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Abstract: A method is presented for calculating a matrix spectrum with a given set of eigenvalues. It can be
used to build systems with different spectrums with the aim of choosing desired alternative. It enables a
practical implementation of control algorithms without resort to transformation of variables.
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1. INTRODUCTION

The problem of target transforming a spectrum is the subject of control theory. It is called as the
method of characteristic equation setting, arrangement of eigenvalues, spectrum control, and modal
control [1-4]. To change a spectrum the relationships between coefficients of characteristic
polynomial and its roots are used. They are known as Vieta’s formulas. A given set of numbers
defines these coefficients. Because the matrix has alternate spectrum and coefficients, the elements of
the matrix need to be changed. However, this procedure is made not with the parent matrix, but its
transformed form called Frobenius. A Frobenius matrix have a row of elements representing
coefficients of characteristic polynomial up to a sign. They are changed by summing with elements
called feedback coefficients. As a result, we obtain a given spectrum.

To apply the method in a real-time control a transformation of variables is required to obtain a
Frobenius matrix. The matter is that variables in technical system are physical parameters
characterizing energy stores such as a speed of moving mass, a solenoid current, a capacitor voltage,
and so on that are measured by sensors. Implementing the transformation by hardware requires
additional schematic expenditures and software implementation needs an extra time that may cause a
delay in the feedback loop and deteriorate dynamical properties of the system.

The method for calculating a desired spectrum, for which the authors found possible to use the
definition in the headline, does not based on a Frobenius matrix.

It can be used to calculate the feedback coefficients of a control system with the aim to obtain a
desired spectrum of closed-loop system without resort to transformation of variables. This allows
practical problems of control to be solved at the design phase of the system. By simulating the system
behavior with different spectrums it is possible to find a suitable alternative, which can be further
implemented as a direct digital control algorithm. The paper is an outgrowth of the work [5].

2. AIM OF THE WORK
Suppose A=(a;;), I, j€[LK] is a given k x k real matrix, o(4) is its spectrum, and A={};} isa
set of real numbers. By A, denote the matrix A with k replaced elements by unknowns.

The objective is to consider a range of issues related to evaluation of the unknowns, which are
substituted into the matrix Ay, such that the condition c(A,) = A is satisfied.

3. DEFINITIONS

Definition 1. Replacement is a replacing the elements of the matrix A (replaced elements) by other
elements (replacing elements). Replacing matrix A, (matrix with replacement) is a matrix with
replacing elements.
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Definition 2. Spectral equations of matrix A (replacement system) are k equations that was formed by
replacing the coefficients of Vieta’s formulae by the sums of main minors of the matrix A; and by
replacing the roots by the elements from a given set A.

Definition 3. Replacement of the i-th order is a replacement leading to spectral equations of the i-th
order. Linear replacement is a replacement of the first order. Non-linear replacement is a replacement
of the second order or higher.

Definition 4. Spectral transformation of the matrix A is a replacing the elements of the matrix A, by
the solution of spectral equations.

4. FROBENIUS TRANSFORMATION OF A SPECTRUM AND ITS ALTERNATIVE

For a matrix
i 8 A
a a a
A—| %21 922 2k , 1)
Aq G A
it is known Vieta’s formalas

where o;and a; are the i-th root of the characteristic polynomial and the result of summation in the i-th
row, which are the coefficients of the characteristic polynomial considering the sign.

Frobenius transformation of a spectrum is based on obtaining the elements on the left-hand side
(taking into account the sign) by non-singular transformation of the matrix A and by supplementing
them to the values that satisfy a given set. This corresponds to the fact that the sum on the right-hand

side (2) are replaced by the same relationships between the numbers of a given set A ={A;}, and the

elements on the left-hand side are supplemented by unknowns x;. This leads the system to the
equations

@)

ak + Xk = 7\,1}\«2...}\4( = dk

with an obvious solution x; =d; —a,, where d; is a sum in the i-th row. Substituting the solution into
Frobenius matrix one forms its spectrum with the values from a given set A.

