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Abstract: This paper deals with the resolution of an optimal control problem for cardiovascular-
respiratory system in case of the orthostatic stress phenomenon where there is a fall in blood pressures with 

respect to the heart rate, alveolar ventilation and lower venous systemic capacitance which are changing 

extensively. It is applied to model the control action as an optimal control in terms of the cost functional by 

stabilizing the controlled values (arterial and venous systemic pressure, partial pressure of  2CO   and 

partial pressure of  2O   in arterial blood) such that they deviate as small as possible and preventing the 

Heart rate, alveolar ventilation and lower venous systemic capacitance from changing extensively. The 

Matlab routines are used for implementing this problem. The results show that there is a stabilization of 

blood pressures as responses of controls which are the solution of the optimal control problem for 

cardiovascular-respiratory system. They describe that there are orthostatic changes where the heart rate 

and contractility are generally higher and the venous systemic capacitance decreases in upright position 

while the blood pressures are maintained by an increase in heart rate, increase in contractility and a 
decrease in lower venous systemic capacitance. 

Keywords: Orthostatic, stress, cardiovascular system, respiratory system, models, optimal control, 

autonomic nervous system. 

 

1. INTRODUCTION 

The appearance of issues has occurred in cardiovascular-respiratory systems of different people in 
the whole world. Among them, the orthostatic stress is included. Mathematical models have been 

previously applied to study several physiological situations in order to solve different problems 

arisen there [1], [2] and [3]. In our case, the optimal control is applied for solving the orthostatic 
stress issue. The human cardiovascular system is first of all a transport system [4] the oxygen, 

carbon dioxide and nutrients are carried by the blood from the various muscles and organs. In 

terms of control function in cardiovascular system; the autonomic nervous system controls and 

regulates all activities. The heart rate is controlled by both systems (sympathetic and 
parasympathetic nervous systems) [5], [6]. If the sympathetic nervous system excites a particular 

organ, often parasympathetic nervous system inhibits it [7]. 

The respiratory system is also a transport system of gases between the environment and the 

tissues [1], [8]. It acts to exchange oxygen ( 2O ) which is very important as it is needed by various 

tissues in terms of metabolism with carbon dioxide produced by metabolic activities. 

The orthostatic stress is an issue that exists in the cardiovascular-respiratory system, where it 

refers to the stress induced on the cardiovascular system due to gravitational effects produced by 
the upright position as compared to the supine position [6], [9]. When orthostatic stress happens 

the blood pressure must be counteracted by the baroreflex which senses its drop [10]. 

In this work, an optimal control allows us to know the behavior state of cardiovascular-respiratory 
system in the case of the orthostatic stress issue. The paper is organized as follows. The section 1 

focuses on optimal control problem subject to model equations. The discritization of state 
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equations and optimal control problem are presented in section 2. The numerical approach is 
presented in the section 3 whereas the simulation results are discussed in the section 4. The 

section 5 deals with concluding remarks. 

2. MATHEMATICAL MODEL EQUATIONS AND SETTING OF AN OPTIMAL CONTROL 

PROBLEM 

1.1 Model equations 

We deal with the presentation of the mathematical model equations for studying the orthostatic 

stress issue [Fink]. They consist of cardiovascular and respiratory components and include 

cardiovascular auto-regulation, ventilation control, and the baroreflex loop. The diagram for 

model equations is represented in the Fig. 1 [10] and the description of parameters and variables 
is given in the table 3-6 in appendix. 

 

Figure 1: Orthostatic stress model diagram 

For the nonlinear ordinary differential equations, we present the system of constraints for the 

optimal control problem that we have to solve. This system is composed by equations (1)-(16) 

where we consider some parts in this system such as; the mass balance for blood flow, the blood 

gases, the contractility as influenced by  H   and the control. Considering the mathematical model 
presented in [2] we have; 

,asUp asUp l a sUpc P Q F F                                                                                                             (1)                                                                                                              

,asLo asLo a sLoc P F F                                                                                                                        (2)                                                                                                                   

,vsLo vsLo sLo v vsLo vsLoc P F F c P                                                                                                       (3)                                                                                                
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,vsUp vsUp v r sUpc P F Q F                      (4)                                                                                                         

