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Abstract: A method is presented for calculating a matrix spectrum with a given set of eigenvalues. It can be 

used to build systems with different spectrums with the aim of choosing desired alternative. It enables a 

practical implementation of control algorithms without resort to transformation of variables. 
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1. INTRODUCTION 

The problem of target transforming a spectrum is the subject of control theory. It is called as the 

method of characteristic equation setting, arrangement of eigenvalues, spectrum control, and modal 

control [1-4]. To change a spectrum the relationships between coefficients of characteristic 

polynomial and its roots are used. They are known as Vieta’s formulas. A given set of numbers 

defines these coefficients. Because the matrix has alternate spectrum and coefficients, the elements of 

the matrix need to be changed. However, this procedure is made not with the parent matrix, but its 

transformed form called Frobenius. A Frobenius matrix have a row of elements representing 

coefficients of characteristic polynomial up to a sign. They are changed by summing with elements 

called feedback coefficients. As a result, we obtain a given spectrum. 

To apply the method in a real-time control a transformation of variables is required to obtain a 

Frobenius matrix. The matter is that variables in technical system are physical parameters 

characterizing energy stores such as a speed of moving mass, a solenoid current, a capacitor voltage, 

and so on that are measured by sensors. Implementing the transformation by hardware requires 

additional schematic expenditures and software implementation needs an extra time that may cause a 

delay in the feedback loop and deteriorate dynamical properties of the system. 

The method for calculating a desired spectrum, for which the authors found possible to use the 

definition in the headline, does not based on a Frobenius matrix. 

It can be used to calculate the feedback coefficients of a control system with the aim to obtain a 

desired spectrum of closed-loop system without resort to transformation of variables. This allows 

practical problems of control to be solved at the design phase of the system. By simulating the system 

behavior with different spectrums it is possible to find a suitable alternative, which can be further 

implemented as a direct digital control algorithm. The paper is an outgrowth of the work [5]. 

2. AIM OF THE WORK 

Suppose )( , jiaA  , ],1[, kji   is a given k  k real matrix, (А) is its spectrum, and }{ i  is a 

set of real numbers. By Ax denote the matrix A with k replaced elements by unknowns. 

The objective is to consider a range of issues related to evaluation of the unknowns, which are 

substituted into the matrix Ax, such that the condition  )( xA  is satisfied. 

3. DEFINITIONS 

Definition 1. Replacement is a replacing the elements of the matrix A (replaced elements) by other 

elements (replacing elements). Replacing matrix Ax (matrix with replacement) is a matrix with 

replacing elements. 
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Definition 2. Spectral equations of matrix A (replacement system) are k equations that was formed by 

replacing the coefficients of Vieta’s formulae by the sums of main minors of the matrix Ax and by 

replacing the roots by the elements from a given set . 

Definition 3. Replacement of the i-th order is a replacement leading to spectral equations of the i-th 

order. Linear replacement is a replacement of the first order. Non-linear replacement is a replacement 

of the second order or higher. 

Definition 4. Spectral transformation of the matrix A is a replacing the elements of the matrix Ax by 

the solution of spectral equations. 

4. FROBENIUS TRANSFORMATION OF A SPECTRUM AND ITS ALTERNATIVE 

For a matrix 
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where σi and ai are the i-th root of the characteristic polynomial and the result of summation in the i-th 

row, which are the coefficients of the characteristic polynomial considering the sign. 

Frobenius transformation of a spectrum is based on obtaining the elements on the left-hand side 

(taking into account the sign) by non-singular transformation of the matrix A and by supplementing 

them to the values that satisfy a given set. This corresponds to the fact that the sum on the right-hand 

side (2) are replaced by the same relationships between the numbers of a given set }{ i , and the 

elements on the left-hand side are supplemented by unknowns xi. This leads the system to the 

equations 
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with an obvious solution 111 adx  , where di is a sum in the i-th row. Substituting the solution into 

Frobenius matrix one forms its spectrum with the values from a given set Λ. 

The possibility to change a matrix spectrum by supplementing the matrix elements to the values that 

satisfy a given set provides an alternative to Frobenius transformation of a matrix. 

To perform this procedure, we use the system (2) in the form of sums of main minors on the left-hand 

side. The example of such system for a matrix of the 3-rd order is given by 

.

,

,

3312213322311332112322113312312332211

2322333223113331121122211

1332211

aaaaaaaaaaaaaaaaaaa

aaaaaaaaaaaaa

aaaa







 

Now, we supplement arbitrary elements of A, for example, the main diagonal elements by unknowns 

x1, x2, and x3. As a result, the matrix A takes the form 
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and we obtain the system of equations for supplements the same as (3): 
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;
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 (4) 

By solving (4), we consider the goal has been achieved. Indeed, substituting the solutions into the 

matrix Ax one makes it equal to a given set without resort to transforming the matrix. 