The possibility to change a matrix spectrum by supplementing the matrix elements to the values that
satisfy a given set provides an alternative to Frobenius transformation of a matrix.

To perform this procedure, we use the system (2) in the form of sums of main minors on the left-hand
side. The example of such system for a matrix of the 3-rd order is given by

ayy tay +az =4,
Ayq8yp —ayp8y) + 811833 — Q383 T Apdsz — Axdsy = Ay,

Q1189833 + 8189383 + 8138183y — 81981833 — 8118383y — 138,83 = d3.

Now, we supplement arbitrary elements of A, for example, the main diagonal elements by unknowns
X1, X2, and Xs. AS a result, the matrix A takes the form

International Journal of Scientific and Innovative Mathematical Research (1JSIMR) Page 44



On the Direct Transformation of a Matrix Spectrum

a;tX a;, a3
Ac=| @y antX A3 |
a3 az, 33t X3

and we obtain the system of equations for supplements the same as (3):
(ags + X, )(@g +Xp) — 81285 +(@y1 + X, )85 + X3) —By38 + (g + X )(833 + X3) — a8z = ;]
(ags + X, )(@g + X )(a33 + X3) + 81585389 + 81385185 — 8158 (gs + X3) — (811 + X1) 8383, —
—ay3(ay +X;)ag =d,.

(4)

By solving (4), we consider the goal has been achieved. Indeed, substituting the solutions into the
matrix A, one makes it equal to a given set without resort to transforming the matrix.

5. SPECTRAL EQUATIONS AND THEIR TYPES

The above computational difficulties can be significantly reduced by choosing as the unknowns the
elements instead of just the supplements. For this purpose, the k arbitrary elements of A are replaced
by unknowns, which are denoted for presentation by the capital letter X with the same indexes. For
example, instead of the matrix

a1 ot X% &3
A=l a1+ X, @p+X3 8
as; asp 433
with unknown supplements it is assumed the replacing matrix of the third order:
a;; X A3
A= X1 Xy ag3|- (®)
d31 @432 dgg
The result is the system of equations for Xi,, X»1, X, of the form
ay + Xpp +ag =0y,
ay X g = Xyp X1 + 841833 — 84385 + X 833 — p38g =y, (6)
Ay X 50833 + X 12853831 + 13X 51835 — X1p X 1833 — 8118383, — 8y3X a3 = 3.

In general case, replacement of k elements of A with combining the replacing elements X;; into the
vector X;; and building A, gives the system of equations

F(X) =0, ()
where F is the non-linear vector function with size of k called by the spectral equation.

In a similar way, we can choose
k
N = Ckz (8)

different replacing sets of elements and obtain replacing matrices in the form of (5) and equations in
the form of (7). The number N very rapidly increases with the size of A. For small values of k, it is
given in Table 1.

Table 1.
k 2 3 4 5 6 7
N 6 84 1820 53130 1947772 85900584
n 1 20 495 15504 776475 26978328
M 5 64 1325 37626 1171297 58922256
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The type of the system (7) depends on the arrangement of replacing elements in A,. If we allocate the
replacing elements in different rows and columns, as it is shown for the matrix (5), the system can
takes the linear or non-linear form of degree from 2 to k. However, not all of the systems have a
solution. Using a particular matrix, we can at once determine a group of systems that do not have a
solution.

Further, for the sake of simplicity, we will denote the replacing and non-replaced elements of matrices
by the numbers that equal to the indexes and dots, respectively.

The right-hand side of the first equations of the system (6)
ayy + Xy +ag3 =04

is the fixed sum, and the left-hand side has the unknown, therefore, the equation is consistent with
arbitrary values of ay4, as3, and d;. But, for the other matrix

L 12 .
A=| . . 23], ©)
31

there are no unknowns on the left-hand side of
ay +ay, +ag =0,
S0, the last expression is inconsistent.

