
International Journal of Scientific and Innovative Mathematical Research (IJSIMR) 

Volume 4, Issue 7, July 2016, PP 12-23 

ISSN 2347-307X (Print) & ISSN 2347-3142 (Online) 

DOI: http://dx.doi.org/10.20431/2347-3142.0407003 

www.arcjournals.org 

 

©ARC                                                                                                                                                         Page | 12  

Perturbation-Iteration Method for Solving Mathematical Model 

of Hypoxemic Hypoxia Tissue-Blood Carbon Dioxide Exchange 

during Physical Activity Activity 

Jean Marie NTAGANDA 

University of Rwanda 

College of Science and Technology, School Science, 

Department of Mathematics, Huye Campus, Rwanda 

Marcel GAHAMANYI 

University of Rwanda 

College of Science and Technology, School Science, 

Department of Mathematics, Huye Campus, Rwanda 

Léontine NKAGUE NKAMBA 

University of Yaounde I 
Higher Teacher Training College, Department of Mathematic 

Abstract: This paper aims at solving of a mathematical model of hypoxemic hypoxia tissue-blood carbon 

dioxide exchange using a new recent method: Perturbation-iteration method. The description of this method for 

different order derivatives in the Taylor Series expansion is discussed. This method provides the solution in the 

form of an infinite series for ordinary differential equation. The efficiency of the method used is investigated by 

a comparison of Euler method and Runge Kutta. Numerical simulations of all these three methods are 

implemented in Matlab. The validation has been carried out by taking the values of determinant parameters for 

a 30 years old woman who is supposed to make practice of three regular physical activities: Walking, Jogging 

and Running fast. The results are in good agreement with experimental data.  
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1. INTRODUCTION 

Hypoxia, or hypoxiation, is defined as a pathological condition related to adequate oxygen supply in 

human body. It is in two main types: the generalized hypoxia that is characterized by the deprived 

adequate oxygen supply in whole body and tissue hypoxia which happens in its region. It differs from 

hypoxemia called also hypoxaemia in that within the arterial blood the oxygen concentration is 

abnormally low. Hypoxemia was originally defined as a deficiency of oxygen in arterial blood but 

standard manuals take this to mean an abnormally low partial pressure of oxygen, content of oxygen 

or percent saturation of hemoglobin with oxygen, either found singly or in combination. The serious 

cases of the hypoxemia happen when the decreased partial pressure of oxygen in blood is less than 

mmHg60 . The reason of this is this point constitutes the beginning of the steep portion of the 

hemoglobin dissociation curve, where a small decrease in the partial pressure of oxygen results in a 

large decrease in the oxygen content  of the blood or when hemoglobin oxygen saturation is less than 

90%. 

In addition, the generalized hypoxia occurs in healthy people when they ascend to high altitude, where 

it causes altitude sickness leading to potentially fatal complications including high altitude pulmonary 

edema (HAPE) and high altitude cerebral edema (HACE) [1]. It also occurs in healthy individuals 

when breathing mixtures of gases with a low oxygen content. 

Hypoxic hypoxia is a result of insufficient oxygen available to the lungs. The examples of how lungs 
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can be deprived of oxygen are a blocked airway, a drowning or a reduction in partial pressure (high 

altitude above 10,000 feet). Hypoxia is also a serious consequence of pre-term birth in the neonate. 

The main cause for this is that the lungs of the human fetus are among the last organs to develop 

during pregnancy. To assist the lungs to distribute oxygenated blood throughout the body, infants at 

risk of hypoxia are often placed inside an incubator capable of providing continuous positive airway 

pressure (also known as a humidicrib). The insufficient delivery of oxygen (low 
2OPa ) or inability to 

utilize oxygen (normal 
2OPa ) causes also the hypoxia where we assist to oxygen deficiency at the 

mitochondrial sites. This phenomenon occurs when  PaO2   less than  kPa3.7   ( mmHg55 ). Below 

this threshold the ventilation starts to stimulate carotid body activity. The hyperventilation reduces 

2COPa and [
H ], which limits the initial rise in ventilation, because it decreases the carotid body and 

central chemoreceptor stimuli. In fact, in humans, hypoxia is detected by chemoreceptors in the 

carotid body. This response does not control ventilation rate at normal  PaO2  , but below normal the 

activity of neurons innervating these receptors increases dramatically, so much so to override the 

signals from central chemoreceptors in the hypothalamus, increasing 
2OPa   despite a falling .

