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Abstract: Let G = (V, E) be a simple Graph of order n. The vertex-edge domination polynomial of graph
V(G)I .
G is Dy(G, x) = 2 dye(G, i) x', where dve(G, i) is the number of vertex-edge dominating sets of G of
i =7,(G)
cardinality i and x.(G) is the vertex-edge domination number of G. In this paper we study the vertex-edge
domination polynomials of product of some complete Graphs and some Interesting results are established.
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1. INTRODUCTION

Let G = (V, E) be a simple graph of order n. A set S — V is a dominating set of G, if every vertex
in VAS is adjacent to atleast one vertex in S. The domination number of a graph, denoted by v(G),
is the minimum cardinality of the dominating sets in G. A set of vertices in a Graph G is said to be
a vertex-edge dominating set, if for all edges e € E(G), there exists a vertex v € S such that v
dominates e. Otherwise, for a graph G = (V, E), a vertex u € V(G) ve - dominates an edge vw €
E(G) if (i)u=voru=w (uis incident to vw) or (ii) uv or uw is an edge in G (u is incident to an
edge is adjacent to vw).

The minimum cardinality of a vertex-edge dominating set of G is called the vertex-edge
domination number of G, and is denoted by V..(G).

Let G be a simple Graph of order n and let d,.(G, i) be the number of vertex-edge dominating sets
of G with cardinality i. Then the vertex-edge domination polynomial D,(G, X) of G is defined as :
IV(G)|

DW(G,X)= Y dye(G, )X,
i=7(G)

where v,.(G) is the vertex-edge domination number of the Graph G. The roots of vertex-edge
domination polynomial are called the vertex-edge domination roots of G. In the next section, we
construct the families of the vertex-edge dominating sets of K, . K,. In section 3, we use the
results obtained in section 2 to study the vertex-edge domination polynomial of K, . K,. In section
4, we study further results on vertex-edge domination polynomials of Graphs.

2. VERTEX-EDGE DOMINATING SETSOF Ky . K,
Definition: 2.1

Given any two Graphs G and H, we define the Cartesian product, denoted by G . H, to be a Graph
with vertex set V(G) x V(H) and edges between two vertices (u;, v;) and (u,, v,) iff either u; = u,
and viv, € E(H) oruju, € E(G) and v; =v,.
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Example: 2.2
u3 u
v vy
0
Ky
Uy
KS
vy ! 2 ()
(u, vy) ¢ ) v
(u3, vy) 5 2 (V)
K; . K,

Ks . Ky = {(u, v1), (g, v2), (uz, v1), (U2, v2), (us, vy), (U3, v2)}
No vertex-edge dominating set of K3 . K, is of cardinality 1
dve(K3 . Ky, 1 ): 0
Vertex-edge dominating sets of K3 . K, of cardinality 2 are
{1125, {1, 35, {1, 43, {1, 53, {1, 65, {2, 3}, {2, 4}, {2, 5},
{2,6}, {3,4}, {3,5}, {3, 6}, {4, 5}, {4, 6}, {5, 6}}
dve(K3 .K2,2): 15
Vertex-edge dominating sets of K; . K, of cardinality 3 are
{{1,2,3}, {1,2,4}, {1,2,5}, {1, 2,6}, {1, 3, 4}, {1, 3, 5}, {1, 3, 6},
{1,4,5}, {1,4,6}, {1, 5,6}, {2,3,4}, {2, 3,5}, {2, 3, 6}, {2,4,5},
{2,4,6}, {2,5,6}, {3,4,5}, {3,4,6}, {3, 5, 6}, {4, 5, 6} }
dve(K3 . K2,3): 20
Vertex-edge dominating sets of K; . K, of cardinality 4 are
{{1,2,3,4}, {1,2,3,5}, {1,2,3,6}, {1,2,4, 5}, {1, 2,4, 6},
{1,2,5,6}, {1,3,4,5}, {1,3,4,6}, {1,3,5,6}, {1,4,5,6}, {2,3,4,5},
{2,3,4,6},{2,3,5,6}, {2,4,5,6}, {3,4,5,6}}
dve(K3 . K2,4): 15
Vertex-edge dominating sets of K; . K, of cardinality 5 are
{{1,2,3,4,5},{1,2,3,4,6}, {1,2,3,5,6}, {1,2,4, 5, 6},
{1,3,4,5,6}, {2,3,4,5,6}}
dve(K3 . K2,5): 6
Vertex-edge dominating sets of K; . K, of cardinality 6 are
{{1,2,3,4,5,6}}
dve(K3 . K2,6): 1
Theorem: 2.3
The vertex-edge dominating sets of K; . K, is

2r r
-2 ,n<r—1
n n
2r r
dve(K; . Ky,n) = -2 +2r,,n =r—1
n n
2r
,h 2>r
n
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Proof:

Since K, has r vertices, K; . K, has 2r vertices, they are ordered pairs. Two of the vertices of K, .
K, are enough to cover all the vertices and edges of K, . K, . Therefore the minimum cardinality
is 2. Therefore, vy, (K; . K;) =2.