It is straightforward to make the following generalization. The matrix (9) belongs to the family of
matrices, which is formed by replacing k elements of A that lie outside of the main diagonal in the two
triangle areas containing k? — k elements. This means that a necessary condition to solve (7) is that at
least a one replacing element must be located on the main diagonal. It follows that the number of
inconsistent equations (7) is equal to the number of combinations

The dependence (10) is also given in Table 1.
Subtracting (10) from (8), we obtain
M =N - N, (11)

(given in Table 1) that is the number of solvable systems (7). Under appropriate conditions, this
number is the sum

M=>M,, (12)

where M; is the number of the i-th order equations.

Determining the terms in (12) for a general case as functions of k is the problem that needs to be
solved. Even calculating My, i.e. determining the number of the linear systems (7), is unobvious
procedure that requires an analysis of equations of the form (6). We can say definitely (or, rather, we
can suggest, since there is no rigorous proof) about only the single term M; for i = k. It is equal to 1. In
other words, there is only one way to replace k elements of matrix that allows a spectral equation of
order k to be obtained by replacing the elements on the main diagonal.

We consider next a particular case for a matrix of the third order. By analyzing 64 consistent
equations (7), we establish 18, 45 and 1 variants to replace 3 elements according to (11).
Replacements are described by two types of the first order equations, six types of the second order
equations, and one type of third order equation. Equations of all types are resulted.

6. SPECTRAL TRANSFORMATION OF THE THIRD ORDER MATRIX

At first, we discuss the variants with evident solving the problem of choosing elements for linear
replacement associated with a replacement of rows and columns of A.
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There is only one element of replacing rows and columns in the summands of minors. Each of
summand contains one unknown, and the multipliers obtained from the remaining elements give the
coefficient at the summand. Assembly of these coefficients forms a matrix denoted by R. These

equations belong to the type 1.1.

Some summands on the left-hand side, as it can be seen from the system (6), do not have replacing
elements. We combine these elements in the row i into the element b;. Then, after combining the
elements b; and d; into the vectors b and d respectively, we can represent the equation (7) in the linear

b

form
RX=d-
by replacing rows and columns.
The solution to (13) exists under condition
detR=0.

6.1 Linear Spectral Equations
Replacing rows and columns one gives the matrices

11 12 13 o
nl. . .|, 2|21 22 23
1 . . L 12 .
al21 . .|, 5. 22 .|, 6
31 .. Y

3)

31 32 33

13
23
33

with appropriate equations. For example, for the matrix 1), we obtain the following equations

Xy 8y +ag=0d;;

X1189p = X1p8p1 + X 11853 — X383 +8pp8z3 — A8z = dy;

X 11899833 + X1p8383 + X 1381837 — X1p8p833 — X118p383) — X138284 = 3.

They can be presented in the form (13) as

RX;=d-b,
where X; = (X3, X2, X13)" s Xy =(Xa1, Xg9, X53)7 ) X3 =(Xgy, X, Xg3)",
Xy = (Xllv X1 XSl)T y Xg = (X12! X2, )(32)T » Xg :(Xlsv X3, X33)T , d= (dlv dzv d3)T’
fi=ay +ag, fo=ay+ay, fy=ay+ay, 0;=2ayags—a3dy, U, =axay —axas,

03 = Qnagy —Aydy , J4 =383 —apdsz, J5 = a3 — 13831, Jg = 1831 —apjay ,
_ _ _ T
Q7 = Qo83 —Ay3dy, Ug = dy38p — 1183, Jg =y1dp —appay, b =b, =(f}, 9;,0)

1 0 0 0
b2:b5:(f21g5’0)T’ b3:b6:(f319910)T1 R]_: fl —6121 —a31 ’ R2: —8.12
0. 9 O3 U4
0 0 1 1 0 0 0 1 0
Ry=|—-a;3 —@y; f3|, Ry=|f —a, —as| Re=|—-a; f, —ay|,
97 O Yo 09 9 93 94 U5 Qe
0 0 1
Re=|—-a3 -3, f3
97 s Qo
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Equations (17) do not describe all of possible linear systems but determine only obvious ones. If
replacing elements are not rows or columns, we can also get the linear system (7). In this case, the
summands of minors can contain a product of replacing elements. Indeed, for example, for the matrix

