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Abstract: In this paper, we have discussed the solutions of a system of n differential equations as a continuous 

dynamical system. Then we have discussed the nature of oscillations of a damped driven pendulum. We have 

analyzed the nature of fixed and periodic points of a damped driven pendulum for certain ranges of parameters. 

We have proved that oscillations of the pendulum are chaotic for certain ranges of parameters through the 

period doubling phenomenon. For the analysis of the solutions, mathematical softwares like MATLAB and 

Phaser Scientific Software are used. 
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1. INTRODUCTION 

A wide range of physical phenomena where there is a change in one quantity that occurs due to a 
change in one or more quantities can be mathematically modeled in terms of differential equations. 

Differential equations can be used to describe the motions of objects like satellites, water molecules in 

a stream, waves on strings and surfaces, etc. In this section we will take a review of some basic 

terminology associated with a system of differential equations. 

1.1 System of Differential Equations [6] 

Let  be differentiable functions of a variable , usually called as time, on an interval  of 

the real numbers. Let  be functions of  and . Then the  differential 
equations  

, t), 

, t),    

. 

.                                                                                                                                                              (1)          

. 

, t)    

are called as a system of differential equations. This system can also be expressed as  

, where ,  and . 

The system , where  can depend on the independent variable  is called as a non-

autonomous system. Any non-autonomous system (1) with  can be written as an autonomous 

system                              (2) 
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with  simply by letting  and . The fundamental theory for the systems (1) 

and (2) does not differ significantly. 

1.2 Phase-Plane Analysis 

If  is defined by  and if  satisfies the system (1), then  is said to be 

a solution of the system (1). If  and  is s solution for all , then  is an initial 

condition of a solution . As  are functions of the variable , it follows that as  

increases,  traces a curve in  called as the trajectory or the orbit and in this case, the space  

is called as the phase space of the system. The phase space is completely filled with trajectories since 

each point  can serve as an initial point. The system  is said to be a linear system if 

the function  is linear. In this case, the system can be expressed as   

 where  is an  matrix. The function  is also called as a vector field. The vector field 

always dictates the velocity vector  for each . A picture which shows all qualitatively different 

trajectories of the system is called as a phase portrait.[13] A second order differential equation which 

can be expressed as a system of two differential equations can be treated as a vector field on a plane 

or also called as a phase plane. The general form of a vector field over the plane is 

 which can be compactly written in vector notations as  

, where  and . For non-linear systems, it is quite 
difficult to obtain the trajectories by analytical methods and though the trajectories are obtained by 

explicit formulas, they are too complicated to provide the information about the solution. Hence 

qualitative behaviors of the trajectories obtained by numerical solution methods are often studied. To 

obtain a phase portrait, we plot the variable  against the variable  and study the qualitative 
behavior of the solution. A theorem concerning the uniqueness of the solution of a linear system is 

stated as follows. 

1.3 Theorem (The Fundamental Theorem For Linear Systems) [12] 

 Let  be an  matrix. Then for a given , the initial value problem 

 

has a unique solution given by . 

 Now we state the fundamental theorem for the existence and uniqueness of the solution of a 

non-linear system. 

1.4 Theorem (The Fundamental Existence-Uniqueness Theorem ) [12] 

  Let  be an open subset of containing  and assume that . Then there exists an 

 such that the initial value problem  has a unique solution  on the 

interval . 

1.5 Fixed Point or Stationary Point or Equilibrium Point or Critical Point [6] 

 A fixed point or an equilibrium point of a system of differential equations is constant solution, 

that is, a solution such that  for all . If  is a critical point, then we identify the 

critical point with the vector . From the definition, it is clear that  is a fixed point of the system 

(1)  if . 

1.6 Classification of Fixed Points Depending Upon Their Stability [13] 

 Let  be a fixed point of a system . 

(i) We say that  is an attracting stable fixed point if there is a  such that        

      whenever .   

     This definition implies that any trajectory that starts near  within a distance  is guaranteed to 

converge to eventually. 

(ii)  is said to be Liapunov stable if for each , there is a  such that                          
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      whenever  and . 