,vp vp p lc P F Q                                                                                                                              (5)                                                                                                                       

 
2 2 2 2 22863 ) ( ,ACO aCO p vCO aCO A lCO aCOV P F C C V P P                                                                    (6)                                                          

2 2 2 2 2 2
863 ( ) ( ),AO aO p vO aO A lO aOV P F C C V P P                                                                              (7)                                                                       

2 2 2 22 ) ( ),Tco vCO CO s aCO vCOV C MR F C C                                                                                          (8)                                                                                

2 2 2 2 2
( ),TO vO O s aO vOV C MR F C C                                                                                                 (9)                                                                                          

,l lS                                                                                                                                         (10)                                                                                                                                

,r rS                                                                                                                                         (11)                                                                                                                                 

,
ll l l l lS H                                                                                                                   (12)                                                                                                      

,r r r r r rS H                                                                                                                 (13)                                                  

1 ,H u                                                                                                                                         (14)                                                                                                                                   

2 ,AV u                                                                                                                                        (15)                                                                                                                                  

3.vsLoc u                                                                                                                                       (16)                                                                                                                                    

In the equations (2), (3) and (16),  Lo   refers to lower compartment while  Up   refers to upper 

compartment in the equations (1) and (4). 

The model equations (1)-(5) represent the mass balance for blood flow while the model equations 
(6)-(9) represent the blood gases. The model equations (10)-(13) represent the contractility as 

influenced by  H   while the model equations (14)-(16) represent the control. 

According to the model given in [10], we have the auxiliary model equations as follows: 

 0

1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ,ap asUp asUp asLo asLo vsUp vsUp vsLo vsLo vp vp

ap

P t V c P t c P t c P t c t P t c P t
c

     

        (17) 

( ) ( ( ), ( ))(1 )
( ) ,

( )(1 ) ( ( ), ( ))
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l
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c P t f S t P t k
Q t H

P t k f S t P t k




 
                                                                     (18) 

( ) ( ( ), ( ))(1 )
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( )(1 ) ( ( ), ( ))

r vsUp r ap r

r
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c P t f S t P t k
Q t H

P t k f S t P t k




 
                                                                        (19) 

exp( /( )) exp( /( )),l d l l r d r rk t R c and k t R c   
                                                 (20) 

1
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1
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2
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
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                                                                                                    (25) 

2 2 2 2( ) ( ) ,vCO CO vCO COC t K P t k 
                                                                                                    (26) 

,A E DV V V 
                                                                                                                               (27) 
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                                                                                        (28) 
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                                                                                                  (29) 
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( )/ ,sUp asUp vsUp sF P P R 
                                                                                                           (30)      

 / ,sLo asLo vsLo sF P P R 
                                                                                                            (31) 

( )/ ,p ap vp pF P P R 
                                                                                                                   (32) 

2
,s pesk vOR A C                                                                                                                              (33)                                                                                                                       

,s sUp sLoF F F                                                                                                                             (34)                                                                                                                      

sin( ),gravP c gh TiltingAngle                                                                                                (35)                                                                                                 

where   1.05mg/mm3 1050kg/m3 ,  c 1/133.322mmHg/Pa  , and  0.6h m   are the 

physical parameters for Hydrostatic pressure induced by gravity ( gravP ). The description of 

variables is presented in the table 3 in Appendix whereas the table 4-6 in Appendix describes the 

parameters. 

The equations (17)-(22) represent the cardiovascular model equations. The pulmonary arterial 

pressure is described by the equation (17). The relation for  Q   is described in (18) and (19) [2], 

while the equation (21) implements a maximum condition so that stroke volume does not exceed 

the filling volume. In terms of  H  , the time of diastole  dt   is described by the equation (22).The 

equations (23)-(27) represent the respiratory model equations as dissociation equations 

representing the partial pressures and concentrations of blood gases. The blood flow is 

represented by the model equations (28)-(35) where the max-function implements the action of 

the venous valves to avoid backflow while the  gravP   represents the hydrostatic pressure induced 

on the lower compartments. These auxiliary equations with respect to pressure, flow and 
resistance are essentially the same as Ohm's law [2]. The effect of oxygen partial pressure on 

systemic resistance is described in the equation (33) while the flow through the tissue 

compartment is described in the equation (33). The equation (35) also describes the dependency 
of the gravitation effect on the degree of tilt. 