V(K = {u, u, ..., u} and V(K,) = {vi, vo}. Let n <r— 1, V(K . K;) consists of 2r vertices. Of

T

these 2r vertices, n vertices ve-dominates K, . K, , remaining 2 [ j vertices are not ve-

n
dominating sets.

2r r
Therefore, The number of vertex-edge dominating sets of K, . K, is [ J— 2[ J .
n n

2
if n=r— 1, then the number of vertex-edge dominating sets of K, . K, is [ rj— 2( ! J +2r .
n n

Let n > 1, any set of n vertices is a vertex-edge dominating set of K; . K, . Therefore, the number

2
of vertex-edge dominating sets of K, . K is ( rj'
n

Hence
2r r
-2 ,n<r—1
n n
- 2
dve(Kr- Kz,n)— r _2 r +2r,,n=1‘—l'
n n
2r
,h >r
n
3. THE VERTEX-EDGE DOMINATION POLYNOMIAL OF Kx . K>
Definition: 3.1

Let dy(K; . K5, 1) be the families of vertex-edge dominating sets of K, . K, with cardinality i.
Then, the vertex-edge domination polynomial of K, . K,is

VK, . K, ;
Dyo(K;. Ko, X) = = D de(K, K, i)x
i=7.K, . K,))
Example 3.2
1 Va
Ky

Ky . Ky = { (uy, v1), (u, v2), (uz, Vl)a (u2, v2), (u3, v1), (113, V2), (U4, v1), (Us, v2)}

1
(uy, vy) (uy, Vo)

() (u2:v2)

(u3, vp) 4 (u3. v)

(uy. vy) (g, v7)

Ks . Ky
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No Vertex-Edge dominating set of K, . K, with cardinality 1

Sde (Ky 0 Ky, 1)=0
Vertex-Edge dominating sets of K, . K, with cardinality 2 are

{1, 25, {1, 3}, {1, 4}, {1, 5}, {2, 6},{2, 7}. {2, 8}, {3, 6}, {3, 7}, {3, 8},

{4, 6}, {4, 7}, {4, 8}, {5,6}, {5, 7}, {5, 8}}

Sodve (ks . ko, 2)=16
Vertex-Edge dominating sets of K4 . K, with cardinality 3 are

{{1, 2, 3}, {1, 2, 4}, {1, 2, 5}, {1, 2, 6},{1, 2, 7}, {1, 2, 8}, {l, 3, 4}, {1, 3, 5},
{1, 3, 6}, {1, 3, 7}, {1, 3, 8}, {1, 4, 5}, {1, 4, 6}, {1, 4, 7}, {1, 4, 8}, {1, 5, 6}, {1, 5, 7},
{1, 5,8}, {1,6,7}, {1,6,8}, {1,7,8}, {2,3,4}, {2,3,5}, {2,3, 6}, {2,3, 7}, {2, 3, 8}, {2, 4, 5},
{2,4,6}, {2,4,7}, {2,4, 8}, {2,5,6}, {2,5,7}, {2,5, 8}, {2,6, 7}, {2,6,8}, {2,7, 8}, {3, 4,5},
{3, 4, 6}, {3, 4, 7}, {3, 4, 8}, {3,5, 6}, {3,5, 7}, {3, 5, 8}, {3, 6, 7}, {3, 6, 8}, {3, 7, &},
{4, 5, 6}, {4, 5, 7}, {4, 5, 8}, {4, 6, 7}, {4, 6, 8}, {4, 7, 8}, {5, 6, 7}, {5, 6, 8}, {5, 7, 8},
{6,7,8}}

Sodve (Kg 2 Ky, 3)= 56
The number of Vertex-Edge dominating sets of K4 . K, with cardinality 4 is

Sode (Ky 2 Ky, 4)=70
The number of Vertex-Edge dominating sets of K4 . K, with cardinality 5 is

8
- dve (Ky K2,5)=(5j =56

The number of Vertex-Edge dominating sets of K, . K, with cardinality 6 are

8
codve (Ky K2,6)=(6J =28

The number of Vertex-Edge dominating sets of K4 . K, with cardinality 7 is
8
dve (K4 . K2,7):( j =38
7
The number of Vertex-Edge dominating sets of K4 . K, with cardinality 8 are

8
dve(K4 . K278):(8j =1

. The Vertex-edge domination polynomial of K, . K, is
VK, . K,)|

Dy (Ks . Ko, X) = D dye(K,  K,.i)X
i= 7Ky . Ky)

8 .
= D d, (K, K, i)«
i=2

=dwe(Ks . Kz, 2) X+ due(Ks . K3, 3)%
+dye(Ks . Ko, 4) X!
+dye(Ky . Kz, 5) X
+deo(Ky . Ky, 6)x°
+doo(Ky . Ky, )X
+de(Ky . Kp, 8)X
=16X*+56X + 70X  +56 X+ 28 x°+ 8 x'+ 1 x°

= X+ 8 +28x°+ 56X’ + 70xX' + 56X’ + 16 X°
Vertex-edge domination polynomial of K5 . K;is

Dyo(Ks . Ky, x) =x0+6x°+15x*+20%° + 15 %°
=((1+x)° =1 +2¢ +6x

Vertex-edge domination polynomial of K4 . K,is

Due(Ks . Ko, X) =x*+8x"+28x°+56x° + 70 x* + 56 X + 16 X*
=((1+x)*" =1 +2x*+8x’
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In general,
Vertex-edge domination polynomial of K, . K,is

Dye(K:. Koy X) =((1+X) =17 +2X+2rx ', r>3.
Theorem 3.3

The vertex-Edge domination polynomial of K, . K is

Dye(K;. Ko, X)=((1+ %)= 1)*+2rx ' +2x", r>3.

