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Abstract: Various transforms are employed for signal processing to obtain useful information, which is 

not explicitly available when the signal is in the time domain. Most of the real time signals such as speech, 

biomedical signals, etc., are non-stationary signals. The Fourier transform (FT), used for most of the signal 

processing applications, determines the frequency components present in the signal but with zero time 

resolution. The fractional cosine and sine transform closely related to the fractional Fourier transform 

which is now actively used in optics and signal processing. 

In this paper applications on generalized two dimensional fractional Sine transform are discussed. Also this 
paper presents Generalization of two dimensional fractional sine transform in the distributional sense. 
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1. INTRODUCTION 

Nowadays, fractional transform play an important role in information processing, image 
reconstruction, pattern recognition, and acrostic signal processing [6], [7] and the obvious 

question is: why do we need fractional transformation if we successfully apply the ordinary ones? 

First, because  they naturally arise under the consideration of different problems for example, in 

optics and quantum mechanics and secondly, because fractionalization gives us a new degree of 
freedom (The fractional order), which can be used for more complete characterization of an object 

(A signal in general) or as an additional encoding parameter. Fourier analysis is one of the most 

frequently used tools in signal processing and many other scientific disciplines. 

Namias [8] introduced the concept of Fourier transform of fractional order, which depends on a 

continuous parameter  . The generalization of ordinary Fourier transform and its properties were 

discussed in Cariolaro et.al [3] Zayed [1] Dragoman [4] etc. Fractional Fourier transform is 

further generalization to the integral with respect to new measure   and a new generalized 

integral transform was obtained by Zayed [1]. Bhosale and Chaudhary [2] had extended fractional 

Fourier transform to the distribution of compact support. The fractional Fourier transform with 

 corresponds to the classical Fourier transform and fractional Fourier transform with  

corresponds to the identity operator. In [5] other integral transform of Fourier class that is Cosine 

transform and Sine transform, are also generalized to the corresponding fractional integral 
transform and studied by different mathematicians. 

Pei Soo-Chang redefined the fractional cosine and sine transform based on fractional Fourier 

transform in 2001 [5] The idea of fractionalization of CT and ST was proposed in [9].There the 
real and imaginary parts of fractional FT kernel were chosen as kernel for a fractional CT and 

Fractional ST respectively. 

The organization of this paper is as follows: We first provide the definition of distributional two 

dimensional fractional sine transform in section 2. In section 3 we are discussed applications on 

generalized two dimensional fractional Sine transform in the range  
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2. DISTRIBUTIONAL TWO-DIMENSIONAL FRACTIONAL SINE TRANSFORM 

The two dimensional distributional fractional Sine transform of  defined by  

                                                                   (2.1) 

 

          (2.2) 

where, rhs of equation (2.1) has a meaning as the application of   to . 

3. EXAMPLES IN THE RANGE  

3.1 

If  denotes generalized two dimensional fractional Sine transform of f(x, y) then 

 

Solution: 

  

  

Let, A=       B=  

  

Let, a=   , b= ,   c=  

 

  

  

Here  
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3.2 

If  denotes generalized two dimensional fractional Sine transform of f(x, y) then  

 

Solution: 
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Let A=  

   

 

  

      We know that  

 

  

 

  

 

3.3.  

If  denotes generalized two dimensional fractional sine transform of f(x,y) then  

 

Solution: 

  

  

     Let      A=  

 

 

  

 

Let , , ,  
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3.4.  

If  denotes generalized two dimensional fractional Sine transform of f(x,y) then   
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Solution: 

 Let, A=       B=  
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4. CONCLUSION  

This paper presents the Generalization of two dimensional fractional sine transform in the 

distributional sense. Also some examples of two dimensional fractional sine transform in the 

range 0 to  are proved. 
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