We can summarize the model equations (1)-(16) in the following way. Let          denote the 

state vector at time t, 

 
 
   
 
 
 

2 2 2 2

T

asUp asLo vsLo vsUp vp aCO aO vCO vO l r l r A vsLo
x(t) P ,P ,P ,P ,P ,P ,P ,C ,C ,S ,S , , ,H,V ,c  

For clarity we have suppressed the dependence on time  t  . If convenient, the components of  x   

will be also referred to as ix , i=1,…16. Similarly let         denote the control vector  

1 2 3( ) ( ( ), ( ), ( )) ( , , )T T
A vsLou t u t u t u t H V c   

Let moreover            denote the subset of physiologically meaningful state values. Since all 

states except  l   and  r   need to be positive, we have  

    
        

  

We denote the right-hand side of (1)-(16) by  f(x,u)  . Obviously, the function  f(x,u)   is a 

smooth function with respect to  x  ,                 (Here           denotes the vector 

space of all functions         with derivatives of arbitrary order). 

Finally, we abbreviate                 
       and then we can write (1)-(16) in the form 

).;( uxfx                                                                                                                                    (36) 

1.2 Optimal control problem 

For the optimal control problem, let us consider the control functions 1u , 2u , and 3u   representing 
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variations in heart rate ( H ), alveolar ventilation  A
(V )   and lower systemic venous capacitance  

vsLoc  . The control action is modeled as an optimal control via a cost functional where the 

transition from an initial steady state to the final steady state is optimal. Mathematically, we use 

the control functions such that the cost functional  

max
2 2 2

2 2 2

2 2 2

2 2 2 2
0

1 1 2 2 3 3

( ) ( ) ( )
.

( ) ( ) ( ) ( )

f

f

f f
T

a asUp asUp v vsUp vsUp CO aco aco

O ao ao

q P P q P P q P P
dt

q P P q u q u q u

     
 

     
                                        (37)                                    

is minimized subjected to the system of equations (1)-(16). The optimal control problem is 

formulated as follows. 

Find         
    

   
       solution of  

max
2 2 2

3
1 2 3

2 2 2

2 2 2

2 2 2 2
0( , , ) 1 1 2 2 3 3

( ) ( ) ( )
min

( ) ( ) ( ) ( )

f

f

f f
T

a asUp asUp v vsUp vsUp CO aco aco

u u u O ao ao

q P P q P P q P P
dt

q P P q u q u q u

     
 

     
                         (38)             

subject to (36). 

3. DIRECT APPROACH AND DISCRETIZATION OF OBJECTIVE FUNCTION 

To approximate the system (36), let us consider  

 ,  1,...,N N
j j N                                                                                                                 (39)                                                                                                           

a linear B-splines basis functions on the uniform grid  

max ,   0,..., ,N k

kT
t k N

N

 
    

 
                                                                                              (40)                                                                                            

such that 

( ) .N
i k ikt   

Let us introduce the vector space  NW   whose the basis is N . We have 

1)  dim NW N   

2)  1N NW W    

Let us consider  
0

max(0, )W C T   and let us take the interpolation operator 

:N NW W
N 

 


                                                                                                                (41)  

satisfying  

( ) ( ), 1, ,N
k kt t k N                                                                                                     (42)                                                                                              

We verify easily that 

0N

E N
E  


                                                                                                           (43)                                                                                                

0

sup 1

W

N

N E

E











                                                                                                               (44)                                                                                                         

Now, let us set 

0

,
N

N N k N
k

k

u u u 


                                                                                                                    (45)                                                                                                          

With ( ).k
ku u t  

Therefore, the system (36) can be approached by the following form: 

Find  
16( )N Nx W   solution of the system 

( ; )
N

N Ndx
f x u

dt
                                                                                                                         (46)                                                                                                              
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,0(0)N Nx x                                                                                                                                   (47)                                                                                                                          

such that 
0 ,0 0N

N
x x


                                                                                                                             (48)                                                                                                                         

where  0 (0).x x   

To approximate the objective function (38), let us set  
ex   the wanted equilibrium state vector and  

( , )e e e T
Au H V   the equilibrium control vector;  

e
ix   and  

e
iu   designate the  thi   components  thi   

of the vector  
ex   and  .eu   

Therefore, the objective function (38) can take the following compact form 

 max
13 3 2

2

0
1 1

min ( ) .( ( ) ) . ( ) ,
TN N e e

i i i j j j
u Q i j

J u a x t x b u t u dt
  

 
    

 
                                               (49)                                             

where  
Nx   is solution of the approximated solution (36). 

