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Abstract: In this research work, the problem of uniform suction /blowing effect on flow and heat transfer 
due to a stretching cylinder is investigated numerically for micropolar fluids. The partial differential 
equations are converted in to ordinary differential equations by using similarity transformations. The 
resulting equations are solved by using successive over relaxation method and Simpson’s (1/3) rule. The 
results have been obtained for various values of the parameters involved in the equations of motion, namely
Reynolds number R, suction/ injection parameter g and Prandtl number Pr, to study their effect on 

velocity and temperature fields as well as on the Nusselt number and the skin friction coefficient. The 
results are given both in tabular and graphical forms.
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1. INTRODUCTION

The fluid flow about stretching surfaces is important due to its application in extrusion processes 
in plastic and metal industries. The flow due to stretching boundaries has been investigated for 
various situations such as permeable/ impermeable medium, magnetohyderodynamic (MHD) 
flows, heat transfer, stagnation point flow and non-Newtonian fluids flow. The phenomenon of 
boundary layer flow over the surfaces through which the fluid is either sucked or blown is useful 
to control the boundary layer and thermal effects for high energy flows. Several eminent 
researchers have investigated in detail the effects of suction/blowing on the flow due to stretching 
surfaces. It has been observed that the flow pattern is changed significantly because of the cooling 
produced by mass transfer and thus the heat transfer rate from the boundary surface is also 
affected.

Eringen [1] studied the one-dimensional flow problems for micropolar fluids. Guram and Smith 
[2] investigated the stagnation flows of micropolar fluids with strong and weak interaction. Anwar 
and Gurman [3] studied the flow of micropolar fluid confined between two infinite disks, one at 
rest and the other is rotating. Guram and Anwar [4] considered the steady, laminar and 
incompressible flow of a micropolar fluid due to a rotating disk with uniform suction and 
injection. Kamal and Hussain [5] analysed the flow of micropolar fluid inside an infinite channel. 
Kamal and Siddique [6] examined the time marching study of non steady, viscous incompressible 
micropolar fluids flow around a rotating and oscillating cylinder. Kamal, Ashraf and Syed [7] 
considered a two dimensional flow of a micropolar fluid driven by injection between two porous 
disks. Kamal and Siaft [8] investigated the stretching of a surface in a rotating micropolar fluid 
while Shafique and Rashid [9] obtained numerical solution of three dimensional micropolar flows 
due to a stretching flat surface. Sankara and Watson [10] investigated the steady micropolar flow 
past a stretching sheet. Crane [11] discussed a closed form exact solution of Navier-Stokes 
equations subject to two dimensional stretching of a flat surface. Brady and Acrivos [12] 
examined the exact similarity solutions of a flow inside a stretching channel and inside a 
stretching cylinder. Crane [13] found the boundary layer solution outside a stretching cylinder. 
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Watanabe and Oyama [14] studied maganatohydrodynamic boundary layer flow over a rotating 
disk. Dash and Tripathy [15] considered hydromagnatic fluid flow between two horizental plates, 
both the plates being stretching sheets. Datta et al. [16] studied the effect of non-uniform slot 
injection/suction on a forced flow over a slender cylinder. Ishak et al. [17] analyzed the effects of 
uniform suction /blowing on flow and heat transfer for Newtonian fluid due to a stretching 
cylinder.

The fluid flow problem of Ishak et al. [17] is investigated for micropolar fluids. The similarity 
transformations have been used to reduce the governing differential equations to a system of 
ordinary differential equations. This system is solved numerically by using SOR method with 
Simpson (1/3) Rule. The solutions have been compared on different grid sizes. The comparison 
with the results for Newtonian fluids has also been shown. The numerical results have been 
discussed in graphical form.

2. MATHEMATICAL ANALYSIS

Eringen [1] offered the theory of micropolar fluids, the field equations of motion for micropolar 
fluids are given by:

(   ) 0V
t

r r¶
+ Ñ =

¶
 , (1)

( 2 ) (  ) ( ) (  ) (  )

 (  V  ) ,
t

V V

f V

l m k m k k w

p r r

+ + Ñ Ñ - + Ñ ´ Ñ ´ + Ñ ´
¶

- Ñ + = + Ñ
¶



 (2)

(  )  (  )  ( ) (  ) 2

  (  V  ) ,
t

l j

a b g w g w k kw

r r w

+ + Ñ Ñ - Ñ ´Ñ ´ + Ñ ´ -

¶
+ = + Ñ

¶

V


(3)

with energy Equation

2 ( ) 
t

T
C V T K Tpr

¶
+ · Ñ = Ñ + F

¶

æ ö
ç ÷
è ø

, (4)

where r is the density, V the velocity vector, w the  micro-rotation or spin, π the pressure, f

and l the body force and the body couple per unit mass respectively, j the micro-inertia, 
 ,    ,     ,   ,  a b g m l and k are material constants. The dissipation function is Ф whileT , Cp and K 

are fluid temperature, specific heat and heat conductivity respectively. 

