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Abstract: The generalized Fractional Hilbert Transform is the generalization of the Hilbert transform which
has many applications in image reconstruction, optics, signal analysis and so on. In this paper, we established
the relationship between generalized fractional Hilbert transform with Fourier transform, Laplace transform,
Mellin transform, Hartley transform, Hilbert transform, and Stieltjes transform.
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1. INTRODUCTION

Integral transforms plays an important role for solving problems in several areas of both physics and
applied mathematics. The linear canonical transformation (LCT) is a family of integral transforms that
generalizes many classical transforms. Many operations, such as the Fresnel transform, Fourier
transform (FT), fractional Fourier transform (FRFT), Lorentz transform and scaling operations are the
special cases of the LCT. In 1980, Namias [6] first introduced the concept of fractional Fourier
transform which is a generalization of Fourier transform. The fractional Fourier transform has many
applications in many fields, including signal processing [4], optics [7]. Gori [1] has shown the relation
between fractional Fourier transform and the Fresnel transform. The Hilbert transform based on the
Fourier transform has applications in many fields, including optical system, modulation and edge
detection [3], etc. Hilbert transform plays an important role in the study of singular integral equations

[5].
The fractional Hilbert transform is the generalization of the Hilbert transform can produce the image

enhancement or the image compression in different ways when both parameters (the angle of
fractional Fourier transform and the phase of the fractional Hilbert transform) are varying.

This paper is organized as follows. Section two explains the definition of fractional Hilbert transform
on the space of generalized functions. Section three is devoted for proving relations between
generalized fractional Hilbert transform with classical Fourier, Laplace, Hilbert and Stieltjes
transforms. Lastly the paper is concluded in section four.

2. GENERALIZED FRACTIONAL HILBERT TRANSFORM
For dealing fractional Hilbert transform in the generalized sense, first we define,
2.1 The Testing Function Space E(R™)

An infinitely differentiable complex valued function ¢ on R™ belongs to E(R"™) if for each compact
set K c S, where S, = {x e R", |x| < a,a > 0} and for K € R",

sup
XEK

Yex(@) = |D*ep(x)| <o

Clearly E is complete and so a Frechet space. Moreover, we say that f is a fractional Hilbert
transformable if it is a member of E'(R™) (the dual space of E).
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2.2 Generalized Fractional Hilbert Transform On E'(R")

The generalized fractional Hilbert transform of f(x) € E'(R™), where E'(R™) is the dual of the
testing function space E (R™), can be defined as

H [f(0)](®) = {f(x), Ky (x, 1)), foreach teR. 1)
T ) -
where K, (x,t) ZW for aqt(),z,nandtth

The right hand side of (1) has meaning as the application of f € E’ to K,(x,t) € E. H* [f(x)](t)
is a™ order generalized fractional Hilbert transform of the function £ (¢).

3. RELATIONS BETWEEN GENERALIZED FRACTIONAL HILBERT TRANSFORM WITH OTHER
CLASSICAL TRANSFORMS

This section is devoted to present relations between generalized fractional Hilbert transform with
classical Fourier, Laplace, Mellin, Hartley, Hilbert and Stieltjes transforms.

3.1 Relation between Generalized Fractional Hilbert Transform with Fourier Transform
The Fourier transform defined in [2] is

F[f(t)](u):ﬁ]z fty et

R%wtall+¥ﬂfum‘ﬂ7*]a%:Jzﬁ{fG;pq(m
T

Proof: The generalized fractional Hilbert transform is

.cota ,
_Coter - L
He[f()e 2 @) =12 jf(x) dx
V4 t—X

putting t —x = p so that —dx = dp

. cot
- Jtz -

et fIeom) g

T p

rwrume“zﬁu0=J§Fﬂﬂ%§9}m)

3.2 Relation between Generalized Fractional Hilbert Transform with Laplace Transform

The Laplace transform defined in [2] is

L[ f (x)](u) :T f(x) e dx

7iCOtat2

Result: 3.2.1 & i L{L[f (x) eicoéaxz](u)}(t) =—-H“[f(X)](-t) ,fort>0
z

.cota , ) imxz
Proof : L[f(x)e 2 Ju)=[f()e 2 e dx

0
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{L[f (x)e 2 2](u)}(t) j{j f(x)e 7 ‘“de}e‘“‘du

