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The curvature of the midlocus in the plane
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Abstract: The curvature of the midlocus associated to a smooth plane curve is investigated.
Also, the impact of the type of the singularity of radius function on the relationship between the
curvature of symmetry set and the associated midlocus is pointed out.
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1 INTRODUCTION

The concept of midlocus of a plane curve was initially introduced by Brady under the name
”smoothed local symmetry” (cf. [3]). Later on the mathematical investigation of midlocus was
provided by Peter Giblin and his student Brassett. In [7] they give the condition for the midlocus
of a plane curve to be a regular curve. Also, they study the behaviour of the midpoint map. In [9]
Peter Giblin and Warder introduce a system of ordinary differential equations generating by the
midlocus of a plane curve and the radius function. The solution of the this system is the symmetry
set. As a result of this, the boundary curve will be created as the envelope of the circles centered
on the symmetry set. For more details on envelope we refer the reader to [4, 5, 6, 7, 8]. Standing on
this, we can easily recognize the importance of the midlocus. The results in [9] had been generalized
to the higher dimensions by the author [1]. Also, the singularities of the midlocus associated to a
space curve and a surface in R3 are studied in [1, 2].
This paper is divided into three main parts, the first part deals with the introduction and the
second part treats preliminaries which give the basic concepts of symmetry set of a plane curve
and its relation with the associated midlocus. The third part, deals with the relation between the
arc-length of the symmetry set of a plane curve and the associated arc-length of the midlocus and
the relation between the Serret-Frenet frames of the symmetry set and the associated midlocus.
Also, the curvature of the midlocus will be given in terms of the curvature of the symmetry set,
the radius function and its derivatives. Moreover, the curvature of the midlocus will be given in a
simple formula involving the angle between the tangent of the symmetry set and the tangent of the
midlocus as well as the angle between the normal of the boundary and the tangent of the symmetry
set.
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2 PRELIMINARIES

In this section, we review the basic concepts of a plane curve. Also, we give the essential concepts of
the symmetry set of an object in the plane with smooth boundary. Also, we highlight the concept
of the midlocus.

A curve γ : I → R2 is a regular plane curve if γ′(t) ̸= 0 for all t ∈ I. The unit tangent vector

associated to a regular plane curve γ is defined by Tγ =
γ′

∥γ′∥
and the associated unit normal Nγ is

obtained from Tγ by rotating anticlockwise through a right angle. The curvature of a regular plane
curve given by the parametric γ(t) = (γ1(t), γ2(t)) is given by

κγ =
γ′1γ

′′
2 − γ′′1γ

′
2(

γ′1
2 + γ′2

2
) 3

2

.

γ is a unit speed curve if ∥γ′(t)∥ = 1 for all t ∈ I. If γ is a unit speed plane curve, then the
Serret-Frenet equations are given by


T ′
γ = κγNγ

N ′
γ = −κγTγ .

In the rest of this section we present the the basic concepts of the symmetry set in the plane. Also,
we highlight the relationship between the symmetry set and the boundary curve. First we give the
definition of the symmetry set and the associated midlocus.

Definition 2.1 Given an object Ω in R2 with smooth boundary curve γb the symmetry set S is the
clousure of the locus of centres of circles, bitangent to γb. The midlocus associated to γb is the locus
of the midpoints of chords joining the tangency points.

Now if γ is the regular part of the symmetry set and x0 be a point on γ. If x1 and x2 are the
associated boundary (tangency) points, then the associated boundary curves around x1 and x2 are
given by (cf. [1, 6, 8] )

γi = γ − r′rTγ ± r
√

1− r′2Nγ , i = 1, 2, (1)

where Tγ (resp. Nγ) is the unit tangent (resp. unit normal) of γ, r is the radius function and prime
denotes the derivative with respect to the arc-length of γ.
In this case γ1 and γ2 are oriented in opposite direction and their unit normals are pointed to the
center of the bitangent circle as show in figure 1.

