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1. INTRODUCTION 

During 2017, Donald J. Trump posted an average of more than seven tweets a day. In the immediately 

previous years, Trump had employed tweets as a campaign strategy in his run for the U.S. presidency 

(Enli, 2017; Lee & Lim, 2016; Ott, 2017; Wang, Luo, Niemi, Li,& Hu, 2016), and he continued to 

tweet at a high rate once in office. Twitter is a relatively new communication technology. Presidents 

Obama and Trump both tweeted, but Trump tweeted at a much higher rate. As reported in sources 

described in the Methodology section below, Obama tweeted 321 times in his last 19 months in 

office, while Trump tweeted 2,602 times in his first year. 

This research addresses the pleasantness/unpleasantness of the language in Trump’s 2017 tweets. It 

questions whether this pleasantness/unpleasantness is related to tweet characteristics (such as their 

length in number of words, their inclusion of a hash tag, or their status as a reply) or to information 

included within tweet text (such as an American flag emoji, an exclamation mark, or a mention of 

CNN). These variables are employed to predict pleasantness, and pleasantness in turn is employed 

with the other predictors to identify popular tweets that were retweeted at a high rate. 

1.1. Measuring the Pleasantness/Unpleasantness of Tweets 

Sentiment analysis is an approach that examines the emotion conveyed—in tweets, in this case—by 

looking at the words in them. Some forms of sentiment analysis depend on lists of words indicative of 

various emotional states; they evaluate the occurrence of these words in tweets and infer emotionality 

from occurrence, sometimes in very sophisticated ways (e.g., Mohammad, Kiritchenko, & Zhu, 2013; 

Saif, Fernandez, He, & Alani, 2016). The approach employed in this research depends instead on the 

rated emotional connotations of many thousands of words, including some very common ones 

(Whissell, 2009). Ratings contained in the Dictionary of Affect in Language (Whissell, 2009)
1
were 

provided by multiple raters. They had been obtained, several years before the current research, in a 

totally independent setting where participants rated context-free words on their pleasantness. The 

scale employed in this research is a simple linear transformation of the original scale. The tool has 

been applied to many different types of data: from Shakespeare (Whissell, 2010a) to President 

Clinton’s communications (Whissell, 2010b). 

                                                           
1
Referred to in the rest of this article as the Dictionary, or the Dictionary of Affect 
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A benefit of this approach to measuring pleasantness is that it scores most of the words in a text in 

order to provide a stable and accurate overall assessment of its emotionality. A limitation is that it 

provides scores for entire tweets, but does not address segments within them. Given the extremely 

compact nature of tweets, however, this is likely not a serious limitation. One expects considerable 

emotional variability within a novel, for example, but not within 140 characters. 

In order to calculate the pleasantness/unpleasantness of Trump’s tweets, each word in each tweet was 

matched to the Dictionary, and matched words contributed to the pleasantness or unpleasantness of 

the message. Pleasantness scores have a 120 point range; samples of everyday English tend to have 

averages close to 50. Below are two Trump 2017 examples. Tweet #1 is an extremely pleasant tweet 

from November 2, and Tweet #2 an extremely unpleasant one from June 13. The number following 

each word below is its pleasantness score from the Dictionary of Affect; in a few cases there was no 

matching word, and therefore no score was available. 

Tweet #1. Happy (119) birthday (99) to (46) @garyplayer (no score), a (59) truly (107) great 

(97) champion (59)! [pleasantness average: 98] 

Tweet #2. The (44) Fake (11) News (46) Media (29) has (46) never (19) been (33) so (44) 

wrong (14) or (29) so (44) dirty (20). Purposely (no score) incorrect (no score) stories (67) and 

(39) phony (14) sources (53) to (46) meet (66) their (48) agenda (no score) of (37) hate (11). 

Sad (21)! [Pleasantness average: 36] 

The tweets’ pleasantness averages (98 versus 36) clearly reflect differences in message emotionality. 