11 12 .
A=l. . .| (18)
32
the replacement system is
Xy + 8 +ag =0y
X189 — 8128 + X183 — Q13X gy + 8853 — 85X gy = ;] (19)

X 11809833 + X 15853851 + 813851 X 3p — X 1581853 — X11855X 3p — 4385583, = 3.
In the third row, we obtain the summand with a product of unknowns X;; and Xs,. However, we can
find Xy, from the first equation (i.e. Xy; is known), and the system becomes linear. These equations
belong to the type 1.2. The given types of equations exhaust linear replacements. The number of
equations with types 1.1 and 1.2 is equal to 6 and 12 respectively.

7. THE SECOND ORDER REPLACEMENTS
7.1 Replacing a Single Diagonal Element

Replacements with a single diagonal elements lead to different types of the second order equations.
Consider the matrix

11 12 .
A=l. . .|, (20)
31
which differs from (16) in a single element. The second and third equations for (18) is given by
X118y = X281 + Xyj8g3 — 83X g1 + 8833 —p38g = Uy; (21)
X 11850853 + X1p855 X 31 + 838,85 — X 12851833 — X1185383, — 84382 X 31 = 3.
The last equation of (21) is like (19) only externally. In the product, there is no variable expressed
from the first equation. This type of replacement is denoted as 2.1.

The matrix

11 12
A=l21 . . (22)

differs from (20) in a single element and contains by a single product of elements in two equations:

X1189p — X1p X1 + X 1835 — 843831 +8pp833 — Apdgy =dy;

(23)
X 11890833 + X 12853831 + 813X 1837 — X5 X 91835 — X 1189383, — Q1389983 = d3.
This type of replacement is denoted as 2.2.
The matrix
11 . .
A=l. . 23 (24)
32
differs from (16) in a single element and also contains the product of elements in two equations
X 11895 — A1p8p; + Xqq833 — 383 +pdg3 — X3 X5 =dy; (25)

X 11899833 + a5 X 53831 + &30 X3y — Q1281833 — K13 X 93X 3 — Q1389983 = 3,
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but the third equations has the product of three elements.
This type is denoted as 2.3.
The matrix

1 12 .
A=l. . 23 (26)

is characterized by the equations
Xy18y — X8 + X 11853 — 8y383; + 833 — X383, = y; 27)
X 11800853 + X15 X038 + 84385185, — X1p8p1853 — X3 X 5383, — 813883 = U3

with two products of two unknowns in the third row. This type is denoted as 2.4.

7.2 Replacement of Two Diagonal Elements

When two diagonal elements are replaced the type of equations depends on a choosing the third
element. Consider two matrices

11 12 . 11 . 13
al. 22 .[;b|. 22 . (28)

with identical replaced diagonal elements and common first equation X;; + X, +a43 =d,. For the
matrix a), the equations

X11X 20 = Xqp8p + X 11833 — 843831 + X 0833 — 85383, = Uy;

(29)
X11X 50833 + X1p8385 +81389183p — X1p8p833 — Xq18p383) — 43Xy = U3
differ from 2.2 in the first equation. They are denoted as 2.5. For the matrix b), the equations
X11X 50 — @851 + X 1835 — X381 + X 0833 — 85385, = Uy; (30)

X11X 3833 + 812853831 + X1389185) — 812851833 — X118p383, — X13X 83 =3
with a single product in the second row and two products in the third row are denoted as 2.6.

The number of equations with a single replaced diagonal element of the types 2.1 and 2.2 is equal to
6. The number of equations of types 2.3 and 2.4 is equal to 3 and 12 accordingly. The number of
equations with two replaced diagonal elements of the types 2.5 and 2.6 is equal to 6 and 12
accordingly.