2COPa   

Any physical activity obviously causes the body to demand more oxygen for normal functioning. The 

muscles rob the brain of the marginal amounts of oxygen available in the blood and the time of onset 

of hypoxic symptoms is shortened. However, the improvement of performance of athlete in high 

altitude results in a mild and non-damaging intermittent hypoxia used intentionally during training to 

develop an athletic performance adaptation at both the systemic and cellular level. Mathematical 

models quantifying hypoxic hypoxia have been proposed [2], [3], [4] and [5]. All these mathematical 

models are governed by ordinary differential equations. The numerical resolution of mathematical 

models of governing ordinary differential equations can be done using different numerical methods. 

This paper focuses on a mathematical model for hypoxemic hypoxia where the role of physical 

activity is taken into account [6] where the resolution is done using Perturbation Iteration method 

which is a recent method that can be used has been derived in [7]. 

The remainder of this paper is structured as follows. In section 2, we present the mathematical model 

of ordinary differential equations. The section 3 deals with the the basic idea of the Perturbation 

Iteration method. The numerical simulation is presented in section 4 where the comparison is done 

using Euler method and Runge Kutta method to test efficiency of perturbation iteration method. The 

section 5 focuses on discussion while Section 6 rounds up and deals with the concluding remarks. 

2 THE MATHEMATICAL MODEL EQUATIONS 

The model we present in this paper involves a modification of model equations as developed by 

Guillermo Gutierrez [2] in order to include the role of physical activity. The new model equations 

have been given in [6] where the diagram for a two compartmental model is illustrated in the figure 1.  

 

Figure 1.  Diagram for the tissue carbon dioxide ( CO2 ) exchange model where [CO2] represents the total CO2 

concentration (dissolved and bound) and the subscripts   and   denote the tissue and vascular compartments 

respectively.  Kv is the mass transfer coefficient for CO2.  
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For the vascular compartment, the rate of change of vCO ][ 2  depends on blood flow per unit volume 

of tissue ).(Q  2COV  denotes carbon dioxide production. 

The mass transport model of tissue  2CO  exchange is developed to examine the relative contributions 

of blood flow and cellular hypoxia (dysoxia) to increases in tissue and venous blood 

2CO concentration. The model equations we are interested in are (See [6] for details) 

 
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2
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dt
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where 2CO is carbon dioxide with  ][ 2CO  represents the total  2CO  concentration (dissolved and 

bound) and the subscripts  t   and  v   denote the tissue and vascular compartments respectively.  vK  

is the mass transfer coefficient for  2CO . For the vascular compartment, the rate of change of  ][ 2CO   

depends on blood flow per unit volume of tissue ).(Q   2COV  denotes carbon dioxide production. 

The integral role of physical activity results in the influence of the demand of the tissues for oxygen 

during hypoxia in altitude. Just as resting ventilation increases dramatically at high altitude, so does 

ventilation during physical activity. Since carbon dioxide production for a given work level is 

essentially independent of altitude, this means that measured ventilation is independent of altitude at a 

given work level. At work levels approaching maximal values at any altitude, alveolar falls compared 

with the resting level and physical activity ventilation measured at correspondingly rises. 

Furthermore, during exercise, increases in alveolar ventilation must parallel the increased tissue 

oxygen consumption and carbon dioxide production by the exercising muscles, both of which rise in 

direct proportion to the increase in power output. In addition, it is known that the human respiratory 

control system varies the ventilation rate  AV   in response to the levels of  2CO   in the body and the 

control mechanisms of cardiovascular system influences global control in the blood vessels as well as 

well as heart rate  H   for impacting blood flow  Q   [8] and [9]. Generally, during physical activity in 

altitude and particular in the hypoxia case, the control mechanism of these two systems plays a crucial 

role. 

3 PERTURBATION ITERATION ALGORITHM (PIA) 

Perturbation iteration method has been developed recently by Aksoy and al. [7]. This new method of 

solving a system of first order of nonlinear ordinary differential equations uses a combination of 

perturbation expansions and Taylor series expansions to give rise to an iteration scheme where Aksoy 

and al. [7] and Pakdemirli [10] introduced expansion and correction terms of only first derivatives in 

the Taylor series expansion and one correction term in the perturbation. Therefore, the perturbation 

iteration algorithm is named by  )1,1(PIA . Let us be interested in the description of  )1,1(PIA  . 