Tγ

x2

γ1

γ2
x0

x1

θ xm

γ

Figure 1: The symmetry point x0 and the associated midlocus xm.
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Also, the associated midlocus is given by

γm =
γ1 + γ2

2
= γ − r′rTγ . (2)

The unit tangents and the unit normal of the boundary at the tangency points are given by

Lemma 2.2 [8] Let γ be the symmetry set of a smooth plane curve γb and r be the radius function.
The unit tangents T1 and T2 and unit normals N1 and N2 of γb at the tangency points associated
to a smooth point x0 ∈ γ are given by

T1 = −
√

1− r′2Tγ − r′Nγ

T2 =
√

1− r′2Tγ − r′Nγ

N1 = r′Tγ −
√

1− r′2Nγ

N2 = r′Tγ +
√

1− r′2Nγ

where, Tγ and Nγ are the unit tangent and unit normal of the symmetry set at x0 and prime denotes
the derivative with respect to the arc-length of the symmetry set.

3 CURVATURE OF THE MIDLOCUS ASSOCIATED TO A PLANE CURVE

In this section we are going to study the curvature of the midlocus associated to smooth symmetry
set of an object in R2 with smooth boundary (for the applications of symmetry set and related
medial axis we refer reader to [10] ). In this section we assume that the midlocus is a regular
curve. Let γ be the symmetry set of a plane object Ω with smooth boundary parametrized by its
arc-length s, then the associated midlocus is given by γm = γ− rr′Tγ , where Tγ is the unit tangent
of γ and prime is the derivative with respect to the arc-length s. By direct calculation we easily
obtain the following lemma.

Lemma 3.1 Let γ be the smooth part of the symmetry set of an object Ω in R2 with smooth
boundary γb and r be the radius function. If γm is the smooth midlocus associated to γ. Then,

1.
dsm
ds

=
√

(1− r′2 − rr′′)2 + r2r′2κ2γ’

2. Tγm = 1−r′2−rr′′√
(1−r′2−rr′′)2+r2r′2κ2

γ

Tγ − rr′κγ√
(1−r′2−rr′′)2+r2r′2κ2

γ

Nγ,

3. Nγm =
rr′κγ√

(1−r′2−rr′′)2+r2r′2κ2
γ

Tγ +
1−r′2−rr′′√

(1−r′2−rr′′)2+r2r′2κ2
γ

Nγ.

where, κγ is the curvature of γ, s (resp. sm) is the arc-length of γ (resp. γm ) and prime denotes
the derivative with respect to the arc-length of γ.

Remark 3.2 It is clear form part 2 in Lemma 3.1 to observe that the tangents of the symmetry
set and the associated midlocus are parallel if and only if r′ = 0 or κγ = 0. If r′ = 0, then the
tangents of the boundary curve at the tangency points are parallel. Moreover, the symmetry point
and the associated midlocus point are coincide. If κγ = 0, then the curvatures of the boundary at
the tangency points are equal (this can be obtained directly from proposition 5.2.9 in [1] ).

Now we use Lemma 3.1 to calculate the curvature of γm. Put Tγm = αTγ + βNγ , where
α and β are given by 2 in Lemma 3.1. Differentiate with respect to the arc-length of γ we obtain

κγmNγm

dsm
ds

= (α′ − βκγ)Tγ + (ακγ + β′)Nγ .
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Now we have

κγmNγm ·Nγm

dsm
ds

= κγm
dsm
ds

= −β(α′ − κγβ) + α(κγα+ β′)

= −α′β + αβ′ + κγ(α
2 + β2)

= −α′β + αβ′ + κγ

= α2

(
β

α

)′
+ κγ .

(3)

But we have
β

α
=

−rr′κγ

1− r′2 − rr′′
. Therefore,

α2

(
β

α

)′
=

−(1− r′2 − rr′′)(r′2κγ + rr′′κγ + rr′κ′γ)− r2r′κγ(3r
′′ + r′′′)

(1− r′2 − rr′′)
2
+ r2r′2κ2γ

.

