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Abstract: The hybrid Laplace transformation, defined by the composition between the usual Laplace and 

Z transformations, was introduced, studied and applied in a series of papers by the second author. It 

applies to functions of both continuous and discrete variables and can be used to solve hybrid equations, 

which can have both algebraic, differential and integral terms. Here we present some of the properties of 

the hybrid transformation, going them proofs based on the corresponding properties of the usual Laplace 

and Z transformations. Finally the hybrid Laplace transformation is used to solve an algebraic-integral 

equation previously solved by other methods by the first author. The simplicity of the proposed approach 

proves the great advantage of the hybrid Laplace transformation. 
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1. INTRODUCTION 

Many problems of solving hybrid equations have been imposed in the last decade (see [1], [3], 

[4], [5], [14], [15]), as well as the study of the hybrid multidimensional control systems, which are 

governed by several hybrid equations (see [8]-[12], [14]-[20]). The   unknowns of the hybrid 

equations and the states, inputs and outputs of the hybrid physical systems are functions of both 

continuous and discrete variables, These hybrid equations and control systems have many 

applications in various domains such as seismology, geophysics, image processing, computer 

tomography, probabilities, statistics, queuing theory and other. 

A fundamental method of solving continuous-time or discrete-time physical systems is to use the 

Laplace transformation or Z-transformation, respectively. The hybrid Laplace transformation was 

introduced in [14] and it was used to solve hybrid equations or control systems, simultaneously in 

respect with the continuous and discrete variables. The main properties of the hybrid Laplace 

transformation were presented in the quoted paper, their proofs being obtained on the basis of the 

definitions. Also, the method of using this transformation was indicated for solving different types 

of hybrid equations and for the study of some control or physical systems described by such 

equations (see [14]-[16], [18], [19]).  

The present paper emphasizes some properties of the hybrid Laplace transformation, which are 

actually derived from the corresponding properties of the usual Laplace and Z transformations. 

This approach is useful especially in studies which present and employ all these three 

transformations, since in this case it avoids the repetitions of some ideas and techniques in their 

proofs. The proofs given here of the theorems which concern the hybrid Laplace transformation 

are simpler, if the justification of the corresponding properties of the usual Laplace and Z 

transformations are assumed to be known. Finally, using the hybrid Laplace transformation, an 

integral-algebraic recurrence equation with hybrid auto-convolution is solved. This is one of the 

equations studied in [4]. There, it was reduced to a hybrid differential-algebraic equation by using 

the usual Laplace transformation. The obtained equation was then solved using the methods given 

in an earlier paper [5]. The comparison of these solutions shows the advantage of applying the 

hybrid Laplace transformation method, to solve such hybrid equations.  
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2. THE USUAL LAPLACE AND Z TRANSFORMATIONS 

2.1. The Laplace Transformation 

A function  tf  of real continuous-variable t   having complex values is called original function 

for the Laplace transformation if it is piecewise smooth, 0)( tf  if 0t  and there exist 

0)( fM  and   0f , such that      tf
efMtf


 , 0 t . The function of a complex 

variable s  having complex values, defined by the formula  

         t
L f t s L f t s   

0

s t
f t e d t





 , for    R e s f ,  

is called Laplace transform or the image by the Laplace transformation of the original function 

 tf . The linear operator L  which associate to the original function  tf  its  Laplace transform 

   stfL  is called Laplace transformation and has the following properties (see [7] and [22]):
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
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
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a

s
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a
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,                                                      (3) 

Where 0a , 

       stfLesatfL
as

 ,                                                    (4)  

where 0a , 

       astfLstfeL
at

 ,                                                     (5) 

for    as ReRe  , where a  is a complex number, 

     
   
m

m

mm

ds

stfLd
stftL 1 , ,2,1m ,                                      (6) 

     


0lim fstfsL
s

,                                                                 (7) 

     tfstfsL
ts 

 limlim
0

.                                                     (8) 

when both limits exist.  