The equations of motion for micropolar fluids have been considered for this problem with the 
following assumptions: 

(i) The fluid flow is assumed to be steady, laminar and incompressible. 
(ii) The body force, the body couples and the viscous dissipation are neglected. 
(iii) The fluid flow is caused by a stretching tube of radius a in the axial direction in a fluid at 

rest where z-axis is taken along the axis of the tube and the r-axis is taken in the radial 
direction.

(iv) Tw represents the constant temperature of the surface  of the tube and T¥ denotes  the 
temperature  of ambient fluid where T Tw > ¥ .

(v) The velocity and microrotation vectors may be taken in the form ( ( , ),0, ( , ))V u r z w r z=

and )0),,(,0( 2 zrww = .
Under these assumptions, the set of equations (1) to (4) in cylindrical coordinates system become:
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Subject to the boundary conditions:
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where , 2wu ca w czg= - = with c being a positive constant of dimension [1/Time] and γ is a 

constant and it corresponds to mass injection for γ<0 and mass suction for γ>0. 

We now use the following similarity transformations to convert the equations of motion in 
dimensionless form: 
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where ( )2r
ah = is the dimensionless variable. The prime denotes the differentiation with respect 

toh .

If we substitute (11) in equation (5), then it may be verified that it is identically satisfied. We use 
(11) into equations (6) to (9) then after simplification we get:
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coefficient of kinematics viscosity respectively.

It is interesting to note that the equations (12) and (13) reduce to the equation of motion for 
Newtonian fluids by vanishing micro rotation (or spin).

All C1, C2 and C3 are dimensionless constants given by
2 2
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The dimensions of the parameters involved are as 

follows 1 1 1 2 3 1[ , ] , [ ] , [ ] , [ ] , [ ] and[ ]MT L MLT j L ML c T a Lm k g r- - - - -= = = = = = .

In view of (11), the boundary conditions (10) take the form:
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The following equation can be determined from equation (4.2) as:
2 4 2 22 42 .3 2
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¶
The pressure p can be obtained from this equation by integration with respect to h.

For the purpose of numerical solution, it is convenient to reformulate the equations (12) to (14) by 
using:

, 1 as 0.xe xh h= ® ® (16)
Thus the equations (12) to (14) and boundary conditions (15) take the form:

2 22 ( ) ( ),1
xf f f C e L L R f ff ffxxx xx x x x xx x- + - + = - + (17) 

4( ) ( ( ) 2 )2

( 2( )),3

x xL L C e f f e Lxx x xx x

C fL fL f Lx x

-+ + - -

= + -
(18)

Pr ( ) 0,R f xxx xq q+ = (19)

and the boundary conditions are

, 1, 1, 0, at 0,

0, 0, 0, as ,

f f L xx
x

e f L xx

g q

q

= = = = =
-

= = = ® ¥

ìï
í
ïî

(20)

where the suffixes denote the differentiation with respect to x.

In order to solve the equations (17) and (18) numerically, we set:
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Then equations (17) and (18) become:
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The boundary conditions (20) become:
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Now, if we approximate the equations (22), (23) and (19) by central difference approximation at a 
typical point

n
xx = of the interval [0,¥), we obtain
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where h denotes a grid size. For computational purposes, we shall replace the interval [0,¥) by 
[0, b), where b is sufficiently large.
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We now solve numerically the first order ordinary differential equation (21) and the system of 
finite difference equations (25) to (27) at each interior grid point of the interval. The equation (21) 
is integrated by the Simpson’s (1/3) rule with the formula of Adams-Moulton [18], where as the 
set of equations (25) to (27) are solved by using SOR iterative procedure [18] subject to the 
appropriate boundary conditions.

3. DISCUSSION ON NUMERICAL RESULTS

In this section, the results obtained by using the numerical computation for the problem reported 
in the previous section are presented in tabular as well as graphical form. In order to analyze 
velocity, temperature, microrotation, skin friction coefficient (1)f ¢¢ and the Nusselt number 

(1)q ¢- , tables and curves have been drawn for representative values of the flow parameters 

namely  R,g and Pr.  Three different sets of the material constants , and C1 2 3C C given in the 

table below have been chosen arbitrarily and the results have been computed for each of the sets.