The first tweet is considerably more pleasant and the second more unpleasant. The tweets include 

words near the extreme ranges of the Dictionary (e.g., happy, with a score of 119; and hate, with a 

score of 11), as well as words closer to the average (e.g., their, with a score of 48; and sources, with a 

score of 53). 

1.2. Questions and Predictions of the Research 

It has been suggested by more than one researcher that tweets in general and Trump’s tweets in 

particular are emotionally negative (Lee & Lim, 2016; Ott, 2017). This would lead to an expectation 

of a pleasantness average of below 50, the level typical of everyday English, for Trump’s tweets; they 

were thus predicted to fall closer to the second of the two examples above than to the first. Other 

researchers have noted that tweets addressing topics such as CNN, fake news, Hillary Clinton, or the 

Democrats tended to be more appealing to Trump followers (Wang et al., 2016). The prediction from 

this research was that such generally accusatory tweets would be more popular and also less pleasant 

than the remaining tweets. On the other hand, it seemed likely that Trump’s tweets including an 

American flag emoji or mentioning Melania (the First Lady), Mar-a-Lago (Trump’s vacation home in 

Florida),or Fox (a right-leaning network which tends to support the president) would be more pleasant 

than other tweets. 

As a collection, tweet characteristics and tweet text content measures are expected to be predictive of 

popularity, since this is reflected in retweeting; and also of pleasantness. On the basis of the emphasis 

placed on negative emotions in tweets, it was predicted that the messages retweeted the most would 

be the more unpleasant ones. The unpleasant example above (#2) was retweeted 25,099 times, while 

the pleasant one (#1) was retweeted only 5,181 times. 

2. METHODOLOGY 

Trump’s tweets were obtained on April 26, 2018, from a web site overseen by Brandon Brown 

(2018). Three tweets with dates in 2018 were discarded from the set, leaving a total of 2,602 tweets 

from 2017. These represent a tweeting rate of more than seven tweets per day. Associated with each 

tweet was information as to its status as a reply or a retweet, the number of times it had been tagged 

with a like, and the number of times it had been retweeted. String-matching techniques were 

employed to determine whether reach tweet included a mention (denoted by the symbol @) or a 

hashtag (denoted by the symbol #). 

The text of each tweet was examined by a program written by the author using IBM-SPSS statistical 

software, by which string variables that began with letters were identified as words. It counted the 

number of words in each tweet. The count excluded hashtags, mention symbols, and emojis because 

these did not begin with letters of the alphabet. Each word was matched to the Dictionary of Affect 

which provided pleasantness/unpleasantness ratings for a majority of the words. 
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As illustrated earlier, the pleasantness value of individual words was averaged for each tweet, to 

provide a tweet pleasantness mean. Pleasantness means were available for 2,556 (98%) tweets; 46 

tweets did not include any emotionally matched words, probably because they were very limited in 

their vocabulary. Unscored tweets (average length=3.48 words) were significantly (t-test, p<.001) and 

considerably (d>2) shorter than scored tweets (21.81 words). For example, one unscored tweet was 

posted on April 24; in it Trump was congratulating an astronaut. The tweet only included the hashtag 

#CongratsPeggy, an exclamation mark, and an http address. The matching rate of the Dictionary for 

normal everyday English is 90% (Whissell, 2009). The matching rate for Trump’s tweet’s was 77%, 

which makes sense in terms of the condensed language of tweets and the fact that they frequently 

included proper nouns such as names of individuals or agencies. 

Tweets were examined for the presence/absence of 10 specific word categories (Table 1) which were 

scored as 0 or 1. For example, the category Democrats was scored as positive if the tweet included 

any of the strings Dem, Dems, Democrat, or Democrats. The category Hillary was considered as 

present if either Hillary or Clinton appeared in the tweet. Similarly, the category CNN was considered 

present if either CNN or Cnn appeared in the message, and a similar criterion was employed for Fox 

(FOX or Fox) and fake news (Fake News or fake news, in sequence). If Melania or Mar-a-Lago 

appeared in a tweet, these variables too were scored as 1 rather than 0. The presence of the word 

America earned a 1 for the eponymous category, as did the presence of an American flag emoji or an 

exclamation mark for their categories. Six tweet characteristics (number of words, status as a reply, 

status as a retweet, inclusion of a hashtag symbol, inclusion of a mention symbol, and time of year) 

were also employed in prediction. Total words were counted as described above, and time of year was 

represented by a variable ranging from 1 to 2,602 (earliest to latest). 

