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1. INTRODUCTION 

Batch arrival and bulk service queueing systems are quite common in many real life situations such as 

the arrival of aircraft passengers, elevators, Manufacturing systems, communication network, giant 

wheel, tourism, etc. Bulk service queueing model was initially originated with Bailey [1]. Neuts [2] 

proposed the “General Bulk Service Rule” in which service initiates only when a certain number of 

customers in the queue is available. Some general bulk service results have discussed by Holman, 

Chaudhry, and Ghosal [3]. Chaudhry and Templeton [4] have worked on bulk service rule by using 

the supplementary variable technique. Banerjee et.al [5] has considered a queueing model with 

variable service capacity and batch-size-dependent service. Sikdar and Samanta [6] have analyzed a 

finite buffer queueing model with bulk service variable server capacity. Recently, bulk service 

queueing model with multiple working vacations have studied by Jeyakumar and Senthilnathan [7]. 

Two phase queueing system with Bernoulli vacation using the supplementary variable method studied 

by many researchers such as Choudhury and Deka [8] and Badamchi Zadeh and Shahkar [9]. 

Recently, bulk service retrial queueing system has examined by Haridass et.al [10]. Bulk service 

queueing model with vacations is useful to do some kind of job is dealing with server vacation. 

Bernoulli vacation with two phases of single service considered by several authors such as Choudhury 

[11] and Madan [12]. Ayyappan and Shymala [13]  have studied a batch arrival single server system 

with second optional server vacation. Bulk service queueing model with Bernoulli vacation have 

considered by Al-Khedhairi and Tadj [14]. 

In all the queueing literature presume that the server is active in the service station at all time. 

However, these assumptions are impractical. In a practical system, we frequently faced the case where 

the service station may break off and can be repaired immediately. Many researchers such as 
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Rajadurai et.al [15], Choudhury and Deka [16]  have contributed to the service interruption gets repair 

immediately. 

Many of real models could be considered by two phases of service is important, because some of the 

systems have more than one phase of service is considered. There is no work carried out in bulk 

service queue with extended Bernoulli vacation. So, we consider a batch arrival and bulk service is 

rendered by a minimum batch size of „a‟ and a maximum of „b‟. A single server providing two phases 

of service to a batch of customers with two dissimilar service rates. After attainment of two successive 

phases of service, if the server will go for the first type of vacation this assumed to be a probability  . 

In case, if the server has been continued to serve the next batch if exit with probability 1 . After 

attainment of the first type of vacation, if the server will go for the second type of extended vacation 

this assumed to be a probability p. In case, if the server has been continued to serve the next batch if 

exit with probability 1-p. If the two phases of service get interrupted, it enters into the repair process 

of respective phases. At the end of the repair process , a batch of customer who was just being served 

before server breakdown waits for the remaining service to complete the service. 

This paper is structured as follows. In section 2 the brief description of the mathematical model. In 

section 3, we present the definitions and equation governing of our system and also obtain the time 

dependent solution of our model. The steady state behavior of the system and the probability 

generating function of the queue size at a random epoch have been derived explicitly in section 4 and 

corresponding stability condition have been obtained in section 5. Also, we obtain the performance 

measures in the different states of the system, the mean queue size and the average waiting time in the 

queue explicitly in section 6. Section 7 deals with the queue size distribution at a departure epoch. 

Some particular cases are given in section 8. A numerical result and graphs are presented in section 9. 

Conclusions are given in section 10.  

2. MATHEMATICAL DESCRIPTION OF THE QUEUEING MODEL  

To describe the required queueing model, we assume the following. 

• Customers arrive at the system in batches of variable size in a compound Poisson process and they 

are providing bulk service on a first come - first served basis. Let dtci  ( 1i ) be the first order 

probability that a batch of i  customer arrives at the system during a short interval of time ],,( dttt   

where 10  ic  and 1=
1=

i

i

c


 and 0>  is the mean arrival rate of batches. 

• There is a single server providing service to a batch of customers in two heterogeneous services in 

succession. The service time follows a general (arbitrary) distributions 1B  and 2B  at First Phase of 

Service (FPS) and Second Phase of Service (SPS) with rates of service 1  and 2 , respectively. Let 

)(vBi  and )(vbi  be the distribution function and density function of the service time, respectively. 

The conditional probability density function of service completion during the interval ],( dxxx  , 

given that the elapsed service time is x , so that  
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• After attainment of Second Phase of Service (SPS), the server may take the first type of Bernoulli 

vacation with probability  , and with probability ( 1 ) it waits for serving the next batch of 
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customers. After completion of the first type of vacation, the server takes the second type of optional 

extended vacation with probability p or may continue to serve the next batch if exist, with probability 

1-p.  

