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1. INTRODUCTION 

Software projects represent complex processes that are initiated through several lifecycles towards the 

realization of software artifact or produce. Since software development is prone to failures, its state sequel to 

such failures needs to be estimated in advance to expedite remedial action programs. Software failure trends, 

thus, are very useful in this regard. However, the estimation of the project outcomes or effort trends leading to 

such failure remains a perennial system level problem as it involves several inter-related and independent 

processes that greatly influence its process representation. Also, the need to decipher useful information from 

limited amount of information is another issue that warrants critical studies. Thus, research is very active in the 

context of software effort estimation trends including the use of statistical or machine learning approaches such 

as Arithmetic mean (Am) and Laplace factors (Lf) and Artificial Neural Networks (ANNs) trained by the back-

propagation algorithm (Lyu, 1996, ch.10, ch.17). 

In order to realize important features in the software project outcome estimation process, trend analysis through 

refined data mining experiments are typically conducted. While some approaches have considered the time 

between failures in the context of Maximum Likelihood Estimates (MLE) for reliability growth testing via 

cumulative failure mode in the time interval (Akuno et al., 2014; Liu et al., 2015) or t-charts as in (Xie et al., 

2002); others have focused on the use of machine learning techniques for prediction of fault prone software 

faults (CATAL, 2016). In this paper, the trend analysis of software project failure data based on time between 

failures from a systems perspective is considered and presented here. The primary object of this research is to 

use machine intelligence techniques to determine in advance the time between failures filtering unnecessary 

data points in the process. 

2. PREVIOUS RELATED WORKS 

Some key related works in this field of software project outcome estimation have been investigated. In Cerpa et 

al (2016), a questionnaire like approach was used to obtain a set of 4 software project outcome data from software 

engineering field practitioners and from different companies in Chile. They then evaluated the effectiveness of 

six families of classification methods (Statistical, Nearest Neighbors, Neural Networks, Support Vector Machine 

(SVM), Decision trees (DTs) and Ensembles) on the obtained field data. From their analysis, they found out that 

on an integer rank scale of 1-11, the Ensembles called Random Forests (RFs) was the better performing classifier 

with a rank of No. 1, when compared to other sub-classifiers of the various families. In Kaur & Kaur (2018), six 

best performing machine learning (ML) algorithms were compared for fault prediction on open source software 

projects. In their study, they considered standard numeric-based performance metrics, graphical metrics and non-

parametric statistical tests for comparative studies. Open source datasets: PMD, EMMA, Find Bugs, Trove and 
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Dr Java were analysed using the ML models. Their results showed that the Random Forest ML technique is 

best. This followed by Bagging and Naive Bayesian techniques. 

Othman et al (2018) provided insights into the detection of early warning signs prior to failure of a project. 

They reviewed several existing works methodologies related to early warning signs. Their primary objectives 

focused on determining at what stage of project life cycle early warning signals of project failure is detected, 

methodologies used by researchers, and the case studies conducted in the times past. As a primary 

methodology, they used ad-hoc queries (described by well defined key words) on databases and search engines 

of well established publishing houses. From their findings, the planning stage was found to be ideal for 

detecting early warning signs. 

Lin et al proposed a graphical model (GM) for software defect prediction. In this GM approach, a monotonical- 

ly increasing failure time and an estimated two-parameter exponential distribution is used for defect prediction. 

Failure intensity functions were used for software reliability estimates. Defect data used in experimental 

analysis showed that GM show improved relative gain when compared to other traditional models. 

In a prior study, Lehtinen et al (2014) categorized various causes of software project failures as People, 

Methods, Tasks and Environment (see Fig.1). They identified the need to study the causal relationships 

between software processes in order to circumvent consequent failure of software projects. They proposed a 

unidirectional model (Fig.2) that describes the software process cause‐effect relationship across local and 

bridge levels. Their results indicate that case defect was highly focused on management, implementation and 

software testing. Benaddy (2018) compared the Recurrent Neural Networks (RNN) with conventional 

Artificial Neural Networks (ANN) of the Feedforward category for software failure prediction. A real coded 

genetic algorithm (RCGA) was used to train the feedforward ANN and Adam optimizer used to improve the 

resilience of the RNN. Their results indicate that the RNN generalize better across the considered datasets. 

3. PROPOSED METHODOLOGY 

In this section, the Hierarchical Temporal Memory neural technique which is based on the Cortical Learning 

Algorithms (CLA) proposed earlier in (Hawkins et al., 2010) and the Auditory Machine Intelligence (AMI) 

developed earlier in (Osegi et al., 2018, Osegi and Anireh, 2019) are presented. 

3.1. Hierarchical Temporal Memory 

Hierarchical Temporal Memory (HTM) is a machine intelligence algorithm that was developed to solve the 

missing gaps in the existing back propagation trained neural network scheme. It supports more biological and 

neuroscience principles and is based on the intelligent processing of cortical columns in the midst of thousands 

of activating synapses. The architecture of the HTM compared to conventional neural model is shown in Fig.1 

and the systems view is presented in Fig 2. 