To help test the first hypothesis, which refers to the expected unpleasantness of Trump’s tweets, a 

sample of tweets was obtained from Barack Obama who had his own personal Twitter account, 

@POTUS, beginning in May 2015. Obama’s Tweets posted in 2015 and 2016—321 in all—were 

made available in a White House archive shortly before the end of his second term in office (The 

Internet Archive, n.d.). The Dictionary matching rate for Obama tweets was 78%. Although the 

Obama and Trump tweets were sampled from adjacent years (2015–2017), differences in tweet 

content and pleasantness may be due in part to differences in the situation of each tweeter (e.g., 

outgoing versus incoming president) and in part to extreme differences in the frequency of tweeting 

(roughly once every other day for Obama and seven times a day for Trump). 

Table1. Sixteen Descriptors of Trump’s 2017 Tweets and Their Role as Predictors of Pleasantness 

 Correlation with 

pleasantness 

Beta predicting 

pleasantness
1 

% tweets or mean 

Tweet characteristics    

 Time of year .024 .092* 1301.5 

 Number of words -.266* -.256* 21.49 

 Is a retweet -.025 -.097* 11.9% 

 Is a reply -.033 -.041* 1.7% 

 Includes a hashtag .145* .045* 17.3% 

 Includes a mention .057* .049* 28.3% 

Tweet content    

 Mentions America .112* .081* 12.1% 

 Includes American flag emoji .145* .072* 4.5% 

 Mentions Hillary -.094* -.053* 3.1% 

 Mentions Democrats -.201* -.156* 7.3% 

 Mentions fake news -.158* -.109* 4.5% 

 Mentions Fox -.034 -.044* 2.8% 

 Mentions CNN -.083* -.052* 1.4% 

 Includes exclamation mark .103* .115* 55.8% 

 Mentions Melania .082* .058* 1.3% 

 Mentions Mar-a-Lago .020 .027 .3% 

Note: 
1
N = 2556 messages with pleasantness scores, all predictors entered simultaneously, R = .424. *p< .05 
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2.1. Corrective Action 

According to the central limit theorem (discussed in most introductory social science statistics texts 

such as Gravetter, Wallnau, & Forzano, 2018, p. 175), any measure depending on a mean is sensitive 

to sample size, with extreme means being more likely to occur with smaller samples. To correct for 

sample size, the pleasantness of each of Trump’s tweets was represented by its distance (from the 

mean of the set) in terms of standard errors. With this correction, an extremely pleasant or an 

extremely unpleasant short tweet was treated as being less extreme than a longer tweet with a similar 

score. Because most tweets were of roughly similar length, the correlation (r) between raw 

pleasantness and corrected pleasantness was .96 (p<.0001), suggesting that no violence had been done 

to the variable by transformation. Regression diagnostics in the analyses performed below presented 

no problems with the corrected measure as the criterion. The corrected pleasantness measure was 

employed in every analysis except for the one evaluating the first hypothesis. The number of retweets 

was strongly correlated to the number of likes(ρ=.88, p<.0001), although the distributions for both 

variables were extremely positively skewed. Log (base 10) transformations failed to normalize the 

variables, so it was decided to employ a median split when analyzing them. A median split for 

retweets, for example, puts each message in one of two categories: in the top 50% of retweeted tweets 

or in the bottom 50% of retweeted tweets. 

