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Abstract: In this paper we introduce new concepts called CTVC set and CTVC number of a graph.  We proved 
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1. INTRODUCTION 

The concept of a vertex covering set is well known and has been studied by several authors. The 

identity0(G) + 0(G) = | V(G) | (0(G) = The vertex covering number &0(G) = The independence 

number ) is well known. The concept of colour transversal dominating set was studied in detail in 

Ph.D. Thesis of Manoharan [7]. 

We introduce new concepts called CTVC set and CTVC number of a graph. We denote it by  (G). 

We prove that 0(G) + (G) = n or n + 1. Where n = number of vertices of G. We prove some 

theorems about removing a vertex from the graph. 

We assume that our graphs are finite, simple and undirected. If G is a graph then V(G) will denote the 

vertex set of G and E(G) will denote the edge set of G. 

2. RESULTS AND DISCUSSION 

Definition2.1 (Colour Transversal Vertex Covering Set)  

Let G be a graph. A subset T of V(G) is said to be a colour transversal vertex covering set of Gif  

1. T is a transversal of the colour classes of some chromatic colouring of G and  

2. T is a vertex covering set of G 

This set is also called CTVC set of G.  

A CTVC set with minimum cardinality is called a minimum CTVC set or set. The cardinality of an 

  set is called the colour transversal vertex covering number (or CTVC number) of the graph G and 

it is denoted as  (G). 

Note that for any graph G and for any chromatic colouring of G, V(G) is always a CTVC set. Thus a 

CTVC set always exists. 

Example 2.2 

Consider the cycle graph C5 with vertices v1, v2, v3, v4, v5 
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Fig.1 

Consider the chromatic colouring which assigns colour - 1 to v1& v3, colour - 2 to v2& v5 and colour - 

3 to v4. Then the set S = { v1, v2, v4} is a CTVC set of G.  

 (C5) = 3 

Note that 0 (C5) = 3 

Remark2.3 

We may note that for a given chromatic colouring of G there may not be a transversal corresponding 

to colour classes which is an independent set. 

In fact it may happen that for any chromatic colouring of G such a set does not exists. 

For example, consider the cycle graph C5 again. In this graph it is impossible to have a set which is a 

transversal for some chromatic colouring and which is also an independent set. Because in this case a 

transversal must have atleast three vertices but the size of the maximum independent set of C5  = 2 

In general, If for any graph G,    0(G) <(G)  then there is no transversal which is an independent set. 

However it may happen that  (G)  ≤  0(G)  but there is no transversal which is an independent set. 

For example, consider the star graph with four vertices 

 

 

 

 

 

 

 

                                                                                 Fig.2 

Here,  (G)  =  2,      0(G)  =  3 

Howeverthere is no transversal which is an independent set. 

Example2.4 

Consider the path graphwith four vertices v1, v2, v3, v4 

  

 

Fig.3 
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Consider the chromatic colouring which assigns colour – 1 to v1& v3 and colour – 2 to v2& v4. Then 

obviously the set { v1, v4 } is a transversal which is also an independent set. 

Definition2.5(Dominator Colouring) [3] 

Let G be a graph. A proper colouring f of G is said to be a dominator colouring if every colour class is 

a single vertex or it is completely dominated by some other colour class. 

Definition 2.6(Colour Transversal) [7] 

Let G be a graph and C1,C2, ………, Ck be the colour classes of some proper colouring of G. A subset 

T of V(G) is said to be a colour transversal with respect to this colouring  if  T  Ci ≠ ,  i = 1, 2, 

….. , k 

Proposition 2.7 

Let G be a graph. If a proper colouring of G is a dominator colouring then there does not exists a 

colour transversal which is an independent set. 

Proof 

Let G be a graph. Let {C1, C2, C3, ……….. , Ck} be the set of all colour classes corresponding to this 

proper colouring. 

Suppose there is an independent set S = { v1, v2, …….. , vk } which is a colour transversal of this 

colour classes. If  i , {vi} is a colour class then each vi is adjacent to each vj& therefore the subgraph 

induced by the vertices of S is a complete subgraph. 

This is a contradiction. 

Therefore there is a colour class say C1 which is not a singleton set. Let v and u be two distinct 

vertices of C1. Then u is completely dominated by some colour class say Cj. Therefore u is adjacent to 

every vertex of Cj . Similarly for every other vertex of C1 this happens. 

 It is impossible to get a transversal which is an independent set.     

Proposition 2.8 [7] 

Let G be a graph and S be an independent subset of G which is not a maximal independent subset of 

G. Then there is a chromatic colouring of G in which V(G) – S is a colour transversal for that 

colouring. 

Proof 

Let f be any chromatic colouring of G. If V(G) – S is a colour transversal for this colouring then the 

result is proved. 