If  tg  is a second original function and  

    tgf     

t

dxxtgxf

0

  

denotes the causal continuous-variable convolution product of the functions f  and g , then we 

have 

            stgLstfLstgfL  .                                                   (9) 
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2.2. The Z Transformation 

A function  nf  of an integer discrete-variable n  having complex values is called original 

function for the Z transformation if   0nf , for 0n  and there exist  

  0fM  and   0fR , such that      
n

fRfMnf  , 0 n . The function of a complex 

variable z  having complex values, defined by the formula  

         znfZznfZ
n

 






0n

n
znf , for  fRz  ,  

is called the Z transform or the image by Z transformation of the original function  nf . The 

linear operator which associates to the original function  nf  its Z transform    znfZ  is 

called Z transformation and has the following properties (see [21]): 

       znfZzzmnfZ
m

 , ,2,1m ,                                     (10) 
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                                                   (12) 

for all complex numbers z  with  fRaz  , where 0a  is a complex number, 

         
   
m

m
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dz
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zznfmnnnZ 111   , ,2,1m .                             (13) 

If   0nf , mkn  , ,2,1,0k , then 

      
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 
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0Im,1

.                                                 (16) 

when both limits exist. 

If  ng  is a second original function for the Z transformation and  

    ngf    




n

k

kngkf

0

  

denotes the causal discrete-variable convolution product of the functions f  and g , then we 

have 

            zngZznfZzngfZ  .                                                 (17) 

3. THE HYBRID LAPLACE TRANSFORMATION 

A function  ntf ,  of a real continuous-variable t  and an integer discrete-variable n  having 

complex values is called original function for the hybrid Laplace transformation or hybrid 

Laplace transformable function if it is piecewise smooth in t  for every integer number n , we 

have   0, ntf , if 0t  or 0n  and there exist   0fM ,   0f  and   0fR , such 

that  
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       
ntf

fRefMntf


, , 0 t , 0 n . 

The function of complex variables s  and z  having complex values, given by the formula 

            

 


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2
,,,,

k

nt

stk
szntfZLdtezktfzsntfL ,                                  (18) 

for    fs Re  and  fRz  , is called the hybrid Laplace transform or the image by the 

hybrid Laplace transformation of the original function  ntf , . The linear operator which 

associate to the original function  ntf ,  its hybrid Laplace transform    zsntfL ,,
2

 is called 

the hybrid Laplace transformation. We note that the improper integral and series in formula (18) 

are absolutely convergent. They are uniformly convergent if    fs  Re  and 

 fRRz  . In this last case, we have 

         zsntfLZzsntfL
tn

,,,
2

 .                                                 (19) 

By using the properties of the usual Laplace and Z transformations, presented in  Section 2 and 

the definitions (18) or (19), we will derive some properties of the hybrid Laplace transformation 

2
L , which were independently proved in [14], based only on its definition. In all following 

results,  ntf ,  is an original for the hybrid Laplace transformation. Unless other conditions are 

imposed, in the theorems below one assumes that    fs Re  and  fRz  .  

Theorem 1. (Homothety) If 0a , for    faas  Re  and  fRRz  , we have 
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Theorem 2. (Translation) If a  and 0b  are complex numbers, then for   sRe  

   fa Re  and  fRbz  , we have 
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Proof. Using formulas (5), (12) and (18), one obtains 
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Theorem 3. (Time delay) For a real number 0a  and a natural number m , we have 
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Proof. Using formulas (4), (10) and (18), one obtains 
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Theorem 4. (Second discrete-time delay) For a natural number 0m , we have 

           







1

0

22
,,,,,

m

n

nm

t

m
zsntfLzsntfLzzsmntfL .                                  (24) 
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Theorem 5. (Differentiation of the original) For a natural number 0m , we have 

,                     (25) 

for    fs  Re  and  fRRz  . 

Proof. Using (1) and (19), we have  
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Theorem 6. (First formula of differentiation of the image) If 0m  is  a natural number, we 

have 
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                


















 zsntfLZ

s
zsntfL

ds

d
Z

tnm

m

m

tm

m

m

n
,1,1  

     zsntfL
s

m

m

m

,,1
2




 . 