2.2. Limitations of the Measurements 

The measurement techniques employed in this research (e.g., the Dictionary of Affect, content 

mentions of Hillary Clinton, and other categories) were cleanly and clearly operationalized so that 

they could be calculated within a computer program, but they are not error-free. The Dictionary was 

developed on the basis of context-free scoring and context can alter meaning. The word funny changes 

meaning profoundly in the phrase not funny which was employed by Trump in a mildly unpleasant 

tweet (mean= 48.75) on January 15. As well, the string matching employed to capture categories of 

mention might have missed the occasional reference. For example, if Trump referred to opponent 

instead of Hillary or Clinton, the tweet would not have been scored as mentioning Hillary, as 

happened with a January 11 tweet where Trump refers to crooked opponents. That being said, the 

measures employed in this research led to many significant results, and when a significant proportion 

of variability is captured by a measure which then demonstrates meaningful interrelationships with 

other variables, that measure must be deemed to be success. Future research might address a tighter 

definition of content variables. 

Another limitation rests with the source of the tweets. There is no guarantee that each and every tweet 

originated from a presidential inspiration, or that the tweets were posted personally by the president 

concerned. In the media culture of Twitter, source addresses are known, but the poster and follower 

are both anonymous and may even be robotic (Borowitz, 2018; Ott, 2017). 

3. RESULTS 

There were 55,915 words in the data set, and average tweet length was 21.5 words. For descriptive 

purposes, words appearing at least 100 times in the full set were considered frequent. Frequent words 

included several first person pronouns (I, me, my, we, and us) and one second person pronoun (you). 

Recurrent negation was indicated by the presence of no and not at high rates (128 and 211 times), and 

a focus on the media by the frequent mentions of fake, news, and media. An appeal to Trump’s voting 

base was suggested by the common occurrence of people, America, American, country, tax, and jobs, 

and Trump regularly included his name and office (Trump, president) in his tweets, although the 

office could be referring to that of visiting dignitaries. Trump’s favorite adjective (great) appeared 

501 times and the qualifier very179 times. Additional words with frequencies greater than 100 

included thank and big and several highly common English words such as the and of. The ratio of 

types (distinct words, N = 6,579) to tokens (total words, N = 55,195) was .12, indicating that 

individual types (words) were repeated 8.39 times, on the average. 

3.1. Pleasantness 

The raw pleasantness average for Trump’s tweets was 51.27. This number was significantly higher 

than the everyday English comparative average of 50 (t=7.05, p<.001, d = .14). Rather than being 

unpleasant or below 50, as predicted, the tweets were mildly pleasant overall. Forty-eight percent of 

the tweets did have pleasantness scores below 50, but 52% of them had higher scores. Obama’s tweets 
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had a mean pleasantness of 53.28 and were significantly more pleasant (t = 4.57, p<.001, d = .22) 

than the Trump tweets. Both Presidents tweeted using pleasant language, but Obama’s language was 

more pleasant than Trump’s. 

The percentage of tweets including each of the categorical variables and the mean for time of year and 

number of words are reported in the last column of Table 1. Exclamation marks, hashtags, and 

mentions were all commonly included in tweets while references to CNN, Melania, and Mar-a-Lago 

were relatively rare. Trump retweeted frequently—more than one out of every 10 messages was a 

retweet—and he often included hashtags and mentions in his tweets. He did not, however, often reply 

to tweets; only two out of every 100 messages were replies. Both reply and retweet rates were 

considerably lower than those characteristic of Trump campaign tweets, which were close to 50% 

(Lee & Lim, 2016, p. 853). 

The correlation (r) of each measure with pleasantness is reported in the first column of Table 1. The 

single measure most highly correlated with pleasantness was tweet length, with longer tweets being 

more unpleasant. Hashtags or American flag emojis were found in more pleasant tweets, while 

mentions of Democrats and fake news were found in more unpleasant ones. As expected, mentions of 

Melania were associated with more pleasant tweets. 

A linear regression with simultaneous entry of all variables was employed to predict pleasantness. Its 

results are reported in the second column of Table 1. The prediction as a whole was statistically 

significant (p<.001, R = .42), and 15 of the 16 predictors were significant contributors to the equation. 