     Thus trajectories that start near  within  remain within  for all positive time. Liapunov 
     stability requires that the nearby trajectories stay close for all the time. 

(iii) The fixed point  is said to be asymptotically stable if it is both attracting and Liapunov 

       stable. 

1.7 Hyperbolic and Nonhyperbolic Fixed Point [13, 19] 

 A fixed point  of a system , where  and  

 is called a hyperbolic fixed point if the real part of the eigenvalues of the 

Jacobian matrix  at the fixed point  are nonzero. If the real part of either 

of the eigenvalues are equal to zero, then the fixed point is called as nonhyperbolic. 

1.8 Linearization of a Two Dimensional Nonlinear System [19] 

 Suppose that the nonlinear two dimensional system  

                       (3) 

has a critical point , where  and  are at least quadratic in  and .  We take a 

linear transformation which moves the fixed point to the origin. Let  and . 

Then the system (3) takes the linearized form 

,  .                                             (4)       

1.9 Hartman's Theorem [19] 

Suppose that  is a critical point of the system (3). Then there is a neighborhood of this 

critical point on which the phase portrait  for the nonlinear system resembles that of the linearized 

system (4). In other words, there is a curvilinear continuous change of coordinates taking one phase 
portrait to the other, and in a small region around the critical point, the portraits are qualitatively 

equivalent.    

1.10 Limit Set [18] 

The set of all points that are limit points of a given solution is called the set of ω-limit points, or the 

ω-limit set, of the solution . Similarly, we define the set of α-limit points, or the α-limit set, of a 

solution  to be the set of all points  such that  for some sequence . 

A number of examples of limit set of solution of a differential equation are given in [18]. Now we 
state the Poincaré-Bendixson theorem which determines all of the possible limiting behaviors of a 

planar flow. 

1.11 Theorem (Poincaré-Bendixson) [18] 

Suppose that  is a nonempty, closed and bounded limit set of a planar system of differential 

equations that contains no equilibrium point. Then  is a closed orbit. 

2. OSCILLATIONS OF A PENDULUM SYSTEM 

In this section, we will discuss the oscillations of a pendulum subject to a periodic force and a 

damping force within certain ranges of parameters. We will discuss different types of oscillations of 

the pendulum for different values of the damping force and driven force and prove that the 

oscillations are chaotic using the period doubling phenomenon. 

2.1 Oscillations in the Absence of Damping Force And Periodic Force 

Consider a pendulum of mass  and length  swinging back and forth. For the present case, suppose 

that there is no damping force and no periodic driven force acting on the pendulum. The only force 
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action on the pendulum is the weight  acting downward, where  is the acceleration due to gravity. 

Let  denote the angle made by the pendulum with the normal at time . In this case, the motion of 

the pendulum is governed by the second order differential equation                                                                                                     

(5) 

Because of the trigonometric term , the equation (5) is  nonlinear. To find an exact solution of (5) 

is not possible. However, numerical solutions can be obtained by different methods. We linearize the 

system by considering very small oscillations of the system so that . Thus the system takes 

the form  . The exact solution of this system is  

,                                              (6) 

where  and  are constants which can be determined by using the initial conditions.                       

The solution (6) is just the equation of a simple harmonic motion. Taking ,  and  

, equation (5) can be written as a system of differential equations given by   

,                                     (7) 

                        (8) 

The fixed points of (7), (8) are obtained by solving  and . Thus the fixed points are 

, where  is an integer. The Jacobian matrix of the system (7), (8) is  

. At the fixed point , the Jacobian matrix  has the 

eigenvalues  and . Hence the system has hyperbolic fixed points  and 

nonhyperbolic fixed points . By Hartman's theorem, there are neighborhoods of the 

hyperbolic fixed points in which the phase portraits of the linearized and non-linearized systems are 

topologically conjugate. By Poincare-Bendixson theorem, the chaos [1,2,4,8,9] does not exist in this 

two dimensional autonomous system. Some o the trajectories are shown graphically for this system. 

The graphs are obtained by using the software MATLAB as shown in the Figure 1. 