Theorem 7. (Second formula of differentiation of the image) If 0m  is  a natural number, 

we have 

             zsntfL
z

zzsntfmnnnL
m

m

mm

,,1,,11
22




  .                                 (27) 

Proof. Using (13) and (18), one obtains          zsntfmnnnL ,,11
2

  

                  













 szntfZ

dz

d
zLszntfmnnnZL

nm

m

mm

tnt
,1,11   

        



 szntfZL

z
z

ntm

m

mm

,1      zsntfL
z

z
m

m

mm

,,1
2




 . 

Theorem 8. (Initial value formula) When the limits exist, we have 

     0,0,,limlim
2




fzsntfsL
zs

.                                                  (28) 

Proof. Using (7), (15) and (18), one obtains        


zsntfsL
zs

,,limlim
2

 

           0,00,lim,limlim 


fstfsLszntfZsL
t

s
n

z
t

s

. 

Theorem 9. (Final value formula) When the limits exist, we have 

 
       ntfzsntfLzs

ntzzs

,limlim,,1limlim
2

0Im,10 

 .                                   (29) 

Proof. Using (8), (16) and (18), one obtains 
 

      


zsntfLzs
zzs

,,1limlim
2

0Im,10

 

 
        



szntfZzsL
nt

zzs

,1limlim
0Im,10  

        











szntfZzsL
n

zz
t

s

,1limlim
0Im,10

    


sntfsL
n

t
s

,limlim
0

 ntf
nt

,limlim


. 

Theorem 10. (Separate variables case) If  tf  and  ng  are originals respectively for the 

Laplace and Z transformation, then the product    ngtf  is original function for the hybrid 

Laplace transformation and we have 

             zngZstfLzsngtfL ,
2

.                                                 (30) 

Proof. Using the definition (18), we have       zsngtfL ,
2

        szngtfZL
nt

 

                       zngZstfLstfLzngZszngZtfL
tnnt

 . 

Corollary 1. If the function  tf  is an original for the Laplace transformation, then it  is an 

original for the hybrid Laplace transformation and we have 

       stfL
z

z
zstfL

1
,

2


 ,                                                              (31) 

for    fs Re  and   1||  fRz . 
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Proof. It follows from Theorem 10, the linearity of the Z transformation and formula 

  
1

1



z

z
zZ . 

Examples. Using the well-known examples of Laplace transforms and Corollary 1, we obtain for 

a real number 0a  and a natural number , the following examples of hybrid Laplace 

transforms:   
 

  12

1

1
,







a

a

sz

az
zstL , where   is the Euler function of the first kind and 

particularly    
  12

1

!
,





m

m

sz

zm
zstL ,   

  asz

z
zseL

at




1
,

2
,  

   
  222

1
,sin

asz

az
zsatL


  and . 

Corollary 2. If  ng  is an original for the Z transformation, then it is an original for the hybrid 

Laplace transformation and we have 

       zngZ
s

zsngL
1

,
2

 ,                                                               (32)                                

for     0Re  gs   and  gRRz  . 

Proof. It follows from Theorem 10, the linearity of the Laplace transformation and  formula 

  
s

sL
1

1  . 

Examples. Using the well-known examples of Z transforms and the Corollary 1, we obtain for a 

real number 0a  and a complex number 0b , the following examples of hybrid Z transforms: 

  
 a

an

ezs

z
zseL


,

2
 and particularly   

 bzs

z
zsbL

n


,

2
,    

   
 1cos2

sin
,sin

22




azzs

az
zsanL ,    

 

 1cos2

cos
,cos

22






azzs

azz
zsanL . 

4. EXAMPLE 

We give another example of hybrid Laplace transform of an original whose variables are not 

separated, and which will be applied in the Section 6.  

