
International Journal of Research Studies in Computer Science and Engineering (IJRSCSE)

Volume 7, Issue 2, 2020, PP 11-16

ISSN 2349-4840 (Print) & ISSN 2349-4859 (Online)

DOI: http://doi.org/10.20431/2349-4859.0702003

www.arcjournals.org

International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Page 11

Predicting the Time between failures of Software Projects Using

Novel Machine Intelligence Algorithms

Nanwin, Domaka Nuka*, Michael Chief James Philip

 Department of Computer Science, Ignatius Ajuru University of Education, Rivers State, Nigeria

1. INTRODUCTION

Software projects represent complex processes that are initiated through several lifecycles towards the

realization of software artifact or produce. Since software development is prone to failures, its state sequel to

such failures needs to be estimated in advance to expedite remedial action programs. Software failure trends,

thus, are very useful in this regard. However, the estimation of the project outcomes or effort trends leading to

such failure remains a perennial system level problem as it involves several inter-related and independent

processes that greatly influence its process representation. Also, the need to decipher useful information from

limited amount of information is another issue that warrants critical studies. Thus, research is very active in the

context of software effort estimation trends including the use of statistical or machine learning approaches such

as Arithmetic mean (Am) and Laplace factors (Lf) and Artificial Neural Networks (ANNs) trained by the back-

propagation algorithm (Lyu, 1996, ch.10, ch.17).

In order to realize important features in the software project outcome estimation process, trend analysis through

refined data mining experiments are typically conducted. While some approaches have considered the time

between failures in the context of Maximum Likelihood Estimates (MLE) for reliability growth testing via

cumulative failure mode in the time interval (Akuno et al., 2014; Liu et al., 2015) or t-charts as in (Xie et al.,

2002); others have focused on the use of machine learning techniques for prediction of fault prone software

faults (CATAL, 2016). In this paper, the trend analysis of software project failure data based on time between

failures from a systems perspective is considered and presented here. The primary object of this research is to

use machine intelligence techniques to determine in advance the time between failures filtering unnecessary

data points in the process.

2. PREVIOUS RELATED WORKS

Some key related works in this field of software project outcome estimation have been investigated. In Cerpa et

al (2016), a questionnaire like approach was used to obtain a set of 4 software project outcome data from software

engineering field practitioners and from different companies in Chile. They then evaluated the effectiveness of

six families of classification methods (Statistical, Nearest Neighbors, Neural Networks, Support Vector Machine

(SVM), Decision trees (DTs) and Ensembles) on the obtained field data. From their analysis, they found out that

on an integer rank scale of 1-11, the Ensembles called Random Forests (RFs) was the better performing classifier

with a rank of No. 1, when compared to other sub-classifiers of the various families. In Kaur & Kaur (2018), six

best performing machine learning (ML) algorithms were compared for fault prediction on open source software

projects. In their study, they considered standard numeric-based performance metrics, graphical metrics and non-

parametric statistical tests for comparative studies. Open source datasets: PMD, EMMA, Find Bugs, Trove and

*Corresponding Author: Nanwin, Domaka Nuka, Department of Computer Science, Ignatius Ajuru

University of Education, Rivers State, Nigeria

Abstract: In this paper, machine intelligence technique is used for software effort estimation considering

failure patterns and time boundaries in simulation time. Experiments are performed using publicly available

software failure dataset and considering two neural machine intelligence techniques, the Hierarchical

Temporal Memory (HTM) and the Auditory Machine Intelligence (AMI). The results show that the HTM is a

better technique with an error improvement of over 4 times that of the AMI. However, its complexity may

hamper its applicability in real time scenarios.

Keywords: Failure, Machine Intelligence, Neural, Software Project.

Predicting the Time between failures of Software Projects Using Novel Machine Intelligence Algorithms

International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Page 12

Dr Java were analysed using the ML models. Their results showed that the Random Forest ML technique is

best. This followed by Bagging and Naive Bayesian techniques.

Othman et al (2018) provided insights into the detection of early warning signs prior to failure of a project.

They reviewed several existing works methodologies related to early warning signs. Their primary objectives

focused on determining at what stage of project life cycle early warning signals of project failure is detected,

methodologies used by researchers, and the case studies conducted in the times past. As a primary

methodology, they used ad-hoc queries (described by well defined key words) on databases and search engines

of well established publishing houses. From their findings, the planning stage was found to be ideal for

detecting early warning signs.