So, suppose V(G) – S is not a colour transversal for this colouring. Then there is a colour class C of 

this colouring such that  C  S. Now, S is not a maximal independent set. Therefore  a vertex z 

which is not in S and it is not adjacent to any vertex of S. Let C be the colour class such that z  C. 

Suppose C = {z} then z has neighbours in every other colour class. In particular, z has neighbour in 

C. This implies that z is adjacent to some vertex of S. 

This is a contradiction. 

 C contains atleast two vertices one of which is z. Now define a new colouring f as follows. 

f  (x) = f (x)   if   x ≠ z   & f  (z) = f (t) where t  C   

Then f  is a chromatic colouring of f in which V(G) – S is a colour transversal.   

Theorem 2.9 

Let G be a graph with n vertices. Then either 0(G) + (G) = n or 0(G) + (G) = n + 1 

Proof 

Suppose there is a maximum independent set T such that S = V(G) – T is a colour transversal for 

some chromatic colouring of G. Then S is a colour transversal vertex covering set of G. 
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Claim 

S is a minimum CTVC set of G 

Proof of the Claim 

Suppose S is not a minimum CTVC set of G. Let S1 be a minimum CTVC set of G. 

Then | S1 |  | S | 

Then | T |  | V(G) - S1 |  and V(G) - S1 is an independent subset of G because S1 is a vertex covering 

set of G. 

This is a contradiction because T is a maximum independent subset of G. Thus, S must be a minimum 

CTVC set of G & therefore (G) = | S | 

Obviously, 0(G) + (G) = n 

Suppose for any maximum independent set T, V(G) – T is not a colour transversal for any chromatic 

colouring of G. 

Let T be any maximum independent subset of G. Let x  T & consider the set T1= T – {x}. Then T1 is 

an independent set which is not maximal. 

By the above proposition, there is a chromatic colouring f of G such that S = V(G) – T1 is a colour 

transversal for this colouring. Since T1 is an independent set, S is a vertex covering set. So, S is a 

CTVC set. 

Claim 

S is a minimum CTVC set  

Proof of the Claim 

Suppose S is not a minimum CTVC set. Let S1 be a minimum CTVC set of G. 

Then | S1 |  | S | 

Now, let T = V(G) – S1. Then T is an independent set & | T|  | T1 | 

Since, T is an independent set | T| = | T1 | + 1 

 T is a maximum independent set such that S1 = V(G) – T is a colour transversal. 

This is a contradiction. 

Thus S = V(G) – T1 is a minimum CTVC set of G. 

i.e. (G) = | S | 

Note that, | S | = n - 0(G) + 1 

Thus, (G) = n - 0(G) + 1 

(G) + 0(G) = n + 1         

Corollary 2.10 

Let G be a graph. Then, 0(G) = (G)  or  0(G) = (G) – 1 

Proof 

Suppose (G) + 0(G) = n  

Also, 0(G) + 0(G) = n  

0(G) = (G) 

Suppose (G) + 0(G) = n + 1 

(G) – 1 + 0(G) = n  

Since, 0(G) + 0(G) = n 

0(G) = (G) – 1          
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Corollary 2.11 

Let G be a graph. Then0(G) = (G) iff there is a maximum independent set T of G  V(G) – T is a 

colour transversal for some chromatic colouring of G. 

Example 2.12 

Consider the cycle graphC4then 0(G) = 2 &(G) = 3 

For this graph, 0(G) = (G) – 1 

Consider the cycle graphC5 then 0(G) = 3 &(G) = 3 

For this graph,  0(G) = (G)  

Note 2.13 (Vertex Removal from a Graph) 

Let G be a graph and v  V(G). Consider the subgraph (G – v) also consider the numbers (G) 

&(G – v)  

We may ask the following question 

What is the relation between (G) &(G – v) ? 

We have the following proposition. 

Theorem 2.14 

Let G be a graph and v  V(G). Suppose (G – v) = (G) then (G – v) ≤ (G) 

Proof 

Let S be a minimum CTVC set of G with respect to some chromatic coloring f of G. Since (G – v) = 

(G), {v} is not a colour class for this chromatic colouring of G. Consider the function g which is 

restriction of f on G – v then g is a chromatic colouring of G – v because (G – v) = (G). 

Case 1:Suppose v  S 

Then obviously S is a colour transversal for the chromatic colouring g of (G – v) because g uses the 

same colours as the f. 

Also S is a vertex covering set of (G – v). 

 S is a CTVC set of (G – v) (w.r.t. the chromatic colouring g) 

(G – v) ≤  | S|  = (G) 

Case 2: Suppose v  S 

Then S – {v} is a vertex covering set of (G – v) but it need not be a colour transversal w.r.t. the 

colouring g. Let u be a vertex of G – v which has the same colour as v ({v} is not a colour class in f). 

