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1. INTRODUCTION

Let (w,) be sequence of positive real number, let Xa, be a given infinite series with partial sums
(s,) and (t,) denote the n-th Cesaro means of the sequence (na,). Then the series Xa, is said
to be summable |C,1| ,k >1 if (Flett [3]).

Zlun < o0 (1.1)
n1 N

and it is said to be summable w—|C,1|,,k >1 if (Seyhan [6]).

© k-1

Z(an It < oo (1.2
n=1 n

If we are taking ¢, = n,w—|C,1|, -summability reduces to | C,1|, -summability.

Let (p,) be a sequence of positive numbers such that

P,=>.p, > asN—o (13)

v=1
The sequence to sequence transformation
1

u ==Y B (L4)

n v=1

defines the sequence (u,) of the (N, p,) mean of the sequences (S,) generated by the sequence
of coefficients (p,) (Hardy [4]).

The series Za, is said to be summable | N, p, |,k >1 if (Bor [1])
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k-1
Z( i } |Au,, [‘< o0 (1.5)

n=1 pn

and it is said to summable | N, p,,5],,k =1 and & >0 if (Bor [2])

- P Sk+k-1
Z(—“] | AU, , [ <o (1.6)
n=1 pn
where Au, , =u, —u, , = _—p”z p,,a :n>1
I:)npn—l v=l

and Xa, is said to summable | N, p,,8,7 |,k >1L6>0and y >1 if

- (P #(Sk+k-1)
Z(p—"J |Au, 4 [< o0 @.7)

n=1

and it is said to summable w—|N, p., 8,7 |, k>1,5>0,7 >1

D (@Y P Au,, <o (1.8)
n=1

If o, ~ B then w—|N, p,J,7 |, -summability reduces to | N, p,,J, 7|, -summability and if

n

@,=nd=0 and y =1then p—|N, p,,J, 7 |, -summability reduces to | C,1|, -summability.
2. KNOWN RESULTS

Concerning | C,1|, -summability, Mazhar [5] has proved the following theorem.

Theorem 2.1
If dA4,=0(),as m—>ow (2.1)
Y nlogn|A*2, |=0(1) ,as m — oo 2.2)
n=1

ot [

Z =0O(logm) as m — o (2.3)
v=1

then the series Xa A, is summable |C,1|,,k >1.
And Sulaiman (7) has proved the following theorem.

Theorem 2.2 Let (¢,) and (X,) be sequences of positive real numbers such that (X ) is non
decreasing and condition (2.1) is satisfied

If np,=0(R,),P,=0(np,),as n >0 (2.4)
ﬂn+1 = O(ﬂn) (25)
AB =0(n*B)asn— oo (2.6)
S X, | A%4, |=O(1) 27)
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i% ZANES)

~ X
m k-1 k-1
Z §k0n =0 (/k)fl

n—v V Pn—l v Pv

then the series 2a, 4,3, is summable o—|N, p, |,k >1.

=0(X,,) as m— oo (2.8)

3. MAIN RESULTS
The aim of this paper is to generalize the theorem (2.2), here | have proved the following theorem.

Theorem 3.1 Let (¢,) and (X, ) be sequences of positive real numbers such that (X) is non
decreasing and if the conditions (2.1), (2.4), (2.5), (2.6), (2.7) are satisfied.

i (@) B, [ s, |f
n“x <t

((p )y(k+6k -1) (07(§k+k—1)
=0| ~ 3.2
; e (32)

n-1

=0(X,) aam— o (3.1)

Then the series Za, 4, /3, is summable o—|N, p,,5, 7|,k >17>1and 6§ >0.

4, LEMMA
To prove the above theorem following Lemma is required.
Lemma 4.1 Sulaiman [7] The conditions (2.1) and (2.7) implies.

D> X, A4, |=0Q1) (4.2)
n=1

nX, |A4,|=0(1) as n > o 4.2)
X, 14, 0@ as n—> o 4.3)

5. PROOF OF THE THEOREM 3.1

Let T, be the (N, p,) mean of the series > a 4, 3, , we have

n=1

ZmZa

n v=l
= _Z(P Pv—l)avﬂvﬁv
n v=1
And hence
T, SR aAfnz1

n -l T~
PP i)

Using Abeles transformation, we have
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P SR, 1ﬂvﬂ)+'°“wnsn

nnlv—1

“op 5 (-PAAS +RAMSS +RBLALS)

= Tn,l +Tn,2 +Tn,3 +Tn,4

Since | T, +T , +T  +T  [*<A(T [ +| T, [+ Ts | +IT,[)
In order to complete the proof;, it is sufficient to show that