Lin et al proposed a graphical model (GM) for software defect prediction. In this GM approach, a monotonical-

ly increasing failure time and an estimated two-parameter exponential distribution is used for defect prediction.

Failure intensity functions were used for software reliability estimates. Defect data used in experimental

analysis showed that GM show improved relative gain when compared to other traditional models.

In a prior study, Lehtinen et al (2014) categorized various causes of software project failures as People,

Methods, Tasks and Environment (see Fig.1). They identified the need to study the causal relationships

between software processes in order to circumvent consequent failure of software projects. They proposed a

unidirectional model (Fig.2) that describes the software process cause‐effect relationship across local and

bridge levels. Their results indicate that case defect was highly focused on management, implementation and

software testing. Benaddy (2018) compared the Recurrent Neural Networks (RNN) with conventional

Artificial Neural Networks (ANN) of the Feedforward category for software failure prediction. A real coded

genetic algorithm (RCGA) was used to train the feedforward ANN and Adam optimizer used to improve the

resilience of the RNN. Their results indicate that the RNN generalize better across the considered datasets.

3. PROPOSED METHODOLOGY

In this section, the Hierarchical Temporal Memory neural technique which is based on the Cortical Learning

Algorithms (CLA) proposed earlier in (Hawkins et al., 2010) and the Auditory Machine Intelligence (AMI)

developed earlier in (Osegi et al., 2018, Osegi and Anireh, 2019) are presented.

3.1. Hierarchical Temporal Memory

Hierarchical Temporal Memory (HTM) is a machine intelligence algorithm that was developed to solve the

missing gaps in the existing back propagation trained neural network scheme. It supports more biological and

neuroscience principles and is based on the intelligent processing of cortical columns in the midst of thousands

of activating synapses. The architecture of the HTM compared to conventional neural model is shown in Fig.1

and the systems view is presented in Fig 2.

Fig.1a. Conventional Neural Network Representation

Fig.1b. HTM Neural Representation (Source: Hawkins et al., 2010)

Predicting the Time between failures of Software Projects Using Novel Machine Intelligence Algorithms

International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Page 13

As can be seen from Fig.1, the HTM includes a higher set of processing functions that allow added

functionality and high-level processing detail when compared to simple neural activation of

conventional neural types.

Fig.2. HTM Systems Level processor (Source: Osegi, 2018)

In the systems-level process diagram (see Fig.2), the HTM process incoming information in bits using

a sparse encoder and a spatial-temporal processing stage. This is then followed by appropriate classifier

to generate the output. Indeed, the mathematical formulations of the prediction process in the HTM are

complicated and it is beyond the scope of this research paper to treat this matter. Further details of the

HTM technique and its mathematical treatment can be found in (Cui et al., 2016, Cui et al., 2017; Osegi,

2018 & Dauletkhanuly et al., 2020).

3.2. Auditory Machine Intelligence

The Auditory Machine Intelligence (AMI) is a deterministic neural machine intelligence technique

inspired by the mismatch negativity effect and auditory processing in the mammalian auditory cortex

denoted as A1 (Osegi and Anireh, 2019, Osegi et al., 2019, Osegi et al., 2020). It basically comprises

of two steps:

Step 1: Low-level prediction for making a prediction in the current time step based on a history of sparse

data points in the previous time step. These sparse data points correspond to the evoked potentials

originally observed in (Näätänen et al., 1978) as the “odd-ball”.

Step 2: High-level prediction that performs look-ahead predictions several time steps ahead.

In the proposed machine intelligence system for software effort estimation based on failures and time

intervals, the Step 1 prediction phase is used. This enables a single (one step ahead) prediction to be

made. The AMI-software-failure-prediction-system basically performs this operation using the

computation of a single learning as:

 
()

1

2
1

)(
+

−













+















−
=



n

S
n

S

S

deviant

dev

meandev

 (1)

where,

n = number of data points in a temporal sequence

Sdeviant = the (n-1)th value of the temporal sequence

Sdev = the difference between Sdeviant and Sstars

Sstars = the (n-2)th values of the temporal sequence

S* = sparse set of input sequences

The AMI, then makes a prediction as follows:

)(meandevdeviantpred SSS += (2)

where,

 1−= 

ndeviant SS (3)

 2−= 

nstars SS (4)

Predicting the Time between failures of Software Projects Using Novel Machine Intelligence Algorithms

International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Page 14

Further details of the AMI technique can be found in (Osegi & Anireh, 2019).