 
Figure 1 

2.2 Damped Oscillations of the Pendulum 

Now we suppose that the pendulum is damped. Assume that the damping is proportional to the 

velocity and it opposes to the motion of the pendulum. The damping force can be caused by air 

resistance or friction due to any other medium in which the pendulum is immersed. Let  denote the 
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damping parameter. Then the damping force acting on the pendulum is . Hence the differential 

equation of motion of the pendulum becomes  

                          

                          .e.   .              

For a proper analysis of this equation, we simplify it by the introduction of two variables viz. the 

natural frequency  and the damping constant . The differential equation of motion of 

the pendulum then takes the form  

                        .                     (9) 

With  and  , equation (9) can be written as a system of differential 

equations  

                             ,                     (10)

             

                                    (11)
        This is not a linear system, but as discussed in the earlier case where there is no 

damping, this system is almost linear [6] at the origin. The linearized system 

                             ,                     (12)
             

                                                (13) 

has the associated matrix . The eigenvalues of this matrix are given by 

 and . The nature of the fixed point O=(0, 0) depends 

upon the values of  and . Note that the real parts of  and  are negative so that the solutions of 

the linear system (12), (13) are asymptotically stable. Hence by Hartman's theorem, in some 
neighborhoods of the origin, the solutions of the nonlinear damped system (10), (11) are stable at the 

origin. As time passes, the solutions spirals and approaches the zero solution and ultimately, the 

pendulum stops oscillating. This tendency of the solution to spiral is observed as the damping 

constant  increases from 0 to ). As  increases beyond ), the trajectory of a 

solution does not spiral as it converges to the zero solution. The nonlinear system (10), (11) has fixed 

points , where  is an integer and the system is almost linear at each fixed point.  

The graph of the solution  plotted against the time  has the nature as shown in the figure 2. 

 
Figure 2 
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The phase portrait of the damped pendulum is as shown in the figure 3. 

 
Figure 3 

2.3 Oscillations of the Damped Driven Pendulum 

Assume that the pendulum is subject to a damping force  as in the previous case along with a 

sinusoidal driving force  which varies with time , where  is the amplitude of 

the driving force and  is the driving angular frequency. The physical pendulum and different forces 

acting on it are as shown in the figure 4. 

 

Figure 4. The physical pendulum and different forces acting on it. 

In this case, the differential equation of motion of the pendulum takes the form  

.  

Dividing by , we get  

                      (14) 

Taking  and  , equation (14) can be written as a system of differential 

equations  

                             ,                     (15)
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                                                            (16) 

The system of equations (15), (16) appears to be a two dimensional phase-plane system and one may 

conclude by Poincare-Bendixson theorem that the chaos is not possible in the oscillations of the 

pendulum, but note that the system is non-autonomous and it can be made a three dimensional 

autonomous system simply by adding one more variable  so that the system can be 

expressed as    

 ,                   

 ,  

Thus the Poincare-Bendixson theorem is not applicable and chaos may be observed in the system. 

Denoting ,  and , the system (15), (16) can be expressed as  

                        ,                                  (17)      

                                                         (18) 

This type of system of equations appears in John Taylor's Classical Mechanics. [20] We choose 

 so that the period of the driving force becomes . The chaos can be observed in the 

system if  is close to . It can be verified that the much erratic oscillations of the pendulum are 

observed when  as compared to the case . We will keep the values of the 

parameters ,  and  as constants and vary the parameter  in search of the chaos. As suggested 

by John R. Taylor, we will use the parameter values , ,  and let  vary. The 

period doubling phenomenon has been one of the important characterization of chaotic dynamical 

system. The bifurcation values can be observed from the bifurcation diagram [8] obtained using the 

MATLAB program. The bifurcation diagram of the pendulum system is as shown in the following 

figure 5.      

 
Figure 5 

By a careful observation of the bifurcation diagram, we note that for an approximate value , 

the period of oscillations changes from period one to period two. The numerical solutions for  

against the time  for different values of  near 1.065 are plotted in the following figures. The solution 

for  against the time  with , ,   is plotted in the figure 6 (a) and 6 (b) below. 

In the graph we can observe that the period of oscillations of the pendulum is one. 



Kulkarni P. R. & Dr. Borkar V. C. 

