmission multiplier 3.0 [5] 

u1 Control attached to vaccination  0-1 [5] 

u2 Control based on treatment 0-1 [5] 

𝛾 Recovery rate due to immunity 0.025 per year [5] 

𝛽 Disease transmission rate  0.95 Estimate 

Table 4.2. Initial Conditions for the model's state variables 

VARIABLES Susceptibles S(0) Exposed 

E(0) 

Acute 

A(0) 

Chronic 

C(0) 

Recovered 

R(0) 

VALUES 92.5 2.0 3.0 1.5 1.0 

It is important to emphasize here that the set of parameter values above yields 𝑅0 = 1.45 > 1 which 

implies that HBV is endemic in the scenario under consideration. Also, the initial condition for the 

state variables is a realistic hypothetic one. We simulate the optimality system with parameter values 

from Table 3.1 using the weight  constants 𝑤1 = 1.0, 𝑤1 = 10.0 and we vary the weights for 

𝑤3 , 𝑤4 𝑎𝑛𝑑 𝑤5 depending on the scenario being considered. 

Assuming that there are adequate resources to implement the following maximum effectiveness levels 

of the control 𝑢1 = 0.9, 𝑢2 = 0.5, we considered the following three scenarios: 

         (i) The scenario with Vaccination ONLY  𝑤3 = 1.0, 𝑤4 = 100.0,𝑤5 = 1.0  

         (ii) The scenario with Treatment of the Acute HBV infected ONLY  𝑤3 = 1000.0,𝑤4 =
1.0, 𝑤5=1.0 

         (iii) The scenario of combining BOTH Vaccination and Treatment  𝑤3 = 1.0,𝑤4 =
1.0, 𝑤5=1.0 
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4.2 Numerical results    

 

Fig4.1Population Profile for the S-class             Fig 4.2 Population Profile for the E-class 

Fig 4.1 shows the population profile of the susceptible class which is the largest of the five 

subpopulations. It is assumed that not all individuals were vaccinated at birth, thus we make 92.50 

million of the entire 100million populations   to be susceptible to the disease. From the fig 4.1, we 

observed that the impact of the two control measures and their  combination plays a significant role 

in lowering the level of the population susceptibility significantly as time progresses. In less than 

three years, the susceptible population is reduced to about a ninth of its initial population as a result of 

the implementation of the control measures. 

By the fifth year, if the implementation of these control measures is adequately carried out, then the 

entire population will eventually come to a point where the population of the susceptible individuals 

in the population is minimal. This will reduce new cases of the disease drastically because there will 

be fewer people that can be infected. Thus, this could lead to eventual eradication of the disease in the 

long run. 

Fig. 4.2 shows the population profile of the Exposed individuals in the entire population. At the initial 

stage, the population rises from 2.0 million to about 2.2 million but as the time progresses, the 

population of the exposed for the three scenarios reduces drastically till it varnishes. Though, 

application of both controls concurrently reduces the population of the Exposed HBV class most. 

 
Fig 3.3 Population Profile for the A-class  Fig 3.4 Population Profile for the C-class 

Fig. 4.3 shows the population profile of the acute HBV-infected class with respect to the three 

scenarios considered. In the first year, deploying early detection cum treatment only reduces the 

population to about 2.85 million while both vaccination and treatment reduces to about 2.1 million.  

In the second year, vaccination only and treatment only reduces the acute infected HBV class 

population to 2.4 million while the combination of both in the second year reduces the class 

population to 1.4 million. Thus, using the two control measures concurrently is more effective in 

controlling the Acute HBV-infected population. As time progresses, the population eventually reduces 

to less than 0.1 million as a result of combining both controls.          
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Fig. 4.4 shows the population profile of chronic HBV-infected class with respect to the three 

scenarios considered. The graph shows that the strategy of treatment only or vaccination only 

performs better in the first three years of implementation while the control strategy which combines 

both controls does better in the latter years. This implies that combining both controls concurrently 

will be more effective in the long-run. 

