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Abstract: In this paper we analyze the flow, heat and mass transfer characteristics of a magneto 
hydrodynamic Casson fluid in a parallel plate channel with stretching walls subject to a uniform transverse 

magnetic field. The governing non linear partial differential equations are solved numerically using   Runge 

– Kutta fourth order shooting method. The influence of the governing parameters on the flow variables are 

discussed through graphs for several sets of values of these parameters. The skin friction, Nusselt number 

and Sherwood number are calculated and discussed. The study reveals that with increase in the strength of 

the magnetic field, the fluid velocity decrease however an enhancement in temperature is noticed. With 

increase in the Casson parameter the width of the central core region is observed to reduce. The 

investigation bears potential application in the study of blood flow in the cardiovascular system.     
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1. INTRODUCTION 

MHD problems occur in several situations which include the prediction of space weather, 

damping of turbulent fluctuations in semiconductor melts in crystal growth, measurement of flow 

rates of beverages in food industry. MHD channel flows gained significant theoretical and 

practical importance owing to their applications in MHD generators, accelerators and blood flow 

measurements. Investigations for studies on MHD flow and heat transfer of non – Newtonian 

fluid flows generated by a stretching sheet find many applications in engineering and industry. 

For example, in the extrusion of moulton polymers through a slit die for the manufacture of 

plastic sheets, the sheet is sometimes stretched. The properties of the final product in such 

processes mainly depend on the rate of cooling. If such a sheet in an electrically conducting 

Casson fluid under the influence of a magnetic field is drawn, the rate of cooling can be 

controlled, so that the end product can be obtained with the desired quality. 

Crane [1] investigated the steady two dimensional incompressible boundary layer flow of a 

viscous fluid generated by an elastic flat sheet which moves in its plane with velocity varying 

linearly with distance from a fixed point due to the application of a uniform stress and obtained 

closed form solution. Misra [2] analyzed the study of MHD boundary layer flow of a viscous fluid 

over a stretching surface in the presence of a uniform transverse magnetic field with Hall currents. 

The study of mass transfer is significant in problems of convective heat transfer of atoms and 

molecules. Evaporation of water, separation of chemicals in distillation processes involves the 

mass transfer phenomenon. On the other hand mass transfer with chemical reaction has 

applications in chemical and hydrometallurgical industries. Chemical reaction can be considered 

as homogeneous or heterogeneous processes. It depends on the reaction that takes place at the 

interface as a single phase volume reaction [3]. Several researchers (Kandasamy et al., [3]; Hayat 

[4]; Bhattacharyya and Layek [5]; Makinde [6]) studied the problems of mass transfer in the 

presence of chemical reaction.  
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Several mathematical models have been developed for the blood flow through arteries modeling 

blood as a Newtonian viscous incompressible fluid. Blood being a suspension of cells in an 
aqueous solution called plasma, shows a non – Newtonian character. Experiments conducted on 

blood revealed that blood has a finite yield stress of 0.04 dynes/cm
2
 at 40% hematocrit  [7][8]. 

When blood flows in smaller vessels the effect of yield stress is found to be significant [9][10]. It 

was shown that [11] for a small shear rate, (less than   and for hematocrit  less than 40% 

the experimental data on its flow properties were best fitted by the Casson’s equation. Various 

experiments conducted on blood [12][13][14][15] [16] with different hematocrits, anticoagulants, 
temperature confirmed that the flow of blood could be described by the Casson’s fluid model over 

a wide range of shear rates say ( 1 - 100, 00  ) and more accurately at low shear rates (less 

than  ) [16].            

Elbashbeshy[17] studied the heat and mass transfer along a vertical plate in the presence of a 

magnetic field. The heat and mass transfer on steady laminar flow along a semi infinite horizontal 

plate in the presence of chemical reaction have been analyzed by Anjalidevi and Kandasamy [18]. 

The process of chemical reaction in the transport of solutes has applications in blood flow which 

enables to understand the rate of dispersion of drugs and nutrients. As blood is electrically 

conducting, the blood flow in the cardiovascular system is likely to be changed by a magnetic 

field. It is reported that blood flow [19] affects the thermal response of living tissues. The 

exchange of heat between living tissues and the blood depends on the geometry of the blood 

vessels and the variation of blood flow. Craciunescu and Clegg [20] studied the oscillatory flow 

of heat transfer in blood flow considering the vessels of blood as rigid. Weinbaun [21] and Jiji 

[22] studied the bio heat transfer by considering different types of blood walls. Cavaliere[23] 

studied the application of heat to tumors in human being in the extremities by local perfusion with 

warm blood. They observed that the total regression of melonomas and sarcomas has been 

achieved due to heat only, and thus increased the survival rate of patients. Shitzer and 

Eberhart[24] explained various theoretical aspects which will facilitate to estimate heat transfer 

from an external and internal heat source to a tissue. Their studies also helped to predict the 

resulting temperature distribution in normal tissues of various mammals in hyperthermia and thus 

the studies will help in the design of heating protocols for hyperthermia treatment.  