Theorem11.  For   0Re  s , 0 Rz  and 
R

s
1

 , we have 

1!
2


















sz

z

n

t
L

n

.                                                                (33) 

Proof. Using (19) and formulas   
1

!




n

n

s

n
stL , for   0Re s  and   

az

z
zaZ

n


  for 

, with 
s

a
1

 , one obtains 

          
11

1111

!

1
,

!
12






































































sz

z

s
z

z

s
z

s
Z

s
z

s
ZzstL

n
Zzs

n

t
L

n

nnn

n

tn

n

. 

 

m

   
  222

1
,cos

asz

sz
zsatL




az 
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5. HYBRID CONVOLUTION 

The 2D hybrid or the continuous-discrete convolution of the functions  ntf ,  and  ntg ,  is the 

function denoted  and defined by the formula 

       




t n

k

dxknxtgkxfntgf

0 0

2
,,, ,                                     (34) 

for 0t  and 0n , and    0,
2

 ntgf , if 0t  or 0n . 

Theorem 12. (Hybrid Laplace transform of the hybrid convolution) If the functions  ntf ,  

and  ntg ,  are originals for hybrid Laplace transformation, then the hybrid convolution 

  ntgf ,
2

  is also an original and the following equality holds 

            zsntgLzsntfLzsntgfL ,,,,,,
2222

 ,                                   (35) 

for       gfs  ,maxRe   and      gRfRz ,max .  

Proof. We will apply formulas (18) and (34), will reverse the order of integration and summation 

and we will make the change of variables xty   and knm  . Taking into account that 

  0, ntg  if 0t  or 0n , one obtains 

   

      

 



 






0 0 0 0

,,

n k

stn
dxdtezknxtgkxf       

 



 






0 0 0 0

,,

k n

stn
dtdxezknxtgkxf  

       

   

 



 






0 0 0 0

,,

k m

yxskm
dydxezmygkxf      

  












0 0 00

,,

m

sym

k

sxk
dyezmygdxezkxf  

       zsntgLzsntfL ,,,,
22

. 

Remark 1. Not all hybrid Laplace transforms can be derived using the composition between the 

usual Laplace and Z transformations, such as those in Section 3. The formula which gives the 

hybrid Laplace transform of the hybrid convolution, given in  Theorem 12, is such a result. As 

shown above, to prove it was necessary to use the effective definition of the hybrid 

transformation, namely the first equality from (18). 

6. APPLICATION: SOLVING BY HYBRID LAPLACE TRANSFORMATION A RECURRENCE 

INTEGRAL-ALGEBRAIC EQUATION WITH HYBRID AUTO-CONVOLUTION    

Using the hybrid Laplace transformation, in this Section we solve a recurrence integro-algebraic 

equation with hybrid auto-convolution solved in [4] by the usual Laplace transformation method, 

which reduces the equation to a recurrence differential-algebraic equation with auto-convolution. 

This later equation was solved in [4] by the method given in the earlier paper [5]. 

Theorem13. Let 0, ba  with   0Re a , and 
0

s  be given complex numbers. The hybrid 

transformable solution  ntu ,  of the recurrence integral-algebraic equation with hybrid auto-

convolution 

      




t n

k

dxknxtukxunttu

0 0

0,,, , 0 t , ,2,1,0n ,                      (36) 

which can be written as 

           

 

 




0 0 0 0

22
,,,,

n

t n

k

stn
dtedxzknxtgkxfzsntgfL
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     0,,
2

 ntuunttu ,                                                               (37) 

with the initial condition 

  nts
abdtntue 





0

,0 , ,2,1,0n ,                                                   (38) 

is given by formula 

  
t

a

asn

e
a

bt

n
ntu

1
0

!

1
,











 , 0 t , ,2,1,0n .                                                 (39) 

Proof. We apply the hybrid Laplace transformation 
2

L  on equation (36) and we denote 

     zsntuLzsU ,,,
2

 , where s  and z  are complex variables with    us  Re  and 

 uRRz  . According to formulas (26) and (35), we obtain the differential equation 

 
  0,

, 2
 zsU

ds

zsdU
,                                                   (40) 

or ds
U

dU


2
. Integrating, we obtain 

 
 zCs

zsU


,

1
, hence the differential equation     (40) 

has the solution 

 
 zCs

zsU



1

, ,                                                                (41) 

where  zC  is an arbitrary differentiable function. By applying the hybrid Laplace transformation 

to the initial condition (38), according to (19), this becomes 

              zabZzdtntueZzsntuLZtsU
n

n

ts

ntn















 





0

00
,,, 0 . 