 

Fig 4.5 Population Profile for the R-class 

Fig. 4.5 shows the population profile of the recovered class with respect to the three scenarios 

considered. Here, the results show that the population in the recovered class increases over time for all 

the scenarios though population for the scenario of vaccination only and that treatment only were 

higher after the  fifth year. However, the difference in the population profile of the first two scenarios 

as compared to the third scenario is not too substantial. In general, these graphs show that the 

population in the recovered class will continue to increase over time until it reaches equilibrium where 

it stabilizes. At this point, the spread of HBV in the community will be minimal.     

 

Fig. 4.6. Incidence of HBV   Fig. 4.7. Prevalence of HBV 

Fig. 4.6 shows new cases of the HBV infection. We observed that either of the controls deployed will 

work effectively in reducing the occurrences of new cases of HBV infection but employing both 

controls concurrently will be more effective in reducing the incidence of HBV infection. Figure 4.7 

shows the level of prevalence of HBV infection in the community for the three scenarios considered. 

We observed that combination of both Vaccination and early detection cum treatment contributes 

immensely in the reduction of HBV spread within the community. This suggests that the application 

of vaccination and treatment should be employed together in other to forestall the prevalence of the 

disease. 

 



Optimal Control Strategy for Hepatitis B Virus Epidemic in Areas of High Endemicity 

 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)                       Page 37 

  

 

Fig. 4.8 Profile for 𝑢1 (Vaccination)  Fig. 4.9 Profile for 𝑢2 (Treatment) 

Fig. 4.8 shows the minimum success rate of the vaccination programme per unit time that is required 

to achieve earlier presented level of incidence and prevalence of the disease. The graph shows that for 

the case where both measures were considered, the success rate required was significantly lower, 

compared to the case when each measure was implemented alone. Fig. 4.9 shows the minimum 

effective treatment rate per unit time that must be achieved in order  to record the level of 

incidence and prevalence of the disease presented in figs. 4.6 and 4.7 respectively.  We observe 

that the effective treatment success rate remains low for the case of treatment only and both while it 

was high for the scenario with vaccination.          

  

Fig. 4.10 Adjoint variable 𝜆1   Fig. 4.11 Adjoint variable 𝜆2 

Figs. 4.11, 4.12 and  4.13 shows that there is a zero, or negative marginal cost associated with a unit 

change in the exposed class population, Acute HBV-infected population, and chronic HBV-infected 

population respectively. The negative cost implies that instead of incurring cost due to 

implementation of the controls, there will be some savings on the cost of implementation. 

Fig. 4. 14 shows the profile of the adjoint variable for the recovered class with respect to the three 

scenarios presented. It shows that the marginal cost associated with a unit change in the recovery class 

is either zero or reducing with time.  From the graph, we observed that the cost is either zero or 

reducing with time. This implies that the implementation of either of the single control measures 

brings about decrease in the marginal cost of increasing the Recovered class population as time 

progresses while the concurrent implementation of both measures result in zero marginal cost for the 

recovered class. 
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Fig.4.12 Adjointvariable 𝜆3    Fig. 4.13 Adjoint variable 𝜆4 

 
Fig. 4.14 Adjoint variable 𝜆5 

5. CONCLUSION  

We presented a deterministic model for the spread and control of Hepatitis B virus infection. We 

derived the disease basic reproduction number 𝑅0  and demonstrated that the situation under 

consideration is an endemic one 𝑖. 𝑒. 𝑅0 > 1 . We reformulated the modelled situations as optimal 

control problem subject to our model dynamics with vaccination of the susceptibles and early 

detection cum treatment of the acutely-infected individuals as control measures. 

The existence and uniqueness of the solution to the optimal control problem were established, the 

adjoint variable equations derived, and the control variables characterized based on Pontryagin's 

maximum principle. The resulting optimality system was solved numerically. Simulations of the 

numerical results showed that if the endemic situation is promptly addressed by implementing   both 

control measures concurrently, there will be a remarkable reduction in the prevalence and incidence of 

the disease. Infact, the results showed that deploring the two control measures adequately could drive 

the endemic situation towards a disease free state within a decade. 
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