• The vacation time of the server follows a general (arbitrary) distribution with distribution function 

)(rVi  and density function )(rvi . Let dxxi )(  be the conditional probability of a completion of a 

vacation during the interval ],( dxxx  , given that the elapsed vacation time is x , so that  
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)(
=)( i
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x

i

i
i
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  
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 1,2=,)(=)(

)(

0 ierrv
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• While the server is functioning with any phase of service, it may break down and is assumed to 

occur according to a Poisson stream with mean breakdown rates 1  for the First Phase of Service and 

2  for the Second Phase of Service. 

• If the service gets interrupted, the First phase of service (FPS) and a second phase of service (SPS) 

enter into the repair process of respective phases. Both phases of repair time follow general (arbitrary) 

distribution with distribution function )(tRi  and the density function )(tri . Let dyyi )(  be the 

conditional probability of a completion of a repair time during the interval ],( dyyy  , given that the 

elapsed repair time is y , so that  

 1,2=,
)(1

)(
=)( i

yR

yd
y

i

i
i


  

and therefore,  

 1,2=,)(=)(

)(

0 iettr

dyy
i

t

ii






 

• The customers are served according to the “First come-First served” discipline. 

• Various stochastic processes involved in the system are assumed to be independent of each other.  

3. DEFINITIONS 

We define  

1.  ),(, txP ni  = Probability that at time t , the server is active providing 
thi  phase of service 1,2)=(i  

and there are n  ( 0n ) customers in the queue excluding the batch being served and the elapsed 

service time on a batch of customers undergoing service is x . Accordingly, dxtxPtP nini ),(=)( ,

0

, 


 

denotes the probability that at time t there are n customers in the queue excluding the batch of 

customers in 
thi  phase of service without regard to the elapsed service time is x .  

2.  ),(, txV ni  = Probability that at a time ,t  the server is on 
thi  type of vacation with elapsed vacation 

time is x  and there are n  ( 0n ) customers in the queue. Accordingly, )(, tV ni = dxtxV ni ),(,

0


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denotes the probability that at time t, there are n  customers in the queue and the server is on 
thi  type 

of vacation without regard to the elapsed vacation time is x . 

3.  ),,(, tyxR ni  = Probability that at time t , the server is under 
thi  phase of repair 1,2)=(i  

(breakdown during 
thi  phase of service time) with the elapsed service time on a batch of customers 

undergoing service is x , the elapsed repair time of server is y  and there are n ( 0n ) customers in 

the queue. Accordingly, dytyxRtxR nini ),,(=),( ,

0

, 


 denotes the probability that at time t  there are n  

customers in the queue with the elapsed service time on a batch of customers undergoing service is x 

and without regard to the elapsed repair time is y . 

 4.  )(tQr  = Probability that at time ,t  there are 1)(0  arr  customers in the system and the 

server is idle but available in the system.  

The Kolmogorov forward equations to govern the model under the transient state conditions for 

1,2=i ; where sub index 1,2=i  denotes the FPS and SPS respectively can be formulated as follows:  
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 To solve the equations (1) to (10), the following boundary conditions at 0=x  and 0=y  are 

considered,  
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Further, it is assume that initially there are no adequate number of customers in the system and the 

server is idle. So the initial conditions are  
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To solve the above equations, let us introduce the following probability generating functions for 
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 Define the Laplace transform of a function )(tf  as  
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 Taking the Laplace transform of equations (1) to (16) and using (17), we get  
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By multiplying equations (21),(23),(25) and (27) by 
nz  and then taking summation over all possible 

values of n , adding to the equations (20), (22),(24) and (26) respectively, and using the generating 

functions defined in (18), we get  
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Multiplying both sides of equation (31) by 
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 Similarly from equations (32),(33) (34) and (35), we get  
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 Solving the partial differential equations (36) to (39), it follows that  
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 Integrating equation (48) from 0  to   with respect to y, we get for i=1,2  
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 Now multiplying both sides of equations (45)  to (48)  by )(xi , )(1 x , )(2 x , and )( yi  

respectively, and integrating, we obtain  
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are the Laplace-Stieltjes transform of the service time )(xBi , vacation times )(1 xV  and )(2 xV  and 

repair time )( yRi , respectively. 

Again integrating equations (45), (46),(47) and (49) by parts with respect to x and using the equation 

(41),(42),(43),and (44), we get for i=1,2  
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 Inserting the equations (50),(51) and (52) into the equation (40), we get 
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 Substituting the equation (60) into the equations (54),(55),(56),(57),(58) and (59) and taking the 

inverse laplace transform of these equations, we get the probability generating fuctions of various 

states of the system are determined under transient state.  