4. EXPERIMENTAL DETAILS AND RESULTS

The experiments have been performed using data based on the work of Musa (Musa, 1979, see also

Lyu, 1984). The dataset comprises failure data corresponding to the operational life of a real software

system. The data features are the Failure Number and the Time-to-Failure and there are 197 instances

of these features.

The experiments compare the result of the Auditory Machine Intelligence (AMI) technique with the

Hierarchical Temporal Memory (HTM) technique; these techniques are described in Section 3. The key

default parameters of the both AMI and HTM techniques are given in Tables 1 and 2 respectively;

details of these parameters can be found in (Osegi, 2018; Osegi and Anireh, 2019).

Table1. Key AMI Parameters

Parameter Default value

Model Adjustment Threshold, Th 0.21

Sparsity factor, s 2

Table2. Key HTM Parameters

Parameter Default value

Number of Columns 250

Initial Synaptic Permanence 0.21

Reduct factor 2

Boost factor 100

Synaptic Permanence Increment 0.1

Synaptic Permanence Decrement 0.1

Number of past sequences used as context 2

In Figures 3 and 4, the error response, Mean Absolute Percentage Error (MAPE) of AMI and HTM

techniques are presented. Also, the minimum (min), maximum (max) and mean (uo) MAPE values for

both techniques are presented in Tables 3.

Fig.3. MAPE response plot of AMI technique for the software failure dataset

Predicting the Time between failures of Software Projects Using Novel Machine Intelligence Algorithms

International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Page 15

Fig.4. MAPE response plot of HTM technique for the software failure dataset

From the Figures (Fig.2-3) it is evident that the HTM performance is better than that of AMI. However,

the AMI error response (see Fig.2) is indicative of a progressive improvement through time as the AMI

algorithm processes each new data point.

Table3. AMI Comparative Results

Error Parameter HTMMAPE AMIMAPE

min 0.05 1.08

max 1.50 100.96

uo 1.27 5.22

In Table 3, the superiority of the HTM technique over the AMI is clearly obvious with an with an

average error improvement of about 4 times that of the AMI.

5. CONCLUSIONS AND FUTURE WORK

This research has presented an experiment on the performance of two machine intelligence algorithms

for software effort estimation in the context of predicting the time between failures. The research

findings indicate that the Hierarchical Temporal Memory (HTM) is a better technique when compared

to the Auditory Machine Intelligence (AMI) technique for the considered dataset. However, AMI neural

circuitry is simple to model mathematically and is promising area of research for neural machine

intelligence applications. Other areas for future research include investigating more software project

failure and effort estimation datasets and refinements to the AMI model to improve its competitive

ability.

REFERENCES

[1] Akuno, A. O., Orawo, L. A. O., & Islam, A. S. (2014). One-Sample Bayesian Predictive Analyses for an

Exponential Non-Homogeneous Poisson Process in Software Reliability. Open Journal of Statistics, 2014. 4,

402-411

[2] Benaddy, M., El Habil, B., El Meslouhi, O., & Krit, S. D. (2018). Recurrent neural network for software

failure prediction. In Proceedings of the Fourth International Conference on Engineering & MIS 2018 (pp.

1-8).

[3] Çatal, Ç. (2016). The use of cross-company fault data for the software fault prediction problem. Turkish

Journal of Electrical Engineering & Computer Sciences, 24(5), 3714-3723.

Predicting the Time between failures of Software Projects Using Novel Machine Intelligence Algorithms

International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Page 16

[4] Cerpa, N., Bardeen, M., Astudillo, C. A., & Verner, J. (2016). Evaluating different families of prediction

methods for estimating software project outcomes. Journal of Systems and Software, 112, 48-64.

[5] Cui, Y., Ahmad, S., & Hawkins, J. (2016). Continuous online sequence learning with an unsupervised neural

network model. Neural computation, 28(11), 2474-2504.