Changing the order of integration

.cota o, [ oo
f(x)e 2 {J' e‘(x”)”du}dx
0

Il
o —38

0 cota2 1
I (x)e 2 ——dx
0 X+t
LLLIL WELLIS i,
2 COtaz 2 ) 2
¢ {L[f(x)e 2 ](u)}(t)— —° jf(x)e dx
T V4 y —L—X

7iCOta
e 2

{L[f (x)e 5 2](u)}(t) = —H[f (x)](~t) fort >0
T

3.3 Relation between Generalized Fractional Hilbert Transform with Mellin Transform
The Mellin transform defined in [2] is

M[f(X)](z) = Tx” f (x) dx

where z is, in general a complex variable

.cota .cota o

Result: 3.3.1 M {elzp H[f(t)e 2 ](p)}(z) =—cot(zz)M[f (t)1(z)

Proof:M{i H [f(t)e 2 2](p)}(z) Ip e 2 2H [f(t)e 2 2](p)dp

P2

0 )

For the class of functions such that f(t) =0 ,fort <0
fpe {_1 Imdt} o
0 ”op_t

Changing the order of integration
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= —Tt” f (t) cot(7z) dt

Cota 2

M{ei "Hert@©e 2 ](p)}(z)——COt(ﬂZ)M[f(t)](Z)

3.4 Relation between Generalized Fractional Hilbert Transform with Hartley Transform

The Hartley transform of f is defined as

H,[fM)](x)= T cas(xt)dt

where cas (xt) = cos(xt) +sin (xt)
.Cota {2 Cota 2

Result: 3.4.1 HA{ 2 e [f(x)e 2 ](t)}( u) =-sgn(u) H [ f (x)](u)

.cota 2 Cot a

cota 2 Cota 2

Proof:HA{ 2 e [f(X)e 2 2](t)}( u)_Icas( ut)e 2 HYf(x)e 2 ](t)dt

—J.cas( ut){ J'I(X))( }

—00

Changing the order of integration

| f(x){i | C""‘i(—_)‘:t)dt}dx
—00 72- -

—00

Z_T f(x){—l]g [cosut —sinut] dt}dx
i T t

= _]3 f(x) sgn(u) (sinux +cosux) dx
= —sgn(u)aj2 cas (ux) f (x) dx

HA{ei  CHe[f(Qe 2 2]0)}( ) = —sgn(u) H,[f (] (u)

3.5 Relation between Generalized Fractional Hilbert Transform with Hilbert Transform
The Hilbert transform defined in [2] is

H[f(x)](t)——j ';(_X))( dx, t e R,t = X

where integral is a Cauchy principal value.

[cota o jcota

In this part we defined f (x) = f (X) e 2 and f (xX)=f(x)e 2 "
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.Cota , .Cota »

Result: 351 H[f(x) g =e 2 H[F(x)g(x)] ®=e 2 H[f()T)](®)

Proof: H [ (x) g()](t) = & - j F(0 900 %" iy
T 7 =X
HY[f(x) g(x)](t) =e TZH[f(X)g(X)](t)—e TzH[f(X)g(X)](t)

Result: 3.5.2 H“[f(x) ](t) = e 2 H[f(x)](t)

.cota o

Cota 2

Proof: H[f () ](t) = &— j:() dx
- N

Cot a

HF) I =€ 2 HIT(] ()

.cota,

Result: 353 H[F(\)g(It) =e 2 H[f()g()](t)

Cota 2

cota 2

Proof: He[f (x)g(x)](t) = = ; Tf(x)g(x) 2 " g

_e_.¥2 f(x)e 5 oL

= _J; x g(x)e dx

HAF (g1 =€ 2 ZH[f(X)g(X)](t)

Result: 354 H, [T ()g(](t) =e TzH[f(X)g(X)](t) e TZH[f(X)g(X)](t)

cota 2

Proof: He[f (x)g(X)](t) = = 7: Tf 0909 5 gy

.cota 2

cota - cota o

2 °°= 7|—x i—=x
e J-f x)g(x) e 2 " dx

r
_e ’ ZT?(X)@J(X)Ol
Tr 7 t=X
He[f (g (1M =e 2 ZH[f(x)g(x)](t)—e z 2|'|[f(X)9(X)]('[)
Result: 355 HA[TOOI0 =€ 2 HLF(0I0)
Proof: H"‘[?(x)](t):e_ﬂ2 J‘tf()g 'co;a < dx
_ef-gz f() 4%2 %2
i It— e dx
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Cota {2

HF I =e 2 HLf(OI0

3.6 Relation between Generalized Fractional Hilbert Transform with Stieltjes Transform

The Stieltjes transform defined in [2] is

[T (01(2) - j”x)d

X+Z

where z is, in general a complex variable
Consider the class of functions that are causal. The support for causal function is [0, o) and hence for
f(x) =0.