4. THE STEADY STATE RESULTS   

In this section, we shall derive the steady state probability distribution for our queueing model. To 

define the steady state probabilities, we suppress the argument t  wherever it appears in the time-

dependent analysis. This can be obtained by applying the Tauberian property,  
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 The PGF of the server‟s state queue size distribution under the steady state conditions are given by  
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4.1 Queue Size Distribution at a Random Epoch 

By adding (62),(63),(64),(65),(66) and (67) with idle term, we get the PGF of the queue size 

distribution at a random epoch. 
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5. STABILITY CONDITION 

The probability generating function has to satisfy P(1)=1. In order to satisfy this condition, apply 

L‟Hopital rules and equating the expression to 1,we get  
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Next, we calculate the unknown probabilities, rW ,  10,1,2,...,= br  and then these are related to 

the idle-server probabilities, rQ ,  10,1,2,...,= ar , then the left hand side of the above expression 

must be positive. Thus P(1)=1 is satisfied if 
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 is the condition to be satisfied for the existence of steady state for the model under consideration. 

Equation (69) has b+a unknowns. Using the following result, we can express rW  in terms of rQ  in 

such a way that numerator have only „b‟ constants. Now equation (69) gives the PGF of the number of 

customers involving „b‟ unknowns. By Rouche‟s theorem, the expression 

  ))](())(()()(1[ 2211 zBzBzKzb    has 1b  zeros inside and one on the unit circle 1|=| z

. Since P(z) is analytic within and on the unit circle, the numerator must vanish at these points, which 
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gives „b‟ equations in „b‟ unknowns. These equations can be solved by any suitable numerical 

technique. 

 5.1 Result: Let rW  can be expressed in terms of rQ  as  
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 Where, rW  is the probabilities of the „r‟ customers in the queue during idle period and 1X , 1A , 

)(IE  are given in Section 6. 

6. PERFORMANCE MEASURES 

In this section, we derive some system probabilities, the mean number of customers in the queue ( qL ) 

and the average time a customer spends in the queue ( qW ). From (71) we have 1< , which is 

stability condition.  

6.1  System state probabilities 

From equation (62) to (67), by setting 1z  and applying L‟Hopital‟s rule whenever necessary, we 

get the following results  

• Let (1)qP  be the steady state probability that the server is busy     
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 • Let qV (1) be the steady state probability that the server is on vacation  
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 • Let qR (1) be the steady state probability that the server is under repair  
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6.2  Mean Queue Size 

• The mean number of customers in the queue ( qL ) under steady state condition is obtained by 

differentiating (69) with respect to z and evaluating at 1=z .  
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where 
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7. QUEUE SIZE DISTRIBUTION AT A DEPARTURE EPOCH 

In this section, we derive the probability generating function of the queue size distribution at a 

departure epoch of this model is given in the proof of Theorem 1 

Theorem 1 Under the steady-state condition, the PGF of the queue size distribution at a departure 

epoch of this model is given by  

   

 
.

))))](())((()()(1([

))(())(()()(1

)(1)](

)())(([

=)(
12211

2211

1

1=

1

0=

1

0=

1

0=

XzBzBzKz

zBzBzK

bzzQc

WzzzzzCQ

zP
b

rnb

rn

rb

n

a

r

r

rb
b

r

br

r

a

r




















































              (72) 



Analysis of 
XM /G(a,b)/1 Queueing System with Two Phases of Service Subject to Server Breakdown 

and Extended Bernoulli Vacations 

 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)                       Page 46 

Proof: Following the argument of PASTA (See Wolf [17]). We state that a departing customer will 

see „j‟ customer in the queue just after a departure if and only if there were „j‟ customer in the queue 

after completing the second phase of service or both the first type of Bernoulli vacation and second 

type of extended vacation just before the departure. 

Let 
j

j
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
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=)(  be the probability that there are „j‟ customers in the queue at a departure epoch, 

we may write 
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 where 0K  is the normalizing constant. 

By multiplying both sides of the equation (73) by 
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equations (50),(51), and (52) (after applying the Tauberian property), we get on simplification  
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 Inserting equation (75) into (74) we get the PGF of the queue size distribution at a departure epoch of 

this model. 

Next the mean queue size of this model is given in corollary 1. 

Corollary 1 Under the stability conditions, the mean number of customers in the queue at a departure 

epoch dL  is given by 
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Proof: The result follows directly by differentiating (77) with respect to z and then taking limit 

1z  by using the L‟Hopital‟s rule. 

Where 12121 ,,,, ATTXX , )(IE , 1))(( IIE  are given in Section 6. 