Let S1 = (S – {v})  {u} 

Then S1 is a CTVC set of (G – v). 

(G – v) ≤ | S1 | = | S| = (G)          

Remark 2.15 

It can be observed from example – 1 that  (C5) = 3 while  (C5 – v1) = 2,  (C5 – v5) = 2 

Here,(G – v) <(G) 

It can be observed from example – 2 that  (P4) = 2 while  (P4– v1) = 2,  (P4– v2) = 2 

Here, (G – v) = (G) 

Theorem 2.16 

Let G be a graph and v  V(G). If (G – v) <(G) then (G – v) = (G) – 1 

Proof 

Suppose that (G – v) <(G) then (G – v) = (G) – 1 
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Let S1 be minimum CTVC set of (G – v) with respect to some chromatic colouring f of (G – v). 

Suppose this colouring has used colours 1, 2, ….. , k-1. 

If we assign any of this colour to v then it will not be a proper colouring because (G – v) <(G). 

Therefore a new colour says k must be assigned to vertex v to get a new chromatic colouring f of G 

as follows 

f  (v) = k and  

f  (w) = f (w) if w ≠ v 

The set S1 may or may not be a vertex covering set of G but it is certainly not a colour transversal for 

this colouring f  of G. Also it can not be a colour transversal for any chromatic colouring of G 

because it will imply that the chromatic number of G = k – 1. 

If S = S1  {v} then S is both a colour transversal & a vertex covering set of G. 

Since (G – v) <(G), S must be a minimum CTVC set of G. 

(G) = | S| = | S1 | + 1 = (G – v) + 1 

Now suppose (G – v) = (G) 

Let S1 be minimum CTVC set of (G – v) with respect to some chromatic colouring f of (G – v). 

Since (G – v) = (G), {v} is not a colour class in any chromatic colouring of G. 

Let g be a chromatic colouring of G  the restriction of G on (G – v) is the chromatic colouring f. In 

this colouring the colour of v will also appear as colour of some other vertex of G. 

 S1 is a colour transversal for this colouring g. 

Since (G – v) <(G), S1 can not be a vertex covering set of G. Let S = S1  {v} then obviously S is 

a vertex covering set of G and it is also a colour transversal with respect to chromatic colouring g of 

G. Since (G – v) <(G), the set S must be minimum. 

Thus, (G) = | S| = | S1 | + 1 = (G – v) + 1       

Proposition 2.17 

Let G be a graph and v  V(G). If (G – v) <(G) and (G) = 0(G) then 0(G – v) <0(G) 

Proof 

Suppose 0(G – v) = 0(G) 

Now, (G – v) = (G) - 1 

     = 0(G) – 1 

<0(G) = 0(G – v) 

(G – v) <0(G – v) 

This is a contradiction 

0(G – v) <0(G)           

Corollary 2.18 

Let G be a graph and v  V(G). If 0(G – v) <0(G) &0(G) <(G) then (G – v) <(G) 

Proof 

Suppose (G – v) = (G) 

Then, (G – v) = (G) >0(G) >0(G – v) 

Now, 0(G) = (G) – 1 and 0(G – v) = 0(G) – 1 

0(G – v) = (G – v) – 2  
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Which is not possible 

(G – v) <(G)           

Proposition 2.19 

If (G – v) >(G) then 0(G – v) = 0(G) = (G) 

Proof 

First we prove that 0(G) = (G) 

Suppose 0(G) <(G) 

Then (G – v) - 0(G – v) = (G – v) - (G) + (G) - 0(G) + 0(G) - 0(G – v) 

    1 + 1 + 0 = 2 

(G – v) - 0(G – v)  2 

Which is not possible. Thus, 0(G) = (G) 

Suppose 0(G – v) <0(G) 

Then (G – v) - 0(G – v) = (G – v) - (G) + (G) - 0(G – v) (  ∵0(G) = (G) ) 

 1 + 1 = 2 

Again this is a contradiction. 

0(G – v)  =  0(G)           

Remark 2.20 

From the above proposition it follows that if (G – v) >(G) then every minimum CTVC set of G 

does not contain v because such a set is always a minimum vertex covering set of G                            

(∵0(G) = (G) is a minimum vertex covering set of G and since 0(G – v) = 0(G) no minimum 

vertex covering set can contain vertex v.) 

3. CONCLUDING REMARK 

We have proved in theorem – 2 that if (G – v) = (G) then (G – v) ≤ (G) however we do not 

know if (G – v) <(G) then (G – v) ≤ (G).  

We Present the following conjecture. 

3.1 Conjecture 

If (G – v) <(G) then (G – v) ≤ (G). 
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