We must determine  1 2 3( , , )K K K K Ku u u u Q    an approximate solution of (49) in 3( ) .K KQ W It is 

necessary to note that we can write 

,
0

( ),   1,2,3.
K

K K
j j k k

k

u u t j


                                                                                                        (50)                                                                                                   

Therefore, we can approximate the objective function by 

   )

13 32 2

,
1 1 1

( ,( )K
K

N N e K e
i i k i j j k j

k i j
J u ta x t x b u u

  

 
 

      
 

                                                   (51)                                                        

where  max
T

t
N

  . 

Finally, the optimal control problem (38) subject to (36) is a minimisation problem with 
constraint. The discreet formulation of such problem can be written as follows. 

Find     1 1, K KKu
      solution of 

   
 

1 1 1 2( ) (min ) ,
K KK

T
K K KN T

u
J u t Y R Y u R u

 
 

 
  
 

                                                                   (52)                                                                     

subject to (46)-(47) where  
K
u   is a matrix   1 3K     such that the components  

,

K

j k
u   are those 

function  N
ju   in  N  and  Y   is the matrix such that the  ( , )thi k   component is  ( ) ,N e

i k ix t x   where  

Nx   is the solution of (36) associated to  Nu u .  1 13,13( )R M  and 2 3,3( )R M are square 

matrices whose main diagonal is  1 2 13( , ,...., )a a a   and  1 2 3( , , )b b b   respectively that is  

1 1 2 13( , ,..., )R diag a a a  and 2 1 2 3( , , )R diag b b b . Here  , ( )n mM   denotes the vector space of  n m   

dimensional matrices with components in . 

4. NUMERICAL APPROACH 

We use here a direct approach for minimizing the functional (52) subject to the state system (36). 
This approach consists in applying directly an optimization algorithm to the objective function, 

the solution of the state system being computed in each iteration of the algorithm. Two Matlab 

functions ode45 and fmincon will be used for solving the state system and the associated 
constrained optimization problem.                                                                                                              

4.1 The state system 

Given a positive integer  N   we define a time grid points on the interval  max(0, )T   using the 

following Matlab line 
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>> TT = 0 : Tmax/N : Tmax; 

We first remark that the system (36) can be decomposed in three subsystems. In the first time one 
can solve the following system:  

14 1

15 2

16 3

( ) ( )
( ) ( )
( ) ( )

x t u t
x t u t
x t u t





                                                                                                                     (53)                                                                                                               

which represents equations (14)-(16). Let us consider the vector  3( 1)NQ    whose components 

are defined by the vector   1 0 1 2 0 2 3 0 3( ),..., ( ); ( ),..., ( ), ( ),..., ( )
T

N N Nu t u t u t u t u t u t   where  max /it iT N  . 

Considering   Q   as a global variable, we implement the second hand side of the system (53) by 

the following code: 

function S=qtild(t,X) 
global Q N TT 

u1t=interp1(TT,Q(1:N+1)',t); 

u2t=interp1(TT,Q(N+2:2*(N+1)',t); 
u3t=interp1(TT,Q(2*(N+1)+1:end)',t); 

S=[u1t;u2t;u3t]; 

Then, the solution of the system (53) is computed via a single of Matlab line using the ode45 

function. This is done by the command line: 

>>[tt,xx]=ode45('qtild',TT,X0(14:16)); 

where X0 denotes the initial solution representing the cardiovascular - respiratory system at rest. 

Next, the solution of (53) is used for computing the sub-system of (1)-(13) composed of equations 
(10) to (13), the solution that will serve to compute the sub-system composed of equations (1) to 

(9). Following codes will be used for defining second hand sides of these considered sub systems. 