 

Fig.1a. Conventional Neural Network Representation 

 

Fig.1b. HTM Neural Representation (Source: Hawkins et al., 2010) 
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As can be seen from Fig.1, the HTM includes a higher set of processing functions that allow added 

functionality and high-level processing detail when compared to simple neural activation of 

conventional neural types. 

 

Fig.2. HTM Systems Level processor (Source: Osegi, 2018) 

In the systems-level process diagram (see Fig.2), the HTM process incoming information in bits using 

a sparse encoder and a spatial-temporal processing stage. This is then followed by appropriate classifier 

to generate the output. Indeed, the mathematical formulations of the prediction process in the HTM are 

complicated and it is beyond the scope of this research paper to treat this matter. Further details of the 

HTM technique and its mathematical treatment can be found in (Cui et al., 2016, Cui et al., 2017; Osegi, 

2018 & Dauletkhanuly et al., 2020). 

3.2. Auditory Machine Intelligence 

The Auditory Machine Intelligence (AMI) is a deterministic neural machine intelligence technique 

inspired by the mismatch negativity effect and auditory processing in the mammalian auditory cortex 

denoted as A1 (Osegi and Anireh, 2019, Osegi et al., 2019, Osegi et al., 2020). It basically comprises 

of two steps: 

Step 1: Low-level prediction for making a prediction in the current time step based on a history of sparse 

data points in the previous time step. These sparse data points correspond to the evoked potentials 

originally observed in (Näätänen et al., 1978) as the “odd-ball”. 

Step 2: High-level prediction that performs look-ahead predictions several time steps ahead.  

In the proposed machine intelligence system for software effort estimation based on failures and time 

intervals, the Step 1 prediction phase is used. This enables a single (one step ahead) prediction to be 

made. The AMI-software-failure-prediction-system basically performs this operation using the 

computation of a single learning as: 
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where, 

n = number of data points in a temporal sequence 

Sdeviant = the (n-1)th value of the temporal sequence 

Sdev = the difference between Sdeviant and Sstars 

Sstars = the (n-2)th values of the temporal sequence 

S* = sparse set of input sequences 

The AMI, then makes a prediction as follows: 

 )(meandevdeviantpred SSS +=  (2) 

where, 

 1−= 

ndeviant SS  (3) 

 2−= 

nstars SS  (4) 
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Further details of the AMI technique can be found in (Osegi & Anireh, 2019). 

4. EXPERIMENTAL DETAILS AND RESULTS 

The experiments have been performed using data based on the work of Musa (Musa, 1979, see also 

Lyu, 1984). The dataset comprises failure data corresponding to the operational life of a real software 

system. The data features are the Failure Number and the Time-to-Failure and there are 197 instances 

of these features. 

The experiments compare the result of the Auditory Machine Intelligence (AMI) technique with the 

Hierarchical Temporal Memory (HTM) technique; these techniques are described in Section 3. The key 

default parameters of the both AMI and HTM techniques are given in Tables 1 and 2 respectively; 

details of these parameters can be found in (Osegi, 2018; Osegi and Anireh, 2019). 

Table1. Key AMI Parameters 

Parameter Default value 

Model Adjustment Threshold, Th 0.21 

Sparsity factor, s 2 

Table2. Key HTM Parameters 

Parameter Default value 

Number of Columns 250 

Initial Synaptic Permanence 0.21 

Reduct factor 2 

Boost factor 100 

Synaptic Permanence Increment 0.1 

Synaptic Permanence Decrement 0.1 

Number of past sequences used as context 2 

In Figures 3 and 4, the error response, Mean Absolute Percentage Error (MAPE) of AMI and HTM 

techniques are presented. Also, the minimum (min), maximum (max) and mean (uo) MAPE values for 

both techniques are presented in Tables 3. 

 

Fig.3. MAPE response plot of AMI technique for the software failure dataset 
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Fig.4. MAPE response plot of HTM technique for the software failure dataset  

From the Figures (Fig.2-3) it is evident that the HTM performance is better than that of AMI. However, 

the AMI error response (see Fig.2) is indicative of a progressive improvement through time as the AMI 

algorithm processes each new data point.  

Table3.  AMI Comparative Results 

Error Parameter HTMMAPE AMIMAPE 

min 0.05 1.08 

max 1.50 100.96 

uo 1.27 5.22 

In Table 3, the superiority of the HTM technique over the AMI is clearly obvious with an with an 

average error improvement of about 4 times that of the AMI. 

5. CONCLUSIONS AND FUTURE WORK 

This research has presented an experiment on the performance of two machine intelligence algorithms 

for software effort estimation in the context of predicting the time between failures. The research 

findings indicate that the Hierarchical Temporal Memory (HTM) is a better technique when compared 

to the Auditory Machine Intelligence (AMI) technique for the considered dataset. However, AMI neural 

circuitry is simple to model mathematically and is promising area of research for neural machine 

intelligence applications. Other areas for future research include investigating more software project 

failure and effort estimation datasets and refinements to the AMI model to improve its competitive 

ability.  
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