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1. INTRODUCTION 

In 1989, Backhtin [1] introduced the concept of b-metric space. In 1993, Czerwik [5] extended the 
results of b-metric spaces. Using this idea many researchers presented generalization of the renowned 

Banach fixed-point theorem in the b-metric space. 

Definition 1.1:-   

 Let X be a non-empty set  k ≥ 1 be a given real number. A function d: X × X → ℝ+ is called a  

 b-metric provided that ∀ x, y, z ∈ X 

1) d(x, y) = 0 ⟺ x = y, 

2) d(x, y) = d(y, x), 

3) d(x, z) ≤ k [d(x, y) + d(y, z)].  

A pair (X, d) is called a b-metric space. It is clear that definition of b-metric space is an extension of 

usual metric space. 

 Example of b-metric space have given below: 

Example (a) By Boriceanu [4], Let X = {0,1,2} and d(2,0) = d(0,2) = m ≥ 2, 

d(0,1) = d(1,2) = d(1,0) = d(2,1) = 1 

and d(0,0) = d(1,1) = d(2,2) = 0 

then d(x, y) ≤
m

2
[d(x, z) + d(z, y)]   ∀x, y, z ∈ X. 

if m > 2 then the triangle inequality does not hold. 

2. PRELIMINARIES 

Definition 2.1   By Boriceanu [4], Let (X, d) be a b-metric space. Then a sequence { xn} in X is called 

a Cauchy sequence ⇔   ∀ϵ > 0  ∃ n(ϵ) ∈ N such that for each n, m ≥ n(ϵ)  we have d(xn, xm) < ϵ. 

Definition 2.2 Let (X, d) be a b-metric space. Then a sequence { xn} in X is called convergent 

sequence ⟺   ∃ x ∈ X such that ∀  ∃ n(ϵ)  ∈ N such that ∀ n ≥ n(ϵ) we have d(xn, x) < ϵ, in this 

case we write lim
n→∞

xn = x. 

Definition 2.3 Let (X, d) be a b-metric space is complete if every Cauchy sequence convergent. 
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In 2003, Kirk et al. [12] introduced Cyclic contractions in metric spaces and investigated the existence 

of proximity points and fixed-points in view of cyclic contraction mappings as follows. 

Definition 2.4 Let X be a metric space and A and B are closed subsets of X .Then Function   S: A ∪
B → A ∪ B is said to be a Cyclic map if  S(A) ⊂ B and  S(B) ⊂ A.  

∀x ∈ X , n = 0,1,2 … … . ∞, where x ∈ A, S(x) ∈ B  

S(Sx) = S2x ∈ A ⟹ S2n ∈ A 

S(S2x) = S3x ∈ B ⟹ S2n−1 ∈ B 

 

⟹ {S2n(x)} is Sequence in A and {S2n−1(x)} is Sequence in B. S is called Cyclic mapping. Then any 

contraction is called Cyclic Contraction  

3. MAIN RESULT  

Theorem 3.1       Let (X, d) be a complete b-metric space and A and B are closed non −
empty subsets of X.   S: A ∪ B → A ∪ B be a contraction mapping satisfying the following 

contraction. 

d(Sx, Sy) ≤  α.
d(Sx, x)[1 + d(Sy, y)]

1 + d(x, y)
+ β. d(x, y) 

∀x ∈ A, y ∈ B , α, β > 0 and α + β < 1. Then S has a unique fixed − point in A ∩ B. 

Proof:-   Let x ∈ A, Sx ∈ B,     S2x ∈ A, S3x ∈ B    in general S2nx ∈ A,  S2n−1x ∈
B   {Snx} is a sequence in X.  