5. SPECTRAL EQUATIONS AND THEIR TYPES 

The above computational difficulties can be significantly reduced by choosing as the unknowns the 

elements instead of just the supplements. For this purpose, the k arbitrary elements of A are replaced 

by unknowns, which are denoted for presentation by the capital letter X with the same indexes. For 

example, instead of the matrix 























333231

23322221

1311211

aaa

axaxa

axaa

Ax
 

with unknown supplements it is assumed the replacing matrix of the third order:  
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The result is the system of equations for X12, X21, X22 of the form 

.

,

,

3312213322311332112322113312312332211

2322333223113331121122211

1332211

daXaaaaaXXaXaaaXaXa

daaaXaaaaXXXa

daXa







     (6) 

 

In general case, replacement of k elements of A with combining the replacing elements Xi,j into the 

vector Xi,j and building Ax gives the system of equations 

F(X) = 0,         (7) 

where F is the non-linear vector function with size of k called by the spectral equation. 

In a similar way, we can choose 

k

k
CN 2          (8) 

different replacing sets of elements and obtain replacing matrices in the form of (5) and equations in 

the form of (7). The number N very rapidly increases with the size of A. For small values of k, it is 

given in Table 1. 

Table 1. 

k 2 3 4 5 6 7 

N 6 84 1820 53130 1947772 85900584 

n 1 20 495 15504 776475 26978328 

M 5 64 1325 37626 1171297 58922256 
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The type of the system (7) depends on the arrangement of replacing elements in Ax. If we allocate the 

replacing elements in different rows and columns, as it is shown for the matrix (5), the system can 

takes the linear or non-linear form of degree from 2 to k. However, not all of the systems have a 

solution. Using a particular matrix, we can at once determine a group of systems that do not have a 

solution. 

Further, for the sake of simplicity, we will denote the replacing and non-replaced elements of matrices 

by the numbers that equal to the indexes and dots, respectively. 

The right-hand side of the first equations of the system (6) 

1332211 daXa   

is the fixed sum, and the left-hand side has the unknown, therefore, the equation is consistent with 

arbitrary values of а11, а33, and d1. But, for the other matrix 
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there are no unknowns on the left-hand side of 

1332211 daaa  , 

so, the last expression is inconsistent. 

It is straightforward to make the following generalization. The matrix (9) belongs to the family of 

matrices, which is formed by replacing k elements of A that lie outside of the main diagonal in the two 

triangle areas containing k
2
 – k elements. This means that a necessary condition to solve (7) is that at 

least a one replacing element must be located on the main diagonal. It follows that the number of 

inconsistent equations (7) is equal to the number of combinations 

k
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The dependence (10) is also given in Table 1. 

Subtracting (10) from (8), we obtain 

M = N – Nk        (11) 

(given in Table 1) that is the number of solvable systems (7). Under appropriate conditions, this 

number is the sum 





k

i

iMM
1
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where Mi is the number of the i-th order equations. 

Determining the terms in (12) for a general case as functions of k is the problem that needs to be 

solved. Even calculating M1, i.e. determining the number of the linear systems (7), is unobvious 

procedure that requires an analysis of equations of the form (6). We can say definitely (or, rather, we 

can suggest, since there is no rigorous proof) about only the single term Mi for i = k. It is equal to 1. In 

other words, there is only one way to replace k elements of matrix that allows a spectral equation of 

order k to be obtained by replacing the elements on the main diagonal. 

We consider next a particular case for a matrix of the third order. By analyzing 64 consistent 

equations (7), we establish 18, 45 and 1 variants to replace 3 elements according to (11). 

Replacements are described by two types of the first order equations, six types of the second order 

equations, and one type of third order equation. Equations of all types are resulted. 

6. SPECTRAL TRANSFORMATION OF THE THIRD ORDER MATRIX 

At first, we discuss the variants with evident solving the problem of choosing elements for linear 

replacement associated with a replacement of rows and columns of A. 
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There is only one element of replacing rows and columns in the summands of minors. Each of 

summand contains one unknown, and the multipliers obtained from the remaining elements give the 

coefficient at the summand. Assembly of these coefficients forms a matrix denoted by R. These 

equations belong to the type 1.1. 

Some summands on the left-hand side, as it can be seen from the system (6), do not have replacing 

elements. We combine these elements in the row i into the element bi. Then, after combining the 

elements bi and di into the vectors b and d respectively, we can represent the equation (7) in the linear 

form 

bdRX          (13) 

by replacing rows and columns. 