Misra [25] investigated the blood flow and heat transfer in a parallel plate channel with stretching 

walls modeling blood as a viscoelastic fluid. Raftari and Vajravelu [26] analyzed the flow and 

heat transfer characteristics of a magnetohydrodynamic viscoelastic fluid in a parallel plate 

channel with a stretching wall. Ashraf [27] discussed the MHD flow and heat transfer of a viscous 

incompressible electrically conducting micropolar fluid in a channel with stretching walls.   

The aim of the present investigation is to study the MHD flow, heat and mass transfer 

characteristics of an electrically conducting incompressible Casson fluid in a channel with 

stretching walls in the presence of a chemical reaction subject to a uniform transverse magnetic 

field in a situation where the surface velocity of the channel varies linearly with distance from the 

origin. The objective of the study is to analyze the flow of blood in arteries whose walls are 

stretchable by modeling blood as a Casson fluid. The constitutive equation for the Casson fluid 

model suggested by Nakamura and sawada [28];  Eldabe and Silwa [29]; Dash [30]; Boyd [31] is 

employed. The nonlinear coupled equations are very complex to find exact solution hence we 

employed a numerical method to solve the problem.        

2. MATHEMATICAL FORMULATION 

Consider the two-dimensional steady laminar flow of a Casson fluid in a parallel plate channel 
with stretching walls in the presence of a transverse magnetic field. The magnetic Reynolds 

number is assumed to be small so that the induced magnetic field can be neglected. The 

constitutive equation for the Casson fluid can be written [29] as 
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where  is the plastic dynamic viscosity of the non-Newtonian fluid,  is the yield stress of the 

fluid,   is the product of the component of  deformation rate with itself, namely,  , and 

 is the (i, j)th  component of deformation rate,  and  is  critical value of  based on  non-

Newtonian model.   

Using equation (1) the governing equations of the flow heat and mass transfer are  

 

 

 

 

 

The boundary conditions are   

 

 

where  b > 0 is for the stretch of the channel walls. where u and v are the velocity components  in 

x and y directions, respectively, ρ is the density, p is the pressure, ν is the kinematic viscosity,  

 is the  Casson parameter ,  is the electrical conductivity,  is the strength of 

the magnetic field, T is the temperature of the fluid, k is the thermal conductivity,  is the 

specific heat and  is the radiative heat flux, C is the concentration field, D is the mass 
duffusivity, k1  is the reaction rate. 

Using Roseland approximation the radiative heat flux can be taken as  

 

where is the Stephan-Boltzman constant, is the mean absorption coefficient. We assume 

that the temperature difference within the flow is such that can be expressed as a linear 

function of temperature. Giving Taylor series expansion about and neglecting high order terms 
we get 

 

We introduce the following similarity variables to convert the governing partial differential 

equations into ordinary differential equations   

 

 

Eliminating pressure gradient from (2) – (3) and using (8) – (10b), equations (2) – (6) reduce to 
the following equations 
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The corresponding boundary conditions are 

 

 

where    is the non-Newtonian Casson parameter,  is the stretching 

Reynolds number,   is the radiation parameter,   is the Hartman 

number,  is the  Prandtl number,  is the Schmidt number,  is the 

chemical reaction parameter. 

The skin friction that arise owing to the viscous drag in the vicinity of the plate is calculated as       

                                            (15) 

The rate of heat transfer between the fluid and the walls is evaluated through the non dimensional 

Nusselt number. The Nusselt number given by  

                                            

 
                       (16) 

Similarly the Sherwood number is given by 

                    (17) 

The governing equations (11) - (13) along with the boundary conditions (14a) & (14b) have been 

solved numerically by using Runge - Kutta fourth order method along with shooting technique.   