 

d(S2x, Sx) = d(S. (Sx), Sx) 

≤ α.
d(S. Sx, Sx)[1 + d(Sx, x)]

1 + d(Sx, x)
+ β. d(Sx, x) 

d(S2x, Sx) ≤ α d(S. Sx, Sx) +  β. d(Sx, x) 

d(S2x, Sx)(1 − α)  ≤  β. d(Sx, x) 

d(S2x, Sx) ≤
 β

(1 − α) 
. d(Sx, x) 

Where h =  
 β

(1 − α) 
< 1 

d(S2x, Sx) ≤  h d(Sx, x) 

Similarly,  
d(S3x, S2x) ≤  h2d(Sx, x) 

d(Sn+1x, Snx) ≤  hn−1d(Sx, x) 

Let m, n ∈ N and m > n  using triangular inequality we have  

   d(Smx, Snx) ≤  km−nd(Smx, Sm−1x) + km−n−1d(Sm−1x, Sm−2x) + ⋯ … . . +k d(Sn+1x, Snx) 

d(Smx, Snx) ≤ (km−nhm−1 + km−n−1hm−2 + ⋯ … + k hn)d(Sx, x) 

Further simplification minimizes to  

d(Smx, Snx) ≤ [(kh)m−n. hn−1 + (kh)m−n−1. hn−1 + ⋯ … + kh . hn−1]d(Sx, x) 

d(Smx, Snx) ≤   [hn−1 + hn−1 + ⋯ … . . +hn−1] d(Sx, x) 

=  hn−1 (m − n − 1)d(Sx, x) 

≤ hn−1 δ d(Sx, x) 
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With δ > 0 and as  n → ∞, kh < 1 we get d(Smx, Snx) → 0 

Therefore  {Snx} is a Cauchy sequence in X 

{Snx} converges to u ∈ X as (X, d) is complete. 

Sequence {Snx} is in A and Sequence {Sn−1x} is in B in such a way that both converges  

to u ∈ X. 

as A and B are closed subsets of X . Hence u ∈ A ∩ B and A ∩ B ≠ ∅  

Now we prove Su = u 

We have d (Snx, Su) = d(S. Sn−1x, Su ) 

≤  α.
d(S. Sn−1x, Sn−1x)[1 + d(Su, u)]

1 + d(Sn−1x, u)
+ β d(Sn−1x, u) 

≤  α.
d(Snx, Sn−1x)[1 + d(Su, u)]

1 + d(Sn−1x, u)
+ β d(Sn−1x, u) 

Taking n → ∞ 

d(u, Su) ≤ α.
d(u, u)[1 + d(Su, u)]

1 + d(u, u)
+ β d(u, u) 

d(u, Su) = 0 ⟹      Su = u 

Now we establish uniqueness. 

Let v ∈ X be other fixed − point of S. 

 Then Sv = v 

We have d(u, v) = d(Su, Sv) 

≤ α.
d(Su, u)[1 + d(Sv, v)]

1 + d(u, v)
+ β d(u, v) 

≤ α.
d(u, u)[1 + d(u, v)]

1 + d(u, v)
+ β d(u, v) 

d(u, v)(1 − β) ≤ 0 

∵ (1 − β) ≠ 0 

Hence         u = v  

This completes the prove of the Theorem. 

Theorem 3.2 Let (X, d) be a complete b-metric space and A and B are closed non −
empty subsets of X.   S: A ∪ B → A ∪ B be a contraction mapping satisfying the following 

contraction. 

d(Sx, Sy) ≤  α.
d(x, Sx) . d(y, Sy)

d(x, y)
+ β. d(x, y) 

∀x ∈ A, y ∈ B , α, β > 0 and α + β < 1. Then S has a unique fixed − point in A ∩ B. 

Proof:-   Let x ∈ A, Sx ∈ B,     S2x ∈ A, S3x ∈ B    in general S2nx ∈ A,  S2n−1x ∈
B  {Snx} is a sequence in X.  