The solution to (13) exists under condition 

0det R .      (14) 

6.1 Linear Spectral Equations 

Replacing rows and columns one gives the matrices 
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with appropriate equations. For example, for the matrix 1), we obtain the following equations 
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They can be presented in the form (13) as 

iii bdXR  ,          (17) 

where TXXXX ),,( 1312111  , TXXXX ),,( 2322212  , TXXXX ),,( 3332313  ,  
TXXXX ),,( 3121114  , TXXXX ),,( 3222125  , TXXXX ),,( 3323136  , Tdddd ),,( 321 ,  

33221 aaf  , 33112 aaf  , 22113 aaf  , 322333221 aaaag  , 332131232 aaaag  ,  

312232213 aaaag  , 331232134 aaaag  , 311333115 aaaag  , 321131126 aaaag  ,  

221323127 aaaag  , 231121138 aaaag  , 211222119 aaaag  , Tgfbb )0,,( 1141  ,  
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Equations (17) do not describe all of possible linear systems but determine only obvious ones. If 

replacing elements are not rows or columns, we can also get the linear system (7). In this case, the 

summands of minors can contain a product of replacing elements. Indeed, for example, for the matrix 
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the replacement system is 
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In the third row, we obtain the summand with a product of unknowns X11 and X32. However, we can 

find X11 from the first equation (i.e. X11 is known), and the system becomes linear. These equations 

belong to the type 1.2. The given types of equations exhaust linear replacements. The number of 

equations with types 1.1 and 1.2 is equal to 6 and 12 respectively. 

7. THE SECOND ORDER REPLACEMENTS 

7.1 Replacing a Single Diagonal Element 

Replacements with a single diagonal elements lead to different types of the second order equations. 

Consider the matrix 



















..31

...

.1211

xA ,            (20) 

which differs from (16) in a single element. The second and third equations for (18) is given by 
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The last equation of (21) is like (19) only externally. In the product, there is no variable expressed 

from the first equation. This type of replacement is denoted as 2.1. 

The matrix 



















...

..21

.1211

xA             (22) 

differs from (20) in a single element and contains by a single product of elements in two equations: 
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This type of replacement is denoted as 2.2. 

The matrix 



















.32.

23..

..11

xA               (24) 

differs from (16) in a single element and also contains the product of elements in two equations 
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but the third equations has the product of three elements. 

This type is denoted as 2.3. 

The matrix 
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is characterized by the equations 
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with two products of two unknowns in the third row. This type is denoted as 2.4. 

7.2 Replacement of Two Diagonal Elements 

When two diagonal elements are replaced the type of equations depends on a choosing the third 

element. Consider two matrices 
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with identical replaced diagonal elements and common first equation 1332211 daXX  . For the 

matrix a), the equations 

3312213322311332112322113312312332211
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


  (29) 

differ from 2.2 in the first equation. They are denoted as 2.5. For the matrix b), the equations 

3312213322311332112322113312312332211

2322333223113331121122211 ;

daXXaaXaaaaaXaaaaXX

daaaXaXaXaaXX




  (30) 

with a single product in the second row and two products in the third row are denoted as 2.6. 

The number of equations with a single replaced diagonal element of the types 2.1 and 2.2 is equal to 

6. The number of equations of types 2.3 and 2.4 is equal to 3 and 12 accordingly. The number of 

equations with two replaced diagonal elements of the types 2.5 and 2.6 is equal to 6 and 12 

accordingly. 

7.3 Replacement of k-order 

In general case, the last equation of (7) contains the k! summands with products of k elements while 

the single summand has all unknown multipliers. Replacement of k elements using variants of (10) 

gives spectral equations of the k order only for unique case when the main diagonal of a matrix is 

replaced. Other variants of replacement lead to equations of the lower order. This conclusion is done 

without proving due to analysis of all spectral equations of the third order matrix. 

For the third order matrix, 63 of 64 variants for choosing three elements lead to equations of the first 

and second order. The remaining matrix 
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is characterized by the third order equation 
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.

;

;
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
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

   (32) 

The result obtained can be generalize for an arbitrary order matrix. 

Example 1. With a set }1,0,1{  , consider variants of transforming a spectrum by replacing 

rows and columns in the matrices 
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The matrix 1). Let’s calculate 01 d , 12 d , 03 d  and determine matrices and vectors (17): 

Td )0,1,0(  , 141 f , 102 f , 63 f , 31 g , 62 g , 33 g , 64 g , 125 g , 66 g , 

37 g , 68 g , 39 g , Tbb )0,3,14(41  , Tbb )0,12,10(52  , Tbb )0,3,6(63  , 





















363

7414

001

1R , 





















6126

8102

010

2R , 





















363

663

100

3R , 





















363

3214

001

4R , 





















6126

6104

010

5R , 





















363

687

100

6R . 