The only exception was mentions of Mar-a-Lago. According to beta values in Table 1, higher tweet 

pleasantness was characteristic of messages that included an exclamation mark, were published later 

in the year, mentioned America, included an American flag emoji, Melania’s name, a hashtag, or a 

mention symbol. Higher unpleasantness (i.e., lower pleasantness) was characteristic of lengthier 

messages that included mentions of Democrats, fake news, Hillary, CNN, or Fox, and that were 

retweets or replies. 

Correlation and regression analyses confirmed several predictions of the research. Mention of 

categories such as CNN, fake news, Democrats, and Hillary was associated with and predicted greater 

unpleasantness. Mention of America or Melania or the inclusion of an American flag emoji was 

associated with greater tweet pleasantness, but mentions of Mar-a-Lago were not. Unexpectedly, 

mentions of Fox were not correlated to tweet pleasantness and they entered the regression equation 

with a significant negative weight, meaning that this variable predicted unpleasantness in a tweet. 

3.2. Popularity 

Liking and retweeting are both measures of tweet popularity. The first indicates that a reader has 

clicked a button designating her or his approval of the message and the second that the reader has 

passed the tweet on through their own feed. In the Trump corpus, liking, with a median of 70,714, was 

more common than retweeting, with a median of 15,805.5, but liking and retweeting were strongly 

correlated (ρ = .88) and produced similar results. Both popularity measures were related to 

pleasantness (ρ = -.16 for retweet count, ρ =-.07 for likes, p<.001). Because of the overlap between 

popularity measures, only predictive results for retweeting are reported below. 

Table 2 includes the same 16 variables as Table 1 and adds pleasantness to the list. All variables were 

correlated (r for pleasantness, length of message, and time of year; and phi for categorical variables) 

with retweet category. Relationships are reported in the first column of Table 2. The variable most 

strongly related to being in the top 50% of retweets was tweet length—longer tweets were more likely 

to be retweeted. The variable most strongly related to being in the bottom 50% was including a 

mention symbol. The top 50% retweeted messages also tended to include an exclamation mark, and 

refer to the topics CNN, Hillary, Democrats, or fake news. Bottom 50% messages tended to be 

pleasant retweets or replies that mentioned Fox or included a hashtag. Only four of the 17 variables 

were totally unrelated to retweet category in the correlation analysis. 

A binary logistic regression was performed to predict retweet category (top or bottom 50%) from the 

17 variables. The overall regression was significant (p<.001) and was associated with a Nagelkerke R 

of .52. It correctly classified 69.5% of the tweets. The second column of Table 2 reports the odds 

ratios for each of the variables. The largest odds ratio is 5.34 for mentions of Hillary. This means that 

if the string Hillary or Clinton appeared in a tweet, it was 5.34 times more likely to fall in the top 50% 
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of retweets. On the other hand if a tweet was a reply, it was only 20% as likely as a nonreply to fall in 

the top 50% of retweets and much more likely to fall in the bottom 50%. 

Table2. Results of a Binomial Logistic Regression Predicting Retweet Category (Top or Bottom 50%) From 17 

Tweet Characteristics
1 

 Relationship to retweet category Odds ratio 

Tweet characteristics   

 Pleasantness -.17* .95* 

 Number of words .29* 1.05* 

 Time of year -.03 .995* 

 Is a retweet -.26* .54* 

 Is a reply -.07* .20* 

 Includes a hashtag -.16* .74* 

 Includes a mention -.32* .36* 

Tweet content   

 Mentions America -.01 1.10 

 Includes American flag emoji -.09* .78 

 Mentions Hillary .12* 5.34* 

 Mentions Democrats .10* 1.26 

 Mentions fake news .14* 2.59* 

 Mentions Fox -.09* .66 

 Mentions CNN .08* 4.12* 

 Includes exclamation mark .16* 1.61* 

 Melania -.04 1.07 

 Mar-a-Lago .01 .63 

Note: 
1
Simultaneous entry of all variables, p<.001, R = .52.*p<.05 

4. DISCUSSION 

The prediction that Trump’s tweets would be unpleasant was only confirmed in relative terms 

(relative to Obama’s tweets). In absolute terms the tweets were mildly pleasant. Almost all the 

variables in the research were related to tweet pleasantness (Table 1) and many of them were also 

related to tweet popularity (Table 2). Predictive schemes (the linear regression predicting pleasantness 

and the logistic regression predicting popularity) were both significant and successful. Significant 

contributions of individual variables to prediction generally matched raw correlations, suggesting that 

there was minimal overlap among predictors. Both tweet characteristics and content variables played a 

key role in the predictive schemes. Table 3 summarizes the relationships noted in the data by highlighting 

variables whose presence was related to or predictive of high or low popularity and pleasantness. 