[6] Cui, Y., Ahmad, S., & Hawkins, J. (2017). The HTM Spatial Pooler—A Neocortical Algorithm for Online

Sparse Distributed Coding. Frontiers in Computational Neuroscience, 11.

[7] Dauletkhanuly, Y., Krestinskaya, O., & James, A. P. (2020). HTM theory. In Deep Learning Classifiers with

Memristive Networks (pp. 169-180). Springer, Cham.

[8] Hawkins, J., Ahmad, S., & Dubinsky, D. (2010). Hierarchical temporal memory including HTM cortical

learning algorithms. Techical report, Numenta, Inc, Palto Alto. https://web.archive.org/web/2011071421

3347/http://www.numenta.com/htm-overview/education/HTM_CorticalLearningAlgorithms.pdf.

[9] Kaur, A., & Kaur, I. (2018). An empirical evaluation of classification algorithms for fault prediction in open

source projects. Journal of King Saud University-Computer and Information Sciences, 30(1), 2-17.

[10] Lehtinen, T. O., Mäntylä, M. V., Vanhanen, J., Itkonen, J., & Lassenius, C. (2014). Perceived causes of

software project failures–An analysis of their relationships. Information and Software Technology, 56(6),

623-643.

[11] Liu, Y., Xie, M., Yang, J., & Zhao, M. (2015, August). A new framework and application of software

reliability estimation based on fault detection and correction processes. In 2015 IEEE International

Conference on Software Quality, Reliability and Security (pp. 65-74). IEEE.

[12] Lyu, M. R. (1996). Handbook of software reliability engineering (Vol. 222). CA: IEEE computer society

press.

[13] Musa, J. D. (1979). Validity of execution-time theory of software reliability. IEEE Transactions on

Reliability, 28(3), 181-191.

[14] Näätänen, R., Gaillard, A. W., & Mäntysalo, S. (1978). Early selective-attention effect on evoked potential

reinterpreted. Acta psychologica, 42(4), 313-329.

[15] Othman, I., Ghani, S. N., Mohamad, H., Alalou, W., & Shafiq, N. (2018). Early warning signs of project

failure. In MATEC Web of Conferences (Vol. 203, p. 02008). EDP Sciences.

[16] Osegi, E. N. (2018). Using the hierarchical temporal memory spatial pooler for short-term forecasting of

electrical load time series. Applied Computing and Informatics.

[17] Osegi, E. N., Anireh, V. I., & Onukwugha, C. G. (2018, June). pCWoT-MOBILE: a collaborative web based

platform for real time control in the smart space. iSTEAMS SMART-MIINDs Conference, 13(3), 237-250.

[18] Osegi, E.N., Anireh, V.I.E.: AMI: An Auditory Machine Intelligence Algorithm for Predicting Sensory-Like

Data. (2019 in press).

[19] Osegi, E.N., Taylor, O.E., Wokoma, B.A., & Idachaba, A.O. (2019). A Smart Grid Technique for Dynamic

Load Prediction in Nigerian Power Distribution Network. International Conference on Sustainable and

Innovative Solutions for Current Challenges in Engineering & Technology (ICSISCET- 2019), Gwalior,

India.

[20] Osegi, E.N., Taylor, O.E., Wokoma, B.A., & Idachaba, A.O. (2020, in-press). A Smart Grid Technique for

Dynamic Load Prediction in Nigerian Power Distribution Network. In Intelligent Computing Applications

for Sustainable Real-World Systems. Springer-Nature, Switzerland.

[21] Xie, M., Goh, T. N., & Ranjan, P. (2002). Some effective control chart procedures for reliability monitoring.

Reliability Engineering & System Safety, 77(2), 143-150.

Citation: Nanwin, Domaka Nuka, Michael Chief James Philip, (2020). “Predicting the Time between failures

of Software Projects Using Novel Machine Intelligence Algorithms”, International Journal of Research

Studies in Computer Science and Engineering (IJRSCSE), 7(2), pp.11-16. DOI:http://doi.org/10.20431/2349-

4859.0702003

Copyright: © 2020 Authors, This is an open-access article distributed under the terms of the Creative

Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,

provided the original author and source are credited.