For reliability of the present results, an extensive comparison of these results with the results for 
Newtonian fluids and the previously published results is given in the Table 1 to Table 3 for 

(1), ( )f f¢¢ ¥ and (1)q ¢- respectively. The results are in good agreement. It can be noticed from 

Table 1 that all the values of (1)f ¢¢ are negative. It means that a dragging force on the fluid is 
exerted by the stretching tube.  It can also be noted that absolute values of the skin friction 
coefficient (1)f ¢¢ are larger for positive g that stands for suction than negative g that stands for 

injection. The asymptotic value ( )f ¥ decreases with increasing the values of R for every choice 
of g as indicated in Table 2. The Table 3 shows that the heat transfer rate increases with 

increasing the values of g . The Prandtl number Pr has no effect on the velocity components f

and f ¢ .

Graphically the results have been reported for a representative set of all the parameters of interest 
in the form of velocity and temperature distributions. Figure 1 to Figure 3 illustrate the effect of R
on f for the values of g =-0.5, 0 and 0.5 respectively. It can be observed that the curves of f fall by 

increasing R for all selected values of g . The behavior of ( )f h¢ under the effect of R is shown in 

Figure 4 to Figure 6 for g =-0.5, 0 and 0.5 respectively. It is noticed that the velocity gradient at 
surface increases with increasing the values of R. Figure 7 illustrates the effect of g upon the 

velocity function ( )f h¢ for a fixed value of R=10. The velocity distributions in this figure indicate 

an increase in the velocity gradient at the surface with increase in the values of g . This effect 
causes the increase in the wall shear stress and hence injection decreases the skin friction and 
suction increases it. This important finding may be applied to reduce the skin friction through 
injection. We note that the velocity profiles disappear for larger values ofh .

Figure 8 and Figure 9 are drawn to observe the effect of Pr and g upon temperature function ( )q h
for a fixed value of R=10.  The curves have been presented in these figures for the values of Pr= 
0.7(air) and 7.0(water) respectively when g =-0.5, 0 and 0.5. In both the figures ( )q h decreases 
with increase in the values of g and then becomes zero at a largeh in both the cases. It is noticed 

that the increasing values of g decrease the thermal boundary layer for fixed value of Pr. This 
situation causes the increase in wall temperature gradient and thus the surface heat transfer rate is 
increased. So, the increasing values of g increase the Nusselt number. Figure10 and Figure 11 

demonstrate the effect of g on ( )q h for large values of Pr and different values of R. It is observed 
that the temperature gradient at the surface becomes zero for strong injection. Hence, the heat 
transfer rate at the surface can be reduced by injection. 

Case
1C 2C 3C

I 0.1 0.2 0.3
II 0.05 0.1 0.2
III 0.02 0.15 0.25
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Table 1: The comparison of Micropolar fluids and Newtonian fluids for (1)f ¢¢

γ R
Micropolar fluids Newtonian fluids

I II III Present Previous
0.0 0.1 -0.5443344 -0.4959164 -0.4974709 ---- ----

0.5 -0.8940945 -0.8865318 -0.8864365 ---- ----
1.0 -1.1846790 -1.1811456 -1.1810026 ---- ----
2.0 -1.5997895 -1.5959939 -1.5958842 -1.595297 -1.5941
5.0 -2.419663 -2.410713 -2.410623 -2.410499 -2.4175
10.0 -3.343893 -3.318196 -3.318130 -3.318044 -3.3445

15.0 -4.049064 -4.007159 -4.007102 ---- ----

20.0 -4.645396 -4.582964 -4.583002 ---- ----

-0.5 0.1 -0.7039795 -0.4726658 -0.4748879 ---- ----
0.5 -0.7866631 -0.7753430 -0.7752953 ---- ----

1.0 -0.9702454 -0.9656963 -0.9655247 ---- ----
2.0 -1.1857996 -1.1847553 -1.1846361 -1.184350 -1.1810
5.0 -1.4831551 -1.4854964 -1.4854201 -1.485243 -1.4811
10.0 -1.6790875 -1.6823539 -1.6823014 -1.682201 -1.6776
15.0 -1.7694720 -1.7728433 -1.7728003 ---- ----
20.0 -1.8207320 -1.8244752 -1.8244847 ---- ----

0.5 0.1 -0.5624542 -0.5193005 -0.5212460 ---- ----
0.5 -1.0217437 -1.0115728 -1.0121593 ---- ----
1.0 -1.0217437 -1.4420661 -1.4418277 ---- ----
2.0 -2.147914 -2.142297 -2.142278 -2.141963 -2.1468
5.0 -3.928305 -3.882791 -3.882786 -3.882652 -3.9308

10.0 -6.592847 -6.435619 -6.435676 -6.435548 -6.6222
15.0 -9.141375 -8.815743 -8.816062 ---- ----
20.0 -11.649300 -11.090161 -11.090691 ---- ----