Table3. An Overview of Significant Outcomes of Correlation and Regression Analyses 

Celebratory and congratulatory tweets Antagonistic and accusatory tweets 

More pleasanttweets are those that … More unpleasanttweets are those that … 

-are retweeted less often 

-are liked less often 

-include a mention symbol (@) 

-include a hashtag  

-include an American Flag emoji 

-were tweeted later in 2017p 

-mention America 

-mention Melania 

-include an exclamation mark 

 

-are retweeted more often 

-are liked more often 

-mention Democrats 

-mention fake news 

-mention Hillary 

-mention CNN 

-mention Foxp 

-are longer 

-are themselves retweetsp 

-are repliesp 

Less popular tweets are those that … More popular tweets are those that … 

-are more pleasant 

-are liked less often 

-include a mention (@) 

-include a hashtag 

-include an American Flag emoji 

-were tweeted later in 2017p 

-are more unpleasant 

-are liked  more often 

-mention Democrats 

-mention fake news 

-mention Hillary 

-mention CNN 
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-are replies 

-are retweets 

-mention Fox 

-are longer 

-include an exclamation mark 

Note: 
1 

Information from predictive analyses and analyses of relationships was subdivided into categories on 

the basis of the sign of each correlation or beta weight (+ or -) and the size of each odds ratio (below or above 

1). 

p: The subscript p indicates that a variable was only significant as a predictor within a regression equation and 

was not directly related to the criterion. 

Lists in the two right-most cells of Table 3—those describing more unpleasant (top) and more popular 

(bottom) tweets—are surprisingly similar. Contents and characteristics that point to unpleasant tweets 

with accusatory or antagonistic language also predict popular ones. Pleasantness and popularity were 

only weakly correlated (R = -.17 for the median split and ρ = -.16 for the full range of the retweeting 

variable), and their overlap seems to be based at least in part on the content variables (mentions of 

CNN, fake news, Democrats, and Hillary Clinton) and tweet characteristics studied here. Many of the 

characteristics of unpleasant popular tweets are illustrated in Tweet #2 (see Measuring the 

Pleasantness/Unpleasantness of Tweets, above) which was both retweeted (25,099) and liked (97,362) 

at high rates. Lists in the two left-most cells of Table 3 again show considerable overlap. More 

pleasant tweets and less popular tweets were similar in many ways. They tended to include mention 

symbols and hashtags. While popular and unpleasant tweets were antagonistic or accusatory, less 

popular and pleasant ones tended to be congratulatory or celebratory in nature. Trump posted many 

such tweets, ranging from congratulatory examples such as Tweet #1 (see Measuring the Pleasantness 

/Unpleasantness of Tweets, above)to messages of thanks to various good wishes at Thanksgiving, 

Christmas, and New Year’s. For example, on September 20 Trump tweeted ―Thank you @fox and 

friends—great show!‖ This tweet was relatively unpopular (below the median for both likes and 

retweets) but it was pleasant, with a mean of 79. The message contained a mention symbol, and was 

tweeted later in 2017. 