First of all, we discuss the PIA(1,m) which is constructed by taking one correction term in the 

perturbation expansion and correction terms of m'th order derivatives in the Taylor Series expansion. 

We consider a system of first order of  K   nonlinear ordinary differential equations. We note 

T

Kxxxx ),...,,( 21  

a vector state. The system first order of  K   nonlinear ordinary differential equations can be written as 

follows 

  KjKktxxEE jkkk ,...,2,1  ,,...,2,1   ,0,,,    

where   is the perturbation parameter and t  denotes the independent variable. That is the system 
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Taking an approximate solution of the system (3) as 

                
c

nknknk xxx ,,1, 
                                                                                                              (4) 

where subscript  n   represents the n'th iteration over this approximate solution, we have a solution 

with one correction term in the perturbation expansion. The system can be approximated with a 

Taylor series expansion in the neighborhood of  0   
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is defined for the  ( 1n )'th iterative equation 

 .,,, 1,1, txxE njnkk 
  

Substituting (5) into (6), we obtain an iteration equation 
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which is a first order differential equation and can be solved for the correction terms  x k,n
c .   Then 

using (4), the (n+1)'th iteration solution can be found. Iterations are terminated after a successful 

approximation is obtained. 

Note that for a more general algorithm, n correction terms instead of one can be taken in expansion 

(4) which would then be a  ),( mnPIA   algorithm. The algorithm can also be generalized to a 

differential equation system having arbitrary order of derivatives (See [11] for more details). 

After the discussion of  ),,1( mPIA   now we focus on  )1,1(PIA   which is its simple case of 

perturbation-iteration method  ).,( mnPIA   

We consider the general cause of first order of differential equation as 

0),,( xxE                                                                                                                                         (8) 

where  ).(txx    Taking one correction term in perturbation expansion, we have 

c

nn xxx 1                                                                                                                                       (9) 

where n  denotes the n'th iteration over this approximate solution such that for the perturbation 

parameter     the expression  
cx   represents the correction term. Substitution of (9) into (8) we 

obtain 
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Reorganizing the equation (10), we have 
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Substitution of (12) into (9) and constructing the iteration scheme yields 
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4 NUMERICAL SIMULATION 

In numerical simulation we consider the parameters presented in the table 1.  

Table1. Values of parameters used in numerical simulation. 

Parameter Value Parameter Value 

Q 6 RQ 0.8 

Kv  0.05 SV 0.7 

2COV  
0.21 K 863 

[O₂]a 0.197 KCO₂ 0.0065 

[O₂]v 0.147 kCO₂ 0.244 

The role of physical activity in hypoxemic hypoxia is to maintain the total concentration of carbon 

dioxide in the tissue ( tCO ][ 2 ) and vascular ( vCO ][ 2 ) in a narrow range. The numerical simulation is 

carried on three types of regular physical activity (physical exercise of 30 minutes per day) for a 30 

years old woman: Walking, Jogging and Running Fast. To show the effectiveness of  )1,1(PIA  , we 

focus on the numerical simulation of the system (1)-(2) by taking the observed values presented in the 

table 1 [12] 

Taking eH  and 
eAV  hear rate and alveolar ventilation at the equilibrium states, the system (1)-(2) is 

written as 

)( yxKfx ve                                                                                                                               (13) 
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  )( yxKygQy ve                                                                                                                  (14) 

where we set 
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The system (13)-(14) is solved by using  )1,1(PIA . The perturbation parameter   is artificially 

introduced as 
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Setting  
TyxX ),(  , we want an approximate solution of the system (15) in the form 
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which can be written in matrix form as follows 
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If  
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hnX   denotes the fundamental solution for homogeneous system of (19), a particular solution  
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We consider the initial values of carbon dioxide in the tissue ( tCO ][ 2  ) and carbon dioxide in the 

vascular ( 2[ ]vCO  ) as taken in [6]. Furthermore we have 

./22 and  /27 0,20,1 molgXmolgX                                                                                          (20) 

For a 30 years old woman during physical activity, the table 2 shows the values of heart rate and 

alveolar ventilation at the equilibrium states as in [6].  

Table 2. The mean value of the heart rate and the alveolar ventilation for the rest and three cases of physical 

activities. A part the rest, other values represent equilibrium values related to 30 years old woman three 

physical activity. 