 

d(S2x, Sx) = d(S. (Sx), Sx) 

≤ α.
d(Sx, S. Sx) . d(x, Sx)

d(Sx, x)
+ β. d(Sx, x) 
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d(S2x, Sx) ≤ α d(S. Sx, Sx) +  β. d(Sx, x) 

d(S2x, Sx)(1 − α)  ≤  β. d(Sx, x) 

d(S2x, Sx) ≤
 β

(1 − α) 
. d(Sx, x) 

Where h =  
 β

(1 − α) 
< 1 

d(S2x, Sx) ≤  h d(Sx, x) 

Similarly,  
d(S3x, S2x) ≤  h2d(Sx, x) 

d(Sn+1x, Snx) ≤  hn−1d(Sx, x) 

Let m, n ∈ N and m > n  using triangular inequality we have  

   d(Smx, Snx) ≤  km−nd(Smx, Sm−1x) + km−n−1d(Sm−1x, Sm−2x) + ⋯ … . . +k d(Sn+1x, Snx) 

d(Smx, Snx) ≤ (km−nhm−1 + km−n−1hm−2 + ⋯ … + k hn)d(Sx, x) 

Further simplification minimizes to  

d(Smx, Snx) ≤ [(kh)m−n. hn−1 + (kh)m−n−1. hn−1 + ⋯ … + kh . hn−1]d(Sx, x) 

d(Smx, Snx) ≤   [hn−1 + hn−1 + ⋯ … . . +hn−1] d(Sx, x) 

=  hn−1 (m − n − 1)d(Sx, x) 

≤ hn−1 δ d(Sx, x) 

With δ > 0 and as  n → ∞, kh < 1 we get d(Smx, Snx) → 0 

Therefore  {Snx} is a Cauchy sequence in X 

{Snx} converges to u ∈ X as (X, d) is complete. 

Sequence {Snx} is in A and Sequence {Sn−1x} is in B in such a way that both converges  

to u ∈ X. 

as A and B are closed subsets of X . Hence u ∈ A ∩ B and A ∩ B ≠ ∅  

Now we prove Su = u 

We have d (Snx, Su) = d(S. Sn−1x, Su ) 

≤  α.
d(Sn−1x, S. Sn−1x). d(u, Su)

d(Sn−1x, u)
+ β d(Sn−1x, u) 

≤  α.
d(Sn−1x, Snx). d(u, Su)

1 + d(Sn−1x, u)
+ β d(Sn−1x, u) 

Taking n → ∞ 

d(u, Su) ≤ α.
d(u, u). d(u, u)

d(u, u)
+ β d(u, u) 

d(u, Su) = 0 ⟹      Su = u 

Now we establish uniqueness. 

Let v ∈ X be other fixed − point of S. 

 Then Sv = v 

We have d(u, v) = d(Su, Sv) 

≤ α.
d(Su, u). d(v, Sv)

d(u, v)
+ β d(u, v) 

≤ α.
d(u, u). d(v, v)

d(u, v)
+ β d(u, v) 
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d(u, v)(1 − β) ≤ 0 

∵ (1 − β) ≠ 0 

Hence         u = v  

This completes the prove of the Theorem. 

Theorem 3.3 Let (X, d) be a complete b-metric space and A and B are closed non −
empty subsets of X.   S: A ∪ B → A ∪ B be a contraction mapping satisfying the following 

contraction. 

d(Sx, Sy) ≤  α.
 {d(x, Sx)}2

d(Sx, x) + d(Sy, y)
 

∀x ∈ A, y ∈ B , 0 <  α < 2. Then S has a unique fixed − point in A ∩ B. 