> (@) C DT, [f<oo, 1=1,2,3,4

Applying Holders inequality, we have

Z((p );/(5k+k -1) | 1| — Z(¢ )y(§k+k -1)

k

= P Z pv/ﬁi\/ﬂvsv

n'n-1v=l

m 7 (Sk+k 1) n
:0(1)Z(¢“)Pkpk (Z APR VAT |j

m 7 (0k+k-1) Wk n-1 n-1 k-1
oY ) pnzpv|m|ﬂ||s|(z&j
n=2 Pn IDn— =1 v=1 Pn 1

)y(5k+k 1)

:O(l)i pvlﬂ‘v|k|ﬁv |k| Z((pn P Pk

(Sk+k-1)

=00 p. 14 1A, Hs, I3 o —

)y(ék+k -1)

—oa)z h.(e A6 s, I

v

)+ 12,1 8,18, 11 A |

)y(5k+k -1)

k k-1
v X,

(¢V)7(bk+k -1)
= O(l)ZT
v=1

18,18, 1 2 A4

18,118, [ Q1A% ]
n=v

);/(5k+k -1)

—0(1)Z|M Py YT

s kxkl
=O(1)Z X, A4, |

n=1

=0(1).
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k

7 (Sk+k-1) ¥(Sk-+k-1) S
Z( ) |Tn2 | _Z( ) Pn Pn_l ~ pvﬂ“vAﬂvSv
(q)n)y(ﬁmk 1) n-1 k
-0y e [ p. 14 184,11, |j
( )y(§k+k 1) n k
-0 e (Zvlm 141, |j
¢n(k+5k -1) n-1 n-1 p
—0(1); PP Z‘ ( ] |4 18, []s, (VZ;‘PM
m y(ak+k—1)
=003 p. 14 A, s, 1 3 PP
m y(§k+k—1)
=00 p. 14 HA s 3 P —

)7(§k+k 1)

—0(1)2“”“—"“|M 1, Fs. |

Sk+k-1

O IR
= 0(1), asin the case of T,

k

D AT, [ =0 (p,) Y z P A1 AAS,
n=2 n=2

PP L3

n'n

m+1( )y(ak+k—1) pk n-1 k
- O(l)z P Pk ! (Z pv |ﬂv ” Aﬂ\/ ” Sv |J
n=1 v=1

m 7 (5k+k-1) k n-1 Pk
n=1 P P v=l1 Xv

O 1 m m+1 )y(5k+k—l) prl:
- ( )Z n=v+1l Vk Pnk,l
m m+1 )7(5k+k*1)
=0(1
( )Z n=v+1 Vk Pn_]_

m+1 (§0n )7(6k+k—1)

_oa)z S 1A AL, I T

)y(6k+k -1)

kl k-1
= X,

| B, | A, s, [
> BN s, [
VXt

VAN
Ky k-1
reX;

—owYvias |2

-0W Y. awIag D3
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m 7 (k+5k-1) k k
v v Sv
v=1 v

—omYviata, X, +0@ S 1A%, X, +Omm|Az, |X,
_oq) 7

__JgfL__/gn)l S

2 (@ PT L =2 (0, ) nS
n=1 n=1 Pn Pn71

k
=om§X%VW“”{%)|mrwAﬂ%Vﬂ%l
n=1

n

m v (ok+k-1) k S k o
n=1 v=n

n“x <t

m v y(ok+k-1) k S k
v=1 n=1

N X+
-0y X, 44|
—0o()

This completes the proof of the theorem.
6. COROLLARY
This theorem have the following results as corollaries.

Corollary 6.1

n

If we are taking w:i then the infinite series Za, 4.8, is |N,p,,d,7|. -summable

n

6>0,y>1and k>1.

Corollary 6.2

If we are taking & =0, » =1 then the infinite series 2a, 4,3, is w—| N, p, | -summable, k >1.
Corollary 6.3

If we are taking 6 =0,y =Ly :i then the infinite series Za, A

n

B, is [N, p, |, -summable
n

k>1.
Corollary 6.4

If we are taking ¢ =n then the infinite series. Xa A/, is |C,1,9,7 |, -summable §>0,y =1
and k >1.

Corollary 6.5

If we are taking @ =N, 6=0,y =1 then the infinite series Xa A g, is |C,1|, -summable,
k>1.
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7. CONCLUSION

The results of this theorem is more general rather than the results of any other previous proved
theorem, which will be enrich the literate of summability theory of infinite series.
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