Exercise intensity Rest Walking Jogging Running Fast 

Ventilation (L/min) 6 8.5 15 25 

Heart rate (Beats /min) 70 85 140 180 

Taking  0n   and using the values of parameters given in the table 1, the fundamental matrix for the 

homogeneous system is 
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Now we are interested in determining the particular solution and the solution of the system (13)-(14) 

for each physical activity. 

1) Walking Case 

After calculation we obtain 
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Finally using the relation (7), we have 
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2) Jogging Case 

We have 










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.
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
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

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p
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Hence using the relation (7), we get 

.
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3) Running Fast Case 

We obtain 


















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eF  
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0
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.
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c

p
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 
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  
 
 

 

Thus the relation (7) gives 

.
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Two others numerical methods have been used to test the efficiency of Perturbation-iteration 

algorithm )1,1(PIA . The preferred numerical methods are Matlab approach. They are often 

used to solve system of ordinary differential equations (ODEs). The Matlab approach has 

been implemented using its ODEs solver from Runge-Kutta of order 4 and 5, this is ode45. 

The numerical results are shown in the figures 2, 3 and 4.  
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Figure 22. Variation trajectory of concentration of tissue carbon dioxide [CO₂]t  (a) and vascular carbon 

dioxide [CO₂]v (b) for a 30 years old woman during walking physical activity. Three curves are compared using 

three different methods: Perturbation-iteration algorithm (Solid line), Euler method (dashed line) and Matlab 

approach (Dot line) 

 

Figure 3. Variation trajectory of concentration of tissue carbon dioxide [CO₂]t  (a) and vascular carbon 

dioxide [CO₂]v (b) for a 30 years old woman during jogging physical activity. Three curves are compared using 

three different methods: Perturbation-iteration algorithm (Solid line), Euler method (dashed line) and Matlab 

approach (Dot line) 
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Figure 3. Variation trajectory of concentration of tissue carbon dioxide [CO₂]t  (a) and vascular carbon 

dioxide [CO₂]v (b) for a 30 years old woman during running fast physical activity. Three curves are compared 

using three different methods: Perturbation-iteration algorithm (Solid line), Euler method (dashed line) and 

Matlab approach (Dot line) 

5 DISCUSSION  

During three types of physical activities, the response of controls of cardiovascular-respiratory system 

are illustrated in figure ,  and  where we have a decrease of concentration of tissue carbon dioxide  

 2 t
CO   at the beginning of physical activity for walking and running fast cases. The decrease is 

followed by an exponential increase of this parameter (See figures 2(a) and 4(a)). This does not 

happen in jogging case (See 3(a)). This mechanism results in the effect of heart rate and alveolar 

ventilation during physical activity where motor center activity and afferent impulses from 

proprioceptors of the limbs, joints and muscles play a crucial role. Since peripheral chemoreceptors 

are responsible for increasing ventilation, central chemoreceptors may be readjusted to increase 

ventilation so that tissue carbon dioxide concentration increases. 

The figures 2(b), 3(b) and 4(b) show that vascular carbon dioxide concentration increases at the onset 

of all concerned physical activities to be stabilized at a value. At the onset of physical activity, the 

heart rate and alveolar ventilation increase. Generally, heart rate increases to about  90%   of its 

maximum values during strenuous physical activity. Furthermore, the ventilation increases with 

increases in work rate at sub-maximal physical activity intensities. These physiological effects of 

physical activity on cardiovascular-respiratory system are justified by the variation of its controls. 

According to intensity of physical activity, these controls reach a equilibrium value and they are 

stabilized. 

The results obtained in this work are rather satisfactory. In particular, the reaction of the controls of 

cardiovascular-respiratory system to physical activity can be modeled and a feedback can be 

approximated by the solution of its mathematical model governed by ordinary differential system for 

some chronic diseases of this biological system. Physical activity reduces any chronic disease of 

cardiovascular-respiratory system and it induces important improvement in health of patients. 

6 CONCLUDING REMARKS  

In this paper, we have investigated Perturbation-iteration method which is a new numerical method 

for solving a system of ordinary differential equations. To test its efficiency, we have used two other 

convergent methods: Euler method and Runge-Kutta method. Numerical simulations implemented 

using Matlab packages illustrate the responses of tissue and vascular carbon dioxide concentrations 

due to the controls of cardiovascular-respiratory system that is heart rate and alveolar ventilation. The 
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numerical results confirmed the analytical analysis for a 30 years old woman during three different 

physical activities: Walking, Jogging and Running fast. 
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