Table 2: The comparison of Micropolar fluids and Newtonian fluids for ( )f ¥

γ R
Micropolar fluids Newtonian fluids

I II III Present Previous
0.0 0.1 5.03047   5.08722 5.17849 ---- ----

0.5 2.58751 2.49823 2.51841 ---- ----
1.0 1.72587 1.66509 1.67149 ---- ----
2.0 1.13568 1.07165 1.07255 1.105823 1.0983

5.0 0.59715 0.59275 0.59249 0.592566 0.5933
10.0 0.38662 0.38595 0.38579 0.385362 0.3857
15.0 0.30481 0.30354 0.30342 ---- ----
20.0 0.25704 0.25719 0.25707 ---- ----

-0.5 0.1 3.47312    4.77174 4.86822 ---- ----
0.5 2.44332 2.32914 2.35554 ---- ----
1.0 1.62389 1.53774 1.54847 ---- ----
2.0 1.03743  0.96814 0.97131 1.053649 1.0277
5.0 0.52012 0.49748 0.49782 0.508461 0.5027

10.0 0.30123 0.29274 0.29222 0.293924 0.2999
15.0 0.21363 0.21300 0.21251 ---- ----
20.0 0.16847    0.16869 0.16890 ---- ----

0.5 0.1 5.35898 5.40657 5.49090 ---- ----
0.5 2.76231 2.68177 2.69876 ---- ----
1.0 1.87652 1.82598 1.83089 ---- ----
2.0 1.27285 1.24559 1.24662 1.252686 1.2524
5.0 0.83030 0.82920 0.82931 0.828878 0.8291

10.0 0.67528 0.67568 0.67568 0.675645 0.6757
15.0 0.62075    0.62091 0.62090 ---- ----
20.0 0.59200  0.59241 0.59241            ---- ----
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Table 3: The comparison of Micropolar fluids and Newtonian fluids for (1)q ¢-

γ Pr
Micropolar fluids Newtonian fluids

I II III Present Previous

0 0.1 1.035165 1.070427 1.058554 1.050543 ----
0.7 1.696729 1.713347 1.713609 1.702547 1.5683

2.0 3.028202 3.026080 3.027701 3.026962 3.0360
7.0 6.155849 6.156290 6.155157 6.155753 6.1592

10.0 7.462382 7.462192 7.461810 7.462454 7.4668
15.0 9.258533 9.258176 9.257985 9.258509 ----

-0.5 0.1 0.925755 0.917530 0.942230 0.873923 ----
0.7 0.427651 0.423049 0.436163 0.406289 0.2573
2.0 0.067350 0.066924 0.067877 0.067486 0.0600
7.0 0.000070 0.000071 0.000143 0.000476 0.0000

10.0 0.000000 0.000000 0.000000 0.000000 0.0000
15.0 0.000047 0.000047 0.000000 0.000000 ----

0.5 0.1 1.544690 1.569890 1.557302 1.546597 ----
0.7 4.276252 4.299116 4.282403 4.276681 4.1961
2.0 11.01250 11.01169 11.01224 11.012555 11.1517
7.0 33.66551 35.07629 35.07643 35.076481 36.6120

10.0 48.66214 48.66192 48.66207 48.662162 51.7048
15.0 70.20512 70.20503 70.20512 70.205160 ----
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1

1.5

1 2 3 4

f

h

Figure 1: Graph of f for the values of g =-0.5 and 
R=0.1, 2, 5, 10 and 20 from top to bottom.
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Figure 2: Graph of f for the values ofg =0, 
R =0.1, 2, 5, 10 and 20 from top to bottom.
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Figure 3: Graph of f for the values ofg =0.5, 

R =0.1, 2, 5, 10 and 20 from top to bottom.
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Figure 4: Graph of f ¢ for the values of       

g =-0.5, R =0.1, 2, 5 and 20 from top to 

bottom.
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Figure 5: Graph of f ¢ for the values of g =0, 
R =0.1, 2, 5 and 20 from top to bottom.
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Figure 6: Graph of f ¢ for the values of g =0.5 , 
R =0.1, 2, 5 and 20 from top to bottom.
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Figure 7: Graph of f ¢ for the values of R =10, 

g =-1.2, -0.5, 0, 0.5 and 1.2 from top to bottom.
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Figure 8: Graph of ( )q h for the values Pr=0.7, 

R =10, g =-0.5, 0, 0.5 from top to bottom.
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Figure 9: Graph of ( )q h for the values Pr=7, R =10, 
g =-0.5, 0, 0.5 from top to bottom.
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Figure 10: Graph of ( )q h for Pr=7, g =-0.5 and 

R = 1, 6, 12 from bottom.
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Figure 11: Graph of ( )q h for the values Pr=7, g =0.5 and R =1, 6 and 12 from top to bottom.
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