7.3 Replacement of k-order

In general case, the last equation of (7) contains the k! summands with products of k elements while
the single summand has all unknown multipliers. Replacement of k elements using variants of (10)
gives spectral equations of the k order only for unique case when the main diagonal of a matrix is
replaced. Other variants of replacement lead to equations of the lower order. This conclusion is done
without proving due to analysis of all spectral equations of the third order matrix.

For the third order matrix, 63 of 64 variants for choosing three elements lead to equations of the first
and second order. The remaining matrix

1m ..
A= . 22 . (31)
33

is characterized by the third order equation
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Xy + Xgp + Xgz =dy;
X1 X5 —@up8p; + Xqg Xg3 — By38g; + X 55 X3 — 8z, = d; (32)
X113 X 55 X 33 + 12823803 + 81385183 — X118p383, — 813X 583 — 81285 X g3 = 3.

The result obtained can be generalize for an arbitrary order matrix.

Example 1. With a set A ={1, 0, —1}, consider variants of transforming a spectrum by replacing
rows and columns in the matrices

12 3 010 010
)4 5 6/, 22 2 2], 3)[1 2 2.
789 353 010

The matrix 1). Let’s calculate d; =0, d, =—-1, d; =0 and determine matrices and vectors (17):

d=(0,—1,0)T, f1:14, f2:10, f3:6, gl=_3’ 92:6, 93:_3, g4:6, 95:_12, g6:6,
g;=-3, Ug=6, gg=-3, by=b, =(14,-3,0)", b, =b, =(10,-12,0)", by =by; =(6,-3,0)",

1 0 0 0 1 0 0 0 1
R=[14 -4 —7|,R,=[-2 10 -8[,Ry=|-3 -6 6 |,
-3 6 -3 6 -12 6 -3 6 -3
1 0 O 0 1 0 0 0 1
R,=|14 -2 -3|,Ry=|-4 10 -6|, Ry=|-7 -8 6
-3 6 -3 6 -12 6 3 6 -3

The matrices are non-singular, hence, there are all the solutions:

X, =RHd —by) = (X1, Xqp, Xq3)" = (—14, -16.444, -18.889)" ,

X, =RyM(d —Db,) = (Xy, Xy, Xp3)" =(-8.167,-10, —11.833)",

X3 =Rz (d —by) = (X3, Xa, Xa3)" =(-3.333,-4.667,-6)",

Xy = Rll(d —by) = (X1, Xz, X31)T =(-14,-30, —46)T '

Xs = Rs_l(d —b5) = (X1, X2, st)T =(-4.5,-10, _3-636)T '

Xg=Rg (d —bg) = (Xy3, Xpg, X33)" =(~1.273,-15.5,-6)" .
With these solutions, replacing matrices (15)

~14 -16.444 -18.889 1 2 3
A, =| 4 5 6 | A,=|-8167 -10 -11.833,
7 8 9 78 9

1 2 3 ~14 2 3
A= 4 5 6 A,=-30 5 6|,
~3.333 -4.667 -6 ~46 8 9
1 -45 3 1 -45 -1273
A.=|4 5 6| A =[4 5 -155
7 -3636 -6 7 -3636 -6

take the spectrum
o(A, )= 1L -11516-10, ofA, )
oA, )= {1 -1,5437-10%}, oA )=1{1 -1, 2421.10%}, o{A, )= 1,-2876- 10" 3

1,-8.847-10"°, -1, o|A_)=11,2.044.10™", -1;,
{ 3. olA, )= |
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that is equal to a given set with calculating accuracy.