 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)                       Page 21 

 
Figure 6 (a): Solution with , , . After a transient behavior, the solution is observed to be 
periodic. 

 
Figure 6 (b): Zoom in of the solution with , , . 

The period of oscillations is seen to be one. 

The phase plane portrait with the same values , ,  is as shown in the following 
Figure 7 (a) obtained using MATLAB programming. The phase portrait with same values but 

obtained using Phaser Scientific Software with Dormand-Prince Algorithm is as shown in the Figure 

7 (b). It can be observed that after a transient behavior, there is an orbit of period 1. 

 
Figure 7 (a) The phase plane portrait with , ,  
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Figure 7 (b) 

The solution for  against the time  with , ,   is plotted in the figure 8 (a) and 

(b) below. In the graph we can observe that the period of oscillations of the pendulum is two. 

 
Figure 8 (a) Solution with , , . 

Period of oscillation is seen to be two 

 

Figure 8 (b). Zoom in of the solution with , , . 
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The phase plane portrait with the values , ,  is as shown in the following 
figures 9 (a) and 9 (b) obtained using MATLAB programming and Phaser Scientific Software. It can 

be observed that after a transient behavior, there is an orbit of period 2. 

 

Figure 9 (a) 

 
Figure 9 (b) 

The solution with , ,  is as shown in the following figure 10 (a) and figure 10 

(b). It can be observed that after the transient decay, there is an orbit of period four. 

 
Figure 10 (a) 
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Figure 10 (b) 

Zoom in of the solution with , , . 

The phase-plane portrait for , ,  is as shown in the following figures 11 (a), 11 

(b) and 11 (c). In the figure 11 (c), we can observe the period four cycle. 

 

Figure 11 (a). Phase-plane using MATLAB 

 

Figure 11 (b) Phase-plane using Phaser 
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Figure 11 (c) The zoom-in of the phase portrait [figure 11 (b)], where period four cycle can be observed. 

We can continue in this fashion and obtain the values of  for the oscillations of period eight, period 

sixteen and so on. Thus we come across a period doubling phenomenon. This period doubling is 

observed in many systems in nature and it is supposed to be one of the important features of chaos. 

However, at a certain value of , as can be observed from the bifurcation diagram and figure 12, the 

periodic behavior of the pendulum turns out to be non-periodic. 

 

Figure 12. Graph of the solution  against time  for  , ,  

The phase-plane portrait of a non-linear system can sometimes become overcrowded and very 

difficult to understand. To overcome this difficulty, Poincare maps [19] are extensively used. These 

maps transform complicated behavior in the phase space to discrete maps in a lower dimensional 

space. If a dynamical system has a simple attractor, the Poincare map appears as one or more points, 

with the number of points indicating the period of the solution. The Poincare map for the pendulum 

system described by the equations (15), (16)  for  is as shown in the figure 

13. In this figure, we can observe that the system is chaotic for . 
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Figure 13. Poincare map for  

This non-periodic behavior is also an important feature of chaos. Mathematicians all over the world 

do not agree on a universal definition of chaos, but they agree on the important features of chaos as 
follows:[1, 3, 13, 19] 

'Chaos is a non-periodic long term behavior in a deterministic system that exhibits sensitive 

dependence on initial conditions.' 

In this definition, the term 'long term non-periodic behavior' means that there are trajectories that do 

not converge to a fixed point or to periodic orbits over a long period of time i.e. as the time . 

The random behavior of the system is caused because of the non-linearity of the system and not 

because of the parameters of the system. Sensitive dependence on the initial conditions is an 
important feature of the chaotic systems. This condition means that the trajectories that differ with a 

negligible amount of initial conditions differ very fast as the time passes. In this case, the system has 

positive Liapunov exponent. 

3. CONCLUSION 

The oscillations of the pendulum system exhibit sensitive dependence on initial conditions. When we 

set to oscillate two pendulums with exactly the same parameters but slightly different initial 

conditions, the difference between their respective values of  and  are observed to decrease 

exponentially over time, and after a transient decay, their oscillations are indistinguishable. Thus the 

predictions of such systems is nearly impossible.     
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