The second hand side of equations (10) to (13) is defined by the following function: 

function Z=Stild(t,x) 

global gammal alphal betal gammar alphar betar 

global xx TT 

Sl=x(1); 
Sr=x(2); 

deltal=x(3); 

deltar=x(4); 
Ht=interp1(TT,xx(:,1)',t); 

Z=[deltal;deltar;-gammal*deltal-alphal*Sl+betal*Ht;... 

-gammar*deltar-alphar*Sr+betar*Ht]; 

Similarly, using Matlab program ptild.m can be written for implementing right hand side of the 
sub-system (1)-(9). Finally, the solution of the global system (1)-(16) is obtained by the following 

code 

function [tt,X]=solution(q) 
global Q TT X0 xx xxx 

Q=q; 

X=zeros(length(TT),16); 
[tt,xx]=ode45('qtild',TT,X0(14:16)); 

X(:,[14 16])=xx; 

[tt,xxx]=ode45('Stild',TT,X0(10:13)); 

X(:,10:13)=xxx; 
[tt,xxx]=ode45('ptild',TT,X0([1:9])); 

X(:,[1:9])=xxx; 

Remark that all problem constants are defined as global variables. These constants should be 
introduced by a function which we have called pardef. We can also note that, splitting the system 

in three systems decreases considerably the CPU time for calculating the global system (1)-(16).                                                                                                   



Matlab Design for Solving an Orthostatic Stress Optimal Control Problem of Cardiovascular-

Respiratory System  

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)                Page | 110 

4.2 Control design 

To compute the optimal control we first have to implement the objective function. Using 

Simpson's approximation one can write  

  2 2 2
13 2

1 1 2 3
1 1

( )
k k k

N
e

i i k i
k i

J ta x t x b u cu u
 


 

      
 

 

where  1 ,
k

u    2k
u  and  3k

u   are the approximation of functions  1 ,u    2u   and  3u   at the point  kt  , 

and  max /t T N   . The objective function is then implemented by the following code: 

Having implemented the objective function, the optimal solution is derived using fmincon 

function. Finally, to design the optimal control problem we have implemented the following code: 

function J=funobj(q) 
global dt N R1 R2 Xe 

[tt,X]=solution(q); 

R1=getR1; 
R2=getR2; 

J=0; 

for k=1:N 

Y=X(k,1:13)-Xe; 
qk=[q(k);q(N+k);q(2*N+k)]; 

J=J+dt*(Y*R1*Y'+qk'*R2*qk); 

end 

For a given experimental time  maxT  , the above function main displays a time grid points  tt   and 

a matrix  X   whose component  ( , )j k   represents  ( )k jx t  ,  jt   being the  thj   component of the 

time grid  tt  . 

As in many software environments, typical problems in Matlab are solved interactively and the 
results displayed graphically. Here is an example of Matlab command lines for plotting the 

problem solution. 

>> pardef,[tt,X]=main(2); 
>> plot(tt,x(:,1)); 
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5. SIMULATIONS RESULTS 

In solving the optimal control problem; the use of Matlab implementation is applied by 

considering the parameter values given in the table 4-6 in Appendix. The initial values are given 

in the table 1 whereas the table 2 gives final values.  

Table 1: The initial values for the variables presented in the orthostatic stress models and in the Matlab 
implementation. 

2

2

2

2

2

2

0.368 48.14 4.89
82.35 34.39 6.16
0.55691. 85.26
0.16417 59

40.00 82.12

102.46 4.66

vsLo vCO vsLo

asUp
vO vp

vCO
lA

vO

aCO asLo

aO vsUp

c P P
P P P
C SV
C H

P P

P P

Variables Initial values Variables Initial values Variables Initial values

4.96

4.32

0.00

0.00

r

l

r

S





 

Table 2: The expected final values for the variables presented in the orthostatic stress model equations 

especially in the optimal control problem and in the Matlab implementation. 

2 2

78.55 40.00 102.46 1.69

asUp aCO aO vsUpP P P PVariables

Expected final values
 

The results for the optimal control problem are obtained by considering the MaTlab 

implementation described in the Fig. 2 and 3. 