Using the linearity of the Z  transformation and the formula   
bz

z
zbZ

n


  for bz  , the 

above relation becomes 

    
bz

az
zbaZzsU

n

n


,

0
,                                                              (42) 

for  bRz ,max . From (41) and (42) one obtains 

 
  bz

az

zCs
zsU







0

0

1
,  

hence 

 
 

az

basz
zC




0
1

.                                                    (43) 

From (41) and (43) it follows that the solution of the differential equation (40) with the initial 

condition (42) is 

 
  basasz

az
zsU




1
,

0

.                                                  (44) 

On the other hand, taking into account Theorems 2 and 10, we get 
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 

 
  bzs

z

b

z
s

b

z

zs
n

tbe
L

nnt


























1

,
!

2
,                                    (45)   

with 1
0
 as . Using Theorem 1, formula (45) becomes 

 
  basasz

az
zs

a

t
be

n
L

n

n
t

a

as




























1
,

!

1

0

1

2

0

.                                    (46) 

From relations (44) and (46) we obtain that the solution of the equation (36) with the initial 

condition (38) is given by formula (39).  

Remark 2. As it can be seen, the solution found here is the same as that obtained in the paper [4], 

if the number a  is replaced with a . 

Corollary 3. The recurrence integro-algebraic equation with combinatorial hybrid auto-

convolution 

       


















n

k

t

dxknxtvkxv
k

n
nttv

0 0

0,,, , ,2,1,0n , 

where 
 !!

!

knk

n

k

n

















 are the binomial coefficients, with the initial condition   

 






0

!,0 nts
abndtntve , ,2,1,0n  

has the solution   

 
t

a

asn

e
a

bt
ntv

1
0

,











 , ,2,1,0n . 

Proof. The equation and its initial condition are reduced to equation (36) and initial condition (38) 

by the change of function    ntunntv ,!,  , ,2,1,0n , therefore the above solution is 

obtained by formula (39). 

7. VERIFICATION.  

In addition to the proof of Theorem 12, we will show that the obtained solution (39) verifies both 

the hybrid equation (36) and the initial condition (38). Performing the hybrid auto-convolution of 

the function  ntu ,  given by formula (39) and using the Newton’s binomial formula, we obtain 

         



t n

k

dxknxtukxuntuntu

0 0

2
,,,,          

 
 

 

 



























t n

k

xt
a

as

kn

kn
x

a

as

k

k

dxext
a

b

kn
ex

a

b

k
0 0

11
00

!

1

!

1
      

   




































 t t

n
t

a

asn
n

k

knk
t

a

asn

dxte
a

b

n
dxxtx

k

n
e

a

b

n
0 0

1

0

1
00

!

1

!

1
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hence the function  ntu ,  given by formula (39) verifies equation (36). Let us check the initial 

condition: 
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8. CONCLUSION 

In this paper some theorems concerning the 2D hybrid Laplace transformation were derived from 

the corresponding properties of the usual Laplace and Z transformations. These properties can be 

extended to hybrid Laplace transformation which operates on original functions with an arbitrary 

finite number of continuous and discrete variables. The hybrid Laplace transformation can be 

applied to mathematical models described by multiple differential-difference and integro-

difference equations, as well as to the study of multidimensional hybrid control systems. As an 

example, in this paper we solve an integro-difference equation, which has been solved by other 

methods in [4], achieving the same result. Comparing the two solutions, it may be noted that, in 

the situations in which it can be applied, the method of the hybrid Laplace transformation is 

simpler, because it works simultaneously on both continuous and discrete variables of the 

unknown. 
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