Proof:-   Let x ∈ A, Sx ∈ B,     S2x ∈ A, S3x ∈ B    in general S2nx ∈ A,  S2n−1x ∈
B  {Snx} is a sequence in X.  

d(S2x, Sx) = d(S. (Sx), Sx) 

≤ α.
{d(Sx, S. Sx)}2 

d(S. Sx, Sx)+. d(Sx, x)
 

d(S2x, Sx) ≤ α.
{d(Sx, S2x)}2 

d(S2x, Sx)+. d(Sx, x)
 

d(S2x, Sx) ≤ α.
d(S2x, Sx). d(S2x, Sx)

d(S2x, Sx)+. d(Sx, x)
 

1

α. d(S2x, Sx) 
≤

1

d(S2x, Sx) + d(Sx, x)
 

α. d(S2x, Sx) ≤  d(S2x, Sx) + d(Sx, x) 

d(S2x, Sx)(α − 1) ≤  d(Sx, x) 

d(S2x, Sx) ≤  
1

(α − 1)
d(Sx, x) 

Where    h =
1

(α−1)
< 2 

d(S2x, Sx) ≤  h d(Sx, x) 

Similarly,  
d(S3x, S2x) ≤  h2d(Sx, x) 

d(Sn+1x, Snx) ≤  hn−1d(Sx, x) 

Let m, n ∈ N and m > n  using triangular inequality we have  

   d(Smx, Snx) ≤  km−nd(Smx, Sm−1x) + km−n−1d(Sm−1x, Sm−2x) + ⋯ … . . +k d(Sn+1x, Snx) 

d(Smx, Snx) ≤ (km−nhm−1 + km−n−1hm−2 + ⋯ … + k hn)d(Sx, x) 

Further simplification minimizes to  

d(Smx, Snx) ≤ [(kh)m−n. hn−1 + (kh)m−n−1. hn−1 + ⋯ … + kh . hn−1]d(Sx, x) 

d(Smx, Snx) ≤   [hn−1 + hn−1 + ⋯ … . . +hn−1] d(Sx, x) 

=  hn−1 (m − n − 1)d(Sx, x) 

≤ hn−1 δ d(Sx, x) 

With δ > 0 and as  n → ∞, we get d(Smx, Snx) → 0 

Therefore  {Snx} is a Cauchy sequence in X 
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{Snx} converges to u ∈ X as (X, d) is complete. 

Sequence {Snx} is in A and Sequence {Sn−1x} is in B in such a way that both converges  

to u ∈ X. 

as A and B are closed subsets of X . Hence u ∈ A ∩ B and A ∩ B ≠ ∅  

Now we prove Su = u 

d(Snx, Su) = d(S. (Sn−1x), Su) 

≤ α.
{d(Sn−1x, S. Sn−1x)}2 

d(S. Sn−1x, Sn−1x)+. d(Su, u)
 

d(Snx, Su) ≤ α.
{d(Sn−1x, Snx)}2 

d(Snx, Sn−1x)+. d(Su, u)
 

Taking     n → ∞ 

d(u. Su) ≤ α.
{d(u, Su)}2

d(u, Su) + d(u, u)
 

1

α. d(u. Su) 
≤

1

d(u. Su) + d(u. u)
 

α. d(u. Su) ≤  d(u. Su) + d(u. u) 

d(Su, u)(α − 1) ≤  0 

∵  (α − 1) ≠ 0 

d(Su, u) = 0 

Su = u 

Now we establish uniqueness. 

Let v ∈ X be other fixed − point of S. 

 Then Sv = v 

We have d(u, v) = d(Su, Sv) 

≤ α.
{d(u, Su)}2

d(Su, u) + d(v, Sv)
 

d(u, v) ≤ α.
{d(u, Su)}2

d(Su, u) + d(v, Sv)
 

≤ α.
{d(u, u)}2

d(u, u) + d(v, v)
 

d(u, v) ≤ 0 

 Or               u = v 

This completes the prove of the Theorem. 

Corollary:-  Let (X, d) be a complete b-metric space and A and B are closed non −
empty subsets of X.   S: A ∪ B → A ∪ B be a contraction mapping satisfying the following 

contraction. 

d(Sx, Sy) ≤  α.
 {d(x, Sx)}3

d(Sx, Sy). [d(Sx, x) + d(y, Sy)]
 

∀x ∈ A, y ∈ B , 0 <  α < 2. Then S has a unique fixed − point in A ∩ B. 
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