The matrices are non-singular, hence, there are all the solutions: 

TTXXXbdRX )889.18,444.16,14(),,()( 1312111
1

11   , 

TTXXXbdRX )833.11,10,167.8(),,()( 2322212
1

22   , 

TTXXXbdRX )6,667.4,333.3(),,()( 3332313
1

33   , 

TTXXXbdRX )46,30,14(),,()( 3121114
1

44   , 

TTXXXbdRX )636.3,10,5.4(),,()( 3222125
1

55   , 

TTXXXbdRX )6,5.15,273.1(),,()( 3323136
1

66   . 

With these solutions, replacing matrices (15) 















 



987

654

889.18444.1614

1x
A , 



















987

833.1110167.8

321

2xA , 





















6667.4333.3

654

321

3xA , 

























9846

6530

3214

4xA , 























6636.37

654

35.41

5xA , 

























6636.37

5.1554

273.15.41

6xA  

take the spectrum 

   1410516.1,1,1
1

 xA ,    1,10847.8,1 15

2
 

xA ,    1,10044.2,1 15

3
 

xA , 

   1410437.5,1,1
4

 xA ,    1410421.2,1,1
5

 xA ,    1,10876.2,1 15

6

 xA  
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that is equal to a given set with calculating accuracy. 

The matrix 2). Omitting intermediate calculations, here and further, we find matrices 





















404

325

001

1R , 





















303

531

010

2R , 





















262

220

100

3R , 





















234

015

001

4R , 



















000

232

010

5R , 





















234

253

100

6R . 

Among all the matrices only R5 is singular and hence the solution Х5 does not exist. 

With the remaining matrices, the solutions to the systems (17) are 

TX )6,8,6(1  , TX )2,4,2(2  , TX )3,4,3(3  , 

TX )63,34,6(4  , TX )3,273.1,545.0(6  . 

Substituting them into the matrices (15) 















 



353

222

686

1x
A , 



















353

242

010

2xA , 





















343

222

010

3xA , 

























3563

2234

016

4xA , 























353

273.122

545.010

6xA  

one forms the spectrum 

   1,10142.110125.3,10142.110125.3 715715

1
  iiAx , 

   88 10944.2,10944.2,1
2

  xA ,    88 10133.4,10133.4,1
3

  xA , 

   1,1088.3,1088.3 88

4
 

xA ,    88 10269.3,10269.3,1
6

  iiAx  

that is equal to a given set. 

The matrix 3). Let’s evaluate the matrices 





















102

012

001

1R , 



















000

101

010

2R , 





















102

220

100

1R , 





















202

012

001

4R , 



















000

231

010

5R , 





















101

210

100

6R . 

The matrices R2 and R5 are singular and hence the solutions Х2 and Х5 do not exist. With the 

remaining solutions 

TX )4,5,2(1  , TX )2,2,1(3  , TX )2,5,2(4  , TX )2,4,2(6   

the matrices 















 



010

221

452

1x
A , 





















221

221

010

3xA , 

























012

225

012

4xA , 

























210

421

210

6xA  
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take the given spectrum 

   1,0,1
1

 xA ,    0,1,1
3

 xA ,    1,10148.2,1 15

4
 

xA ;    0,1,1
6

 xA . 

Example 2. Spectrum transformation with linear replacement of elements in different rows and 

columns. Consider the matrix 

















...

2322.

13..

 

and the equations 

.

;

;

3312213322311332112322113312312332211

2322333223113331121122211

1332211

daXXaXaaaaaaXaXaaXa

daXaXaXaaaaXa

daXa







 

From the first equation we define the unknown 

3311122 aadX   

at once. Two others are reduced to a linear equation for Х13 and Х23 with the matrix 










 3211311222313221

3231

aaaaXaaa

aa
 

and the vector 














3321122233113

331121122233112 )(

aaaXaad

aaaaXaad
. 

With the set and matrix 1) from example 1, the solution 

TTXXX )38.14,10,434.2(),,( 232213   

for the matrix 



















987

38.14104

434.221

15xA  

forms the given spectrum    1410065.8,1,1
15

 xA . 

All calculations was made in MathCAD. 

8. CONCLUSION 

A method for obtaining a matrix spectrum equal to a given set of numbers without transformation to a 

Frobenius form is stated. Calculating tool is a system of equations, which having obtained by 

replacement of arbitrary matrix elements by unknowns. Their number is equal to the size obtained 

from relationships between matrix elements in the form of main minors and elements of a given set. 

The method has many variants for choosing replacing elements and equations to calculating replacing 

elements from linear to non-linear with an order equal to the size. 
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