8. PARTICULAR CASES 

Case 1: If batch arrival, single server providing single phase of service and no breakdown is 

considered, then equation (69) reduces to  
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These expressions are exactly matched with the results by Ayyappan and Shymala (2013). 

Case 2: If single arrival, single server, two phase service, no extended vacation is considered, then 

equation (69),(72) and (79) reduces to  
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 These expressions agree with the results by Gautam Choudhury and Mitali Deka (2012).  

9. NUMERICAL RESULTS 

In this section, we present some numerical examples using MATLAB in order to illustrate the effect 

of various parameters in the system performance measures of our system where batch size distribution 

of the arrival is geometric with mean 2 and two phases of service time follow Erlang-2 distribution 

and two types of vacation time and two phases of repair time follow exponential distribution. We 

assume arbitrary values to the parameters such that the stability condition is satisfied. Tables 1 to 3 

gives computed values of the utilization factor(  ), the mean queue size( qL ), mean waiting time in 

the queue( qW ) in our queueing model. 
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The table 1 clearly shows that the arrival rate ( ) increases, the utilization factor (  ), the mean 

queue size ( qL ) and the mean waiting time in the queue ( qW ) are also increases for the value of 

2=a , 5=b , 0.3= , 0.5=1p , 8=1 , 14=2 , 7=1 , 8=2 , 1=1 , 1.1=2 , 2=1 , 

2.5=2 . 

Table 2 shows that the first phase of service rate increases, the utilization factor (  ), the mean queue 

size ( qL ) and the mean waiting time in the queue ( qW ) are decreases for the value of 2=a , 5=b , 

0.3= , 0.5=1p , 1= , 14=2 , 7=1 , 8=2 , 1=1 , 1.1=2 , 2=1 , 2.5=2 . 

Table 3 shows that the second phase of service rate increases, the utilization factor (  ), the mean 

queue size ( qL ) and the mean waiting time in the queue ( qW ) are decreases for the value of 2=a , 

5=b , 0.3= , 0.5=1p , 1= , 8=1 , 7=1 , 8=2 , 1=1 , 1.1=2 , 2=1 , 2.5=2 . 

Table  1. The effect of arrival rate ( ) on  , qL , qW    

       
qL   qW   

1.00 0.1408 3.8415 1.9207 

1.25 0.1760 4.9276 1.9710 

1.50 0.2112 6.3085 2.1028 

1.75 0.2464 8.0492 2.2998 

2.00 0.2816 10.2889 2.5585 

2.25 0.3168 12.9732 2.8829 

2.50 0.3520 16.4129 3.2826 

2.75 0.3872 20.7468 3.7721 

3.00 0.4224 26.2359 4.3726 

Table  2.  The effect of service rate ( 1 ) on  , qL , qW   

    1       qL    qW   

3 0.2658 9.1982 4.5991 

4 0.2158 6.4896 3.2448 

5 0.1858 5.2564 2.6282 

6 0.1658 4.5688 2.2844 

7 0.1515 4.1362 2.0681 

8 0.1408 3.8415 1.9207 

9 0.1325 3.6309 1.8155 

10 0.1258 3.4745 1.7373 

11 0.1203 3.3526 1.6763 

12 0.1158 3.2551 1.6275 

Table  3.  The effect of service rate ( 2 ) on  , qL , qW   

2        qL    qW   

3 0.2916 10.1454 5.0727 

4 0.2436 7.3645 3.6822 

5 0.2148 6.0918 3.0459 

6 0.1956 5.3792 2.6896 

7 0.1819 4.9296 2.4648 

8 0.1716 4.6223 2.3112 

9 0.1636 4.4002 2.2001 

10 0.1572 4.2327 2.1163 

11 0.1520 4.1021 2.0511 

12 0.1476 3.9977 1.9989 
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In Figure 1 shows that the utilization factor (  ), the average queue length ( qL ) and average waiting 

time in the queue ( qW ) increases for the increasing values of the arrival rate  .  

 

Similarly, In Figure 2 and 3 shows that the utilization factor (  ), the average queue length ( qL ) and 

average waiting time in the queue( qW ) decreases for the increasing values of service rates 1  and 

.2   
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10. CONCLUSION 

In this paper, we have studied an 
XM /G(a,b)/1 queueing system with two phases of service subject to 

server breakdown and extended Bernoulli vacation. We derive the probability generating function of 

the number of customers in the queue at a random epoch in transient and steady state conditions and 

also we obtained the queue size distribution at a departure epoch under the steady state conditions. 

The performance measures of the system state probabilities, the mean queue size and the average 

waiting time in the queue are found by using the supplementary variable technique. Some particular 

cases are determined. Finally, the results are validated with the help of numerical illustrations. 
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