3. RESULTS AND DISCUSSION 

Fig. 1 presents the stream function for variation of stretching Reynolds number. It is observed that 

the stream function is positive in the half region of the channel -1 ≤ η ≤ 0. For increasing values 
of the Reynolds number it is observed that the stream function decreases. In the upper half of the 

channel the stream function is negative and its behavior is exactly opposite to that in the lower 

half channel. In fig.2 it is observed that the velocity profiles are symmetric about η = 0. In the 

lower region of the channel as the Reynolds number increases there is a decrease in the velocity 
up to the point η = 0. In the mid region -0.5 ≤ η ≤ 0.5 of the channel, the velocity increases and in 

the remaining portion of the upper half of the channel again the velocity decreases. (Fig. 3) The 

temperature in the lower half channel decreases to half of the wall temperature and subsequently it 
approaches zero value on the upper plate. For increasing values of Reynolds number it is noticed 

that the temperature decreases with Reynolds number in the lower half channel and increases in 

the upper region. The concentration (Fig. 4) from its peak value prescribed on the lower wall 
reduces parabolically and attains zero value on the upper wall. Concentration is decrease for 

increasing values of Re. 

The variation of Casson parameter on the flow variables is shown in Figs.5 – 8. Increasing values 

of the Casson parameter β corresponds to decreasing values of yield stress. It is observed that the 
stream function increases rapidly in the vicinity of the lower wall and after attaining its maximum 

value it reduces linearly and attains a minimum value and reaches zero value on the upper half. 

With increasing values of β it is observed that the stream function increases in the lower half and 
reduces in the upper half channel. From fig. 6 it is observed that the velocity profiles are blunt in 

the central core region. We observe that reduction in the yield stress (β increasing) the bluntness 

in the profiles decrease and the width of the plug flow region also decreases. In the shear flow 
region the velocity decreases with increasing values of yield stress. The temperature is symmetric 
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about the axis η = 0, with increasing values of β the temperature decreases in the lower half 

channel while it decreases in upper half channel.  It is learnt that the temperature increases with 
increase in the yield stress owing to the development of inertia in the central core which is 

responsible for the impedance of the flow and enhancement of temperature. It is observed that the 

effect of yield stress on concentration is very meager. We learn from the fig. 8 that the 
concentration increases with increase in the yield stress and asymptotically attains zero value very 

fast.     

The effect of magnetic field is presented in Figs. (9) – (12). The stream function is positive in the 
lower half region and it increases from zero value to its peak value and then reduces to zero at η = 

0 and a reversal behavior in the upper half of the channel is noticed. The presence of magnetic 

field decreases stream function.  Further increase in the strength of the magnetic field results in 

the reduction of stream function in the lower half while it shows an opposite behavior in upper 
half channel. From figure 10 we draw the observation that in a pure hydrodynamic flow the 

velocity profile of blood is parabolic and under the influence of a magnetic field. Reduction in 

velocity and bluntness in the profiles is observed.  
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Fig.1. Stream function for various values of 

Re 
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Fig.2. Velocity profiles for various values of 

Re 
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Fig.3. Temperature profiles for various values of Re 

 

 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

  

 
(

)

 

 

  =0.6;Nr=0.1;Pr=7;

Sc=0.5;K=0.6;M=0.5;

 Re=5

 Re=10

 Re=15

 Re=20

Fig.4. Concentration profiles for various values of Re 
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Fig. 5. Stream function for various values of 
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Fig. 6. Velocity profiles for various values of β 
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Fig.7. Temperature profiles for various values of 
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Fig. 8. Concentration profiles for various values of β 
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Fig.9. Stream function for various values of 
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Fig.10. Velocity profiles for various values of M 
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We observe that (Fig. 11) temperature increases with increase in the magnetic field strength i.e, 

under the action of a magnetic field in an electrically conducting fluid a resistive force is 

developed which causes reduction of flow and an enhancement of temperature.  The concentration 
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Fig11. Temperature profiles for various values of M 
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Fig12. Concentration profiles for various values  
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Fig13. Temperature profiles for various values of 
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increases (Fig.12) with increase in the strength of the magnetic field in the upper half region and 

maintains almost same value in the rest of the channel. Fig. 13 shows a rapid decrease of 
temperature in the lower half channel while an opposite behavior is observed in the upper region 

of the channel.  It is observed (Fig. 14) that the effect of radiation parameter is to enhance the 

temperature in the lower half while it decreases in the upper half region. The concentration 
reduces (Figs. 15 & 16) with increasing values of Schmidt number and chemical reaction 

parameter.   