 

Figure 3: The controls; Heart rate ((a)), alveolar ventilation ((b)) and the arterial systemic capacitance on 

the lower compartment ((c))  
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Figure 4: The arterial systemic pressure on upper compartment ( asUpP ) ((a)), the venous systemic pressure 

on upper compartment ( vsUpP ) ((b)), the partial pressure of 2CO in the arterial blood ((c)) and the partial 

pressure of 2O in the arterial blood ((d)) 

6. DISCUSSION 

The discussion refers to figures plotted in the previous section where we consider the variation of 

variables according to the time of about 30 seconds. 

In general, the results presented in the Fig.2 show us that for the Fig. 2(a), the heart rate is highly 
increased during the time lower than 10 seconds and it starts by gradually increasing until the end 

of time variation. The Fig. 2(b) demonstrates that the alveolar ventilation is highly decreased up 

to its minimum and then it starts by increasing in the time of about 10 seconds where after it also 
starts gradually increasing. The venous systemic capacitance on the lower compartment is highly 

decreasing in the time lower than 10 seconds, where it starts by gradually decreasing until the end 

of time as it is shown by the Fig. 2(c). In this case, the first amount of time lower than 10 seconds 

of which the controls are in high variation explains the orthostatic stress period. 

The Fig. 3 shows that; there is a fall in blood pressures where the Fig. 3(a) indicates that the       

is highly decreased towards its minimum and after a time of 6 seconds, the       has begun by 

being stabilized around its expected final value. In the Fig. 3(b), the venous systemic pressure on 
upper compartment is also decreased towards its minimum, where it starts by being stabilized 

after an amount of time of about 6 seconds as the      . The Fig. 3(c), and the Fig. 3(d) illustrate 

that the partial pressure of  2CO   and the partial pressure of  2O   in arterial blood are around the 

expected final values as their initial values coincide to their expected final ones and after a time 

around 10 seconds, the  
2aCOP   is also being stabilized with respect to its expected final value 

while after the time of about 6 seconds, the  
2aOP   is being stabilized at its expected final value. In 

fact there is no orthostatic stress in the case that the blood pressures asUpP , vsUpP , 
2aCOP  and 

2aOP   

are stabilized thanks to controls H , AV and vsLoC . 
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7. CONCLUSION 

In this work, the orthostatic stress has been studied in the resolution of an optimal control problem 

for cardiovascular-respiratory system. Using a Matlab implementation, we have got solutions to 

the optimal control problem where the blood pressures are stabilized by the actions of the controls

H , AV  and vsLoC  . The solutions of an optimal control problem have well shown that the 

orthostatic stress has happened when the controls H , AV  and vsLoC are in high variation while the 

stabilization of the blood pressures  asUpP , vsUpP , 
2aCOP and 

2aOP  leads us to the success in terms of 

the orthostatic stress issue. 
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Appendix 

Table 3: Description of variables of mathematical model presented in the section 2. 

 
 



Ntaganda Jean Marie 

International Journal of Scientific and Innovative Mathematical Research (IJSIMR)                Page | 115 

Table 4: The meaning and value of parameters that are used in presenting different model equations (First 

part) 
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Table 5: The meaning and value of parameters that are used in presenting different model equations 

(Second part) 

 

Table 6: The meaning and value of parameters that are used in presenting different model equations (Third 

part) 

2 2

1 1

2 2

2

4

                           

Weighting factor of  in the cost functional 0.006

Weighting factor of  in the cost functional 0.0002 min

Weighting factor of  i

aOoq P mmHg

q u

q u



Parameter Description Value Unit

3 3

4 2

1

1

n the cost functional 0.0105 min .

Weighting factor of  in the cost functional 8.3500 .min

Resistance in the region of the pulmonary circuit 1.965 .min.

Total viscous resistance of the

p

l

l BTPS

q u l

R mmHg l

R







2

1

1

1

1

 left ventricle 11.35 .min.

Total viscous resistance of the right ventricle 4.158 .min.

Peripheral resistance in the systemic circuit 16.79 .min.

124.60 .min.

r

s

pesk s pesk vO

mmHg l

R mmHg l

R mmHg l

A R A C mmHg l






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