Because of the pattern of results reported in Table 3 and the shared characteristics of pleasant / 

popular tweets on one side and unpleasant / less popular ones on the other, the table’s two columns 

have been provisionally labeled Celebratory and Congratulatory (on the left) and Antagonistic and 

Accusatory (on the right). These labels may not correctly characterize every single message in the 

corpus, but they do characterize a majority of them and they point to the presence of two very 

different kinds of message in the Trump tweet corpus. The 50 most pleasant Trump tweets included 

the words/phrases Happy  (usually Happy Birthday; 15 times), thank you (11), and congratulations 

(4), as well as the adjective great applied to a performance or activity (7), five messages celebrating 

Jobs!, two Merry Christmases and six additional celebratory / congratulatory messages of a more 

general sort. The 50 most unpleasant tweets were less uniform in content, but they tended to include 

words such as oppose, warning, against, undoing, mishandles, negative, witch hunt, wrong, dirty, 

fighting, terror, and anti-Trump, and to mention Trump’s political opponents. 

4.1. A Post-Hoc Analysis 

Once it became evident that there were two distinct types of messages in the Trump corpus, a question 

arose as to whether different messages were posted at different times. To answer this question, a 

single score was created by taking standardized pleasantness and subtracting standardized retweet 

frequency from it. The top 33% of messages for this score represented the celebratory/congratulatory 

category of messages (they were pleasant and less popular) and the bottom 33% the antagonistic / 

accusatory one (they were unpleasant and more popular). Frequencies of tweets from the two 

categories were compared for days of the week and hours of the day.  

A z test was employed to compare messages posted on each day of the week. There were only two 

significant differences: on Mondays, Trump posted preferentially antagonistic/accusatory messages 

(111 versus 75 messages, z = 2.76, p <.01) and on Wednesdays, primarily celebratory/congratulatory 

ones (158 versus 123, z = 2.03, p <.05).  

When it came to time of day, significant differences were found for two sets of consecutive hours. 

The beginning of each hour is recorded in the description of results that follows. 

Celebratory/congratulatory messages predominated for three mid-day hours (11:00 a.m.: 133 versus 

67, z = 4.60, p <.001; 12 noon: 128 versus 70, z = 4.05, p <.001; 1:00 a.m.: 103 versus 45, z = 4.69, p 
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<.001). Antagonistic/accusatory messages were posted at significantly higher rates later in the day, 

between 7:00 p.m. and midnight (7:00 p.m.: 46 versus 20, z = 3.08,p <.01; 8:00 p.m.: 52 versus 29, z 

= 2.44, p <.02; 9:00 p.m.: 53 vs 27, z = 2.80, p <.01; 11:00 p.m.: 62 vs 32, z = 2.99, p <.01). There 

was no significant difference for 10:00 p.m. (55 versus 38, z = 1.66, p = .10), although the trend 

continued in the expected direction.  

In the cycle of the president’s day, late mornings and early afternoons were a preferred time for 

tweeting emotionally positive messages and the late evenings and nights the preferred time for 

tweeting emotionally negative messages. Trump’s overall tweet frequency was lowest between 4:00 

a.m. and 9:00 a.m. and highest between 10:00 a.m. and 1:00 p.m. 

5. CONCLUSIONS 

Donald J. Trump posted both pleasant and unpleasant tweets in 2017, with a small majority of 

pleasant tweets. More pleasant tweets tended to be congratulatory or celebratory, but not popular. 

More unpleasant tweets were more popular—they were retweeted more often and liked more often 

and they tended to be longer and to include mentions of Hillary Clinton, the Democrats, CNN, and 

fake news. Their tone was antagonistic or accusatory. Celebratory tweets tended to be posted between 

11:00 a.m. and 2:00 p.m. and accusatory ones between 7:00 p.m. and midnight. 

Political campaigners view negative advertising as advantageous to their cause, and the media tend to 

highlight and report on negative tactics (Fowler & Ridout, 2012, p. 60). Unpleasant tweets (which 

have no upfront cost) could easily be employed in lieu of, or in addition to, negative advertising to 

create and maintain negative opinions of the opposition among the faithful. According to Ott (2017, p. 

60), oversimplified and impulsive tweets make Twitter an ideal medium for shallow, unpleasant, but 

popular and effective political communications. Superficiality and negativity in political discourse is 

not limited to the tweetosphere: accusations of creating and maintaining negative opinions of the 

opposition could also be leveled at liberal-leaning political comedies such as The Daily Show with 

Trevor Noah. 
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