The skin friction co-efficient, Nusselt number and Sherwood number on the lower wall are 
tabulated in the following Table 1. From the below table we see that skin friction, Nusselt number 

and Sherwood number increase numerically for increasing values of the stretching Reynolds 

number. The magnitude of skin friction decreases with increase in Casson parameter while the 

Nusselt number and Sherwood number show an increasing tendency. It is observed that with 
increase in the magnetic field strength, the magnitude of the skin friction decreases, while the 

magnitude of Nusselt number and Sherwood number decrease. Further for an increase in the 

radiative heat transfer we observe that the magnitude of the Nusselt number decreases while it 
increases with an increase in Prandtl number. With increase in the Schmidt number we observe 

that magnitude of the Sherwood number decreases. It is noticed that lesser the molecular 

diffusivity greater is the Sherwood number.  Increase in the chemical reaction parameter results in 

the enhancement of magnitude of Sherwood number.  

Table1. The skin friction, Nusselt number and Sherwood number values on the lower wall for different   

parameters 

Re β M Nr Pr Sc K  Nur 

    

Shr     

 

5 

10 

15 

20 

 

 

10 

 

 

 

 
10 

 

 

 

 

10 

 

 

 

 

10 
 

 

 

 

10 

 

 

 

 

10 

 

 

0.6 

 

 

 

0.1 

0.3 

0.5 

0.7 

 

 
0.6 

 

 

 

 

0.6 

 

 

 

 

0.6 
 

 

 

 

0.6 

 

 

 

 

0.6 

 

0.5 

 

 

 

 

0.5 

 

 

 

0 
5 

10 

15 

 

 

0.5 

 

 

 

 

0.5 
 

 

 

 

0.5 

 

 

 

 

0.5 

 

 

0.1 

 

 

 

 

0.1 

 

 

 

 
0.1 

 

 

 

1 

3 

5 

7 

 

 

0.1 
 

 

 

 

0.1 

 

 

 

 

0.1 

 

 

7 

 

 

 

 

7 

 

 

 

 
7 

 

 

 

 

7 

 

 

 

1 

7 
21 

 

 

 

7 

 

 

 

 

7 

 

0.5 

 

 

 

 

0.5 

 

 

 

 
0.5 

 

 

 

 

0.5 

 

 

 

 

0.5 
 

 

 

1 

2 

3 

4 

 

 

0.5 

 

0.6 

 

 

 

 

0.6 

 

 

 

 
0.6 

 

 

 

 

0.6 

 

 

 

 

0.6 
 

 

 

 

0.6 

 

 

 

0.5 

1 

1.5 

2 

-4.275966 

-5.362679 

-6.357377 

-7.264072 

 

-10.589260 

-6.649383 

-5.633181 

-5.165314 

 

-3.323798 
-4.811632 

-7.539086 

-10.474396 

 

 

- 

 

 

 

 

- 
 

 

 

 

- 

 

 

 

 

- 

-1.668632 

-2.537333 

-3.171309 

-3.691860 

 

-1.942551 

-2.390420 

-2.506769 

-2.559501 

 

-2.760653 
-2.569797 

-2.195859 

-1.834593 

 

-0.674198 

-0.583790 

-0.555081 

-0.541013 

 

-0.833677 

-2.758384 
-3.398644 

 

 

 

- 

 

 

 

 

- 

-1.364909 

-1.970266 

-2.445388 

-2.844208 

 

-1.885249 

-1.943785 

-1.964319 

-1.974742 

 

-2.023066 
-1.974137 

-1.913118 

-1.873605 

 

 

- 

 

 

 

 

- 
 

 

 

-3.003032 

-4.429278 

-5.529441 

-6.456662 

 

-1.874981 

-2.510435 

-2.993770 

-3.401150 

 



MHD Casson Fluid Flow, Heat and Mass Transfer in a Vertical Channel with Stretching Walls 

 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)              Page 808 

4. CONCLUSIONS 

The MHD fluid flow of a Casson fluid in a channel with stretching walls and the associated 

problem of heat and mass transfer have been studied. The investigation is especially motivated 

towards the flow of blood in a vessel possessing a stretching wall. The study facilitates to 
examine the variation of blood velocity as the magnetic field strength of the blood, yield value of 

blood and the stretching Reynolds number. The study reveals that bluntness of the velocity 

profiles can be decreased with reduction in the magnetic field strength and reduction in the yield 

value. The temperature is observed to increase as the strength of the magnetic field increases as 
well as radiation parameter which might be useful in the design and development of new heating 

methods. It may be noted that investigation shall be useful to clinicians in the cancer therapy. In 

cancer therapy the objective of hyperthemia is to increase the temperature of the cancerous tissues 
above a critical therapeutic value 42

0
C while simultaneously maintaining Sublethal temperature 

for the normal tissues around the cancerous tumor.   
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