.Cota ,
- .cota 2

Result 3.6.1 H“[f(x)](t):_TS[f(x)e 27 1(=1)

cota ,
he EIATONE
Proof: H [f(x)](t): t—e 2 dx ,fort>0
—X
0
_ 2 © COIa 2
_—e J- f(x) dx
T o X+ (= t)
_th cota 2
H“[f(X)](t)=TS[f(X)e 2]t
e_i¥tz .Cota 2

Result 3.6.2 H“[f(x)](—t)=_TS[f(x)e' 2 ()

.cota 2

2 COtO{ 2
Proof: H[f (x)](~t) = j 09 ¢ gy
V4 -t-X
joota
_e 2 0% .ﬂxz
_ e J- f( ) dx
V1 0 X+t
_iwtz

cota 2

HLf (0](-t) :%smx)e 1)

Result 3.6.3 When the function f (X) is not causal,

_cot
L%

H“[f(x)](t):%{smx)e 2 (1) - S[f(-x)e ¢ 2](0}

.cota ,
- [cota o
Proof: HE[f (X)](t) = & j 09 62 g
T L t=X
_jota.
2 © cota 2
_e J-{f(x) f(- x)} i
T olt- t+X
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Cotaz
_—e ¢ I{f(X) f(- x)}eciazdx

T o LX—1 T+X

cota,, oot coter
ez Tf(x)e 2" dx _Tf(—x)e 2" dx

z o X+ (1) 5 X+t

'?tz cota 2 cota 2

H“[f(x)](t):T{S[f(x)e 2 () - S[f(-x)e 2 ](t)}

Note that for the results 3.6.4 and 3.6.5 given in [2, p. 266], the average denominator across the
branch cut on the negative real axis has been taken. That is, xe'" is employed on the upper side of the
is used on the lower side of the branch cut.

branch cut and xe™*

icota

—e 2

t

ico’[oc

cota 2 2 cota 2

Result 3.6.4 H[f (X)](t) = S[f(e 2 J(te™) -2 S[f(x)e 2 ](te™™)
L7 S[f(—x)e'co;a 1) for t>0
T
Proof: He[f (X)](t) = & = thfx) e " ik

ICOtoz 2

_e’T ),
o '[{t—

f(- x)} Co;“ ? i

I+ X

_'¥t2 © 1 1 cota , *iCO;a ? i jcota 2
:_e—ff(x){ _ 4 - }elx dx+ 2 I =)

2 X+te” x+te” 7 t+x

sotae o COt"’tz "
a -e 2 e ir e -iz
H [f(X)](t)=TS[f(X)e 2 (te") - S[f(xe 2 ](te™)
e_ %tz cotaxz
+ S[f(=x)e 2 1t)
Result 3.6.5
_ CO;at cota 2 COtUltz cota 2
H"‘[f(X)](t)=—S[f( X)e 2 ](ItIE"’)+ S[f(-x)e 2 I(tle™)
_i&t cot
e =%
- S[f(x)e 2 ](~t), fort<0
ﬂz
© COIO{ 2
Proof: H[ f (X)](t) = — j{_ft(f)x ft(+>)?} 2
0
*iCO;atz © 1 1 cota 2 ico;a : f cota 2

:e—.[f(—x) — 4 - e 2 dx—°S I () dx

27 3 X+|te”  x+[tje™ 7 3 text
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H

cota

cot
a ~ 7,[2

%2

cot a 2 Cota 2

“[f(X)](t)=—25[f( xe 2 (") +————S[f(-xe 2 I(te™)

I(:0’[05t
Cota 2
e 2

—=——s[f(e 2 ](-1)
T

T . . . . . .
Note that a:E, we get relations between classical Hilbert transform with classical Fourier,

Laplace, Mellin, Hartley and Stieltjes transform.

4. CONCLUSION

In this paper relation between the generalized fractional Hilbert transform with classical Fourier,
Laplace, Mellin, Hartley, Hilbert and Stieltjes transforms are established which will be useful in
solving differential equations occurring in signal processing and in many other scientific disciplines.
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