Proof:
VK, K,)| i
DK . Ko,¥) = D dy (K, .K,.i)X
i=7.K, . K))

2r .
= D> de (K, .K,.i) X
i=2

1=

r-2 . r-1 .
= YA (K K i) X+ Y d(K, K, i) X

i=2 i=r-1

2r .
. 1
+ Zdve(Kr K, i) x

(R AN
GGG -

r

-

Je GG ()
(0. Lt

=(1+x)*=2rx—1-2(1 +X)"+ 2X" + 2rx" '+ 2rx + 2
=1+ =21 +x) +1+2xX+2rx"!
=[1+x) =17 +2xX+2rx" ', r>3.
4. FURTHER RESULTS ON VERTEX-EDGE DOMINATION POLYNOMIAL OF GRAPHS
Theorem: 4.1
If G is a complete Graph of order n, then the vertex-edge dominating roots of G - K, are
0 with multiplicity n, » — 1 with multiplicity n, »* — 1 with multiplicity n.
Proof:

The vertex-edge dominating polynomial of G - K; is
Dy(G - Ky, x) = [(1 +%)° 1T
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To find the roots, put Dy (G - K5, X) =0
[(1+Xx)’—1]"=0

=S[1+x)° =171 +x)°=1]...[(1+x)’—1]ntimes=0

= (1+x’-1=0, (1+x°-1=0...(1+x’-1=0

= (1+x)° =1

- 1+x=1"

2
= 1, ®, ® where ® =

-1 + i3
2

x=1-1,0-1,0° -1
=0,0-1, 0" — 1

.. The vertex-edge dominating roots of G - K, are 0 with multiplicity n, ® — 1 with multiplicity n,
o’ — 1 with multiplicity n.

Proposition 4.2
If G is a complete Graph of order n, then D,o(G - K;, —1) = (-1)"

Proof:
We know that the vertex-edge dominating polynomial of G - K, is
Du(G Kz, x) = [(1+) —1]"
2 Dw(G-Ky, = 1) = [(1-1)'=1]"
= (0-1)
= (-1
Theorem: 4.3
The vertex-edge dominating roots of the star graph (S,) are
cos2(k+1)mn isin2(k+1)=n .
+ -1,i=0,1,2,...,n—1.
n n
Proof:

The vertex-edge dominating polynomial of star graph (S,) is
Dye(Sh, X) = (1 +Xx)" — 1
To find the vertex-edge dominating roots, put Dy(S,, X) =0

(1+x)"=1=0
(1+x)" =1
(I+x) =1"

= (cos 27 + i sin2m)'™

= [cos(2km + 27 ) + isin(2kn + 2m)] ™ where k is an integer
=[cos2(k+ 1) m+isin2(k+1)n]" k=0,1,2,.. ,n—1
cos2(k+1)m N sin2(k+ )=

l+x = ,k=0,1,2,...,n-1
n n
cos2(k+1)m isin2(k+1)n
X= + -1,k=0,1,2,...,n—1.
n n

.. The vertex-edge dominating roots of the star Graph S, are
cos2(k+1)n N isin2(k+1)=n

n n

-1,k=0,1,2,...,n—1.
Result : 4.4

n

4 5 (S, X) =n!
— — PvelPny =n:
dx"

Proof:

The vertex-edge dominating polynomial of star graph (S,) is
Dye(Sh, X) =(1+x)"—1
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D.w.r.to X,
d n-—1
— Dye(Sp, X) =n(1+X)
X

D.w.rtor,
2

d
— Dye(Se,X) =n(n—-1) 1 +x""?
dx

n

;—ane(Sn, X) =nn-1)n-2)...n-m-1)(1+x)""
X
=n(n—-1)(n-2)...1

= nl.
Proposition: 4.5
Let S, is the star graph with n vertices Dy.(S,, —=1) = —1.
Proof:
The vertex-edge domination polynomial of star graph (S,) is
Dve(sn: X) = (1 + X)n_ 1
S Dye(Sh—1) = (1-1)"-1
=0-1
=—1

5. CONCLUSION

The vertex-edge domination polynomial of a graph is one of the algebraic representations of the
Graph. This paper introduces vertex-edge domination polynomial of product of some complete
Graphs. Similarly we can find the vertex-edge dominating sets and vertex-edge domination
polynomials of some specified Graphs.
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