By substituting in equation (3) we get

κγm
dsm
ds

=
κγ [(1− r′2 − rr′′)

2
+ r2r′2κ2γ ]− (1− r′2 − rr′′)(r′2κγ + rr′′κγ + rr′κ′γ)− r2r′κγ(3r

′′ + r′′′)

(1− r′2 − rr′′)
2
+ r2r′2κ2γ

.

Now using Lemma 3.1 we obtain the following.

Theorem 3.3 Let γ be the smooth part of the symmetry set of an object Ω in R2 with smooth
boundary γb and γm be the associated smooth midlocus. Then the curvature of the midlocus is given
by

κγm =
κγ [(1− r′

2 − rr′′)
2
+ r2r′

2
κ2
γ ]− (1− r′

2 − rr′′)(r′
2
κγ + rr′′κγ + rr′κ′

γ)− r2r′κγ(3r
′′ + r′′′)

[(1− r′2 − rr′′)
2
+ r2r′2κ2

γ ]
3
2

, (4)

where κγ is the curvature of γ and prime is the derivative with respect to the arc-length of γ.

Definition 3.4 A smooth function f : R → R is said to have an Ak singularity at t0 if and only if
f ′(t0) = f ′′(t0) = ... = fk(t0) = 0 and fk+1(t0) ̸= 0.

The following corollary can be easily obtained from Theorem 3.3.

Corollary 3.5 Assume as in Theorem 3.3.

1. If the radius function has an A1 singularity at s0 i.e. r′(s0) = 0, r′′(s0) ̸= 0. Then, κγm =

δ

(
κγ(1− 2rr′′)

(1− rr′′)2

)
, where δ is the sign of (1− rr′′).

2. If the radius function has an Ak>2 singularity at s0, i.e. r
′(s0) = r′′(s0) = 0. Then, κγm = κγ.

Although equation (4) is useful for studying the relationship between the radius function and
the curvature of the midlocus, it is very complicated. Our task now is to find a simple formula for
the curvature of the midlocus. The following theorem gives such a formula.

Theorem 3.6 Let γ be the smooth part of the symmetry set of an object Ω in R2 with smooth
boundary γb and γm be the associated smooth midlocus. Let θ be the angle between the normal of
the boundary and the tangent of the symmetry set and ϕ is the angle between the tangent of the
symmetry set and the tangent of the midlocus. The curvature of the midlocus is given by

κγm =
cosϕ (κγ + ϕ′)

sin θ (sin θ + rθ′)
, (5)

where κγ is the curvature of γ and prime is the derivative with respect to the arc-length of γ.
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Proof: Let γ be the regular part of the symmetry set of an object Ω in R2 parametrized by
its arc-length with smooth boundary. Let γ1 and γ2 be two smooth pieces of the boundary curve
around the tangency points as shown in figure 1. Let θ be the angle between the tangent of the
symmetry set and the normal of the boundary as shown in figure 1. From Lemma 2.2 it is clear
that cos θ = r′. Now if ϕ is the angle between the tangent of the symmetry set and the tangent of
the associated midlocus Tγm , then

Tγm = cosϕTγ + sinϕNγ . (6)

Using equation (6) and equation (3), we obtain that

κγm
dsm
ds

= cos2 ϕ(tanϕ)′ + κγ

= ϕ′ + κγ

.

Therefore,

κγm =
ϕ′ + κγ
dsm
ds

.

From Lemmas 2.2 and 3.1 it can be shown that

dsm
ds

=
sin θ(sin θ + rθ′)

cosϕ
.

Therefore,

κγm =
cosϕ (κγ + ϕ′)

sin θ (sin θ + rθ′)

which completes the proof. �

CONCLUSION

In this paper we present the curvature of the midlocus of an object in the plane with smooth
boundary in two methods. We hope this will find implementations in shape recognition, shape
reconstruction, medical imaging, and describing objects.
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