The matrix 2). Omitting intermediate calculations, here and further, we find matrices

1

0 0 01 0 0 0 1

R=l5 -2 -3|,Ry=|-1 3 -5[,Ry=|0 -2 2 |,
-4 0 4 -3 0 3 2 6 -2
1 00 01 0 0 0 1

R,=| 5 -1 0[,Ry=|-2 3 —2|,Ry=[-3 -5 2
~4 -3 2 0 0 0 4 3 -2

Among all the matrices only Rs is singular and hence the solution X5 does not exist.
With the remaining matrices, the solutions to the systems (17) are
X;=(-6,-8-6)", X, =(-2,-4,-2)", X3=(-3,-4,-3)",

X, =(-6,-34,-63)", Xz =(-0.545,-1.273,-3)" .
Substituting them into the matrices (15)

-6 -8 -6 0 1 0 0 1 0
A=l 2 2 2| A =-2 -4 -2/,A =2 2 2|
3 5 3 3 5 3 -3 -4 -3
-6 10 0 1 —-0.545
A, =|-34 2 2|,A =2 2 -1273
-63 5 3 35 3
one forms the spectrum
G(A(l): {—3.125-10‘15+i 1.142.107, -3.125-10°—-j-1.142.10, —1},

oA, )= 1L -2944.10%,2.944.10®}, o{A, )={-1, 4.133-10%, 4.133-10°%,

oA, )= 3.88-10°%,388-10°, 1}, ofA, )= 1i-3.269.10°%, -i-3.269.10°%
that is equal to a given set.
The matrix 3). Let’s evaluate the matrices
1

0 0 01 0 00 1

R=|2 -1 0|,R=[-10 -1[,R=[0 -2 2|,
-2 0 1 0 0 0 2 0 -1
1 0 0 01 0 0 0 1

R,=| 2 -1 0|,Ry=|-1 3 —2|,Ry=[0 -1 2
-2 0 2 0 0 O 1 0 -1

The matrices R, and Rs are singular and hence the solutions X, and X5 do not exist. With the
remaining solutions

X;=(=2,-5-4)", X5=(-1,-2,-2)", X;=(-2,-5-2)", Xg=(-2,-4,-2)"
the matrices

1 0 -210 01 -2
A= 1 2 2| A=l1 2 2| A=|-522A=[12 -4
0 1 0 -1 -2 -2 -2 10 01 -2

International Journal of Scientific and Innovative Mathematical Research (IJSIMR) Page 51



Albert Iskhakov & Sergey Skovpen

take the given spectrum

olA,)=1.0,-1}, o(A,)=-10}, oA, )= 1 2148-10"%, -1f; o{A, )= f.-1,0}.

Example 2. Spectrum transformation with linear replacement of elements in different rows and
columns. Consider the matrix

.13
22 23

and the equations
gy + Xpp +ag3 =dy;
31 X gy — Ap8y; + 845833 — Xq38g + X g3 — X385 = dy;
8y X g8z + 81y X 93831 + X138p183) — 81851833 — 31 X 5383y — X 13X 85, = 3.
From the first equation we define the unknown
Xy =0y —ay; —ag;

at once. Two others are reduced to a linear equation for Xi3 and X,; with the matrix

( as) asp J
A8z —ay Xy  Apdg —ay;dg
and the vector

(_ dy + (g +ag3) Xpp —app8y + 311333]
d3 —ayq833X p + 3158353

With the set and matrix 1) from example 1, the solution
(Xqz, X, X3)" =(2.434,-10,-14.38)"

for the matrix

1 2 2434
A, =|4 -10 -14.38
7 8 9

forms the given spectrum G(Aﬁs): {L -1 —8.065-10’14}.

All calculations was made in MathCAD.
8. CONCLUSION

A method for obtaining a matrix spectrum equal to a given set of numbers without transformation to a
Frobenius form is stated. Calculating tool is a system of equations, which having obtained by
replacement of arbitrary matrix elements by unknowns. Their number is equal to the size obtained
from relationships between matrix elements in the form of main minors and elements of a given set.

The method has many variants for choosing replacing elements and equations to calculating replacing
elements from linear to non-linear with an order equal to the size.
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