
International Journal of Research Studies in Computer Science and Engineering (IJRSCSE)

Volume 2, Issue 3, March 2015, PP 102-104

ISSN 2349-4840 (Print) & ISSN 2349-4859 (Online)

www.arcjournals.org

©ARC Page 102

P vs NP: One of the Millennium Prize Problems Proposed by the

Clay Mathematics Institute

Bharathi Devi Patnala
1
, Shamim

2

1
HoD, Dept of MCA, KBN PG College

2
HOD, Dept of M.Sc(CS), KBN PG College

Abstract: The P versus NP question distinguished

itself as the central question of theoretical computer

science nearly four decades ago. The question to

resolve it, and more generally, to understand the

power and limits of efficient computation, has led to

the development of computational complexity theory.

While this mathematical discipline in general, and

the P vs. NP problem in particular, have gained

prominence within the mathematics community in the

past decade, it is still largely viewed as a problemof

computer science.In this paper I shall try to explain

why this problem, and describe the underlying

concepts and problems, the attempts to understand

and solve them, and some of the research directions

this led us to. I shall also explain some of the

important results, as well as the major goals and

conjectures which stilelude us.

1. INTRODUCTION

In 1936, Turing developed his theoretical

computational model. He based his model on how he

perceived mathematicians think. As digital computers

were developed in the 40's and 50's, the Turing

machine proved itself as the right theoretical model

for computation. Quickly though we discovered that

the basic Turing machine model fails to account for

the amount of time or memory needed by a computer,

a critical issue today but even more so in those early

days of computing. The key idea to measure time and

space as a function of the length of the input came in

the early 1960's by Hartmanis and Stearns. And thus

computational complexity was born. In the early days

of complexity, researchers just tried understanding

these new measures and how they related to each

other. We saw the first notion of efficient

computation by using time polynomial in the input

size. This led to complexity's most important

concept, NP-completeness, and its most fundamental

question, whether P = NP?.The work of Cook and

Karp in the early 70's showed lalargenumber of

combinatorial and logical problems were NP-

complete, i.e., as hard as any problem computable in

nondeterministic polynomial time. The P=NP

question is equivalent to an efficient solution of any

of these problems. In the thirty years hence this

problem has become one of the outstanding open

questions in computer science and indeed all of

mathematics. In the 70's we saw the growth of

complexity classes as researchers tried to encompass

different models of computations. One of those

models, probabilistic computation, started with a

probabilistic test for primality, led to probabilistic

complexity classes and a new kind of interactive

proof system that itself led to hardness results for

approximating certain NP-complete problems. We

have also seen strong evidence that we can remove

the randomness from computations and most recently

a deterministic algorithm for the original primality

problem. In the 80's we saw the rise of finite models

like circuits that capture computation in an inherently

different way. A new approach to problems like P =

NP arose from these circuits and though they have

had limited success in separating complexity classes,

this approach brought combinatorial techniques into

the area and led to a much better understanding of the

limits of these devices.In the 90's we have seen the

study of new models of computation like quantum

computers and propositional proof systems. Tools

from the past have greatly helped our understanding

of these new areas. In the year 2006,On 6 August,

VinayDeolalikar, a mathematician at Hewlett-

Packard Labs in Palo Alto, California, sent out draft

copies of a paper titled simply "P ≠ NP".This terse

assertion could have profound implications for the

ability of computers to solve many kinds of problem.

2. CLASSIFICATION OF P, NP, NP-

COMPLETENESS, NP-HARD

 P: The complexity class of decision problems that

can be solved on a deterministic Turing machine in

polynomial time.

 NP: The complexity class of decision

problems that can be solved on a non-
deterministic Turing machine in polynomial

NP-Hard: Class of problems which are at least as

hard as the hardest problems in NP. Problems in NP-

hard do not have to be elements of NP, indeed, they

may not even be decidable problems.

P vs NP: One of the Millennium Prize Problems Proposed by the Clay Mathematics Institute

International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Page 103

NP-complete: Class of problems which contains the

hardest problems in NP. Each element of NP-

complete has to be an element of NP

The diagrammatical representation for classification

of complexity when P=NP and when P≠NP.

As you can see from the diagram above, all P

problems are NP problems. That is, if it’s easy for the

computer to solve, it’s easy to verify the solution. So

the P vs NP problem is just asking if these two

problem types are the same, or if they are different,

i.e. that there are some problems that are easily

verified but not easily solved. According to the work

of Cook and Karp showed a large number of

combinatorial and logical problems were NP-

complete, i.e., as hard as any problem computable in

nondeterministic polynomial time. The P=NP

question is equivalent to an efficient solution of any

of these problems but after the work done by Vinay

Deolalikar, proved that the problem P≠NP. It

currently appears that P ≠ NP, meaning we have

plenty of examples of problems that we can quickly

verify potential answers to, but that we can’t solve

quickly. Let’s look at a few examples:

 A traveling salesman wants to visit 100

different cities by driving, starting and

ending his trip at home. He has a limited

supply of gasoline, so he can only drive a

total of 10,000 kilometers. He wants to

know if he can visit all of the cities without

running out of gasoline.

 A farmer wants to take 100 watermelons of

different masses to the market. She needs to

pack the watermelons into boxes. Each box

can only hold 20 kilograms without

breaking. The farmer needs to know if 10

boxes will be enough for her to carry all 100

watermelons to market.

All of these problems share a common characteristic

that is the key to understanding the intrigue of P

versus NP: In order to solve them you have to try all

combinations.

It was alsoshown by Ladner that if P ≠ NP then there

exist problems in NP that are neither in P nor NP-

complete. Such problems are called NP-intermediate

problems. The graph isomorphism problem, the

discrete logarithm problem and the integer

factorization problem are examples of problems

believed to be NP-intermediate. They are some of the

very few NP problems not known to be in P or to be

NP-complete.

The graph isomorphism problem is the computational

problem of determining whether two finite graphs are

isomorphic. An important unsolved problem in

complexity theory is whether the graph isomorphism

problem is in P, NP-complete, or NP-intermediate.

The answer is not known, but it is believed that the

problem is at least not NP-complete.If graph

isomorphism is NP-complete, the polynomial time

hierarchy collapses to its second level. Since it is

widely believed that the polynomial hierarchy does

not collapse to any finite level, it is believed that

graph isomorphism is not NP-complete. The best

algorithm for this problem, due to Laszlo Babai and

Eugene Luks has run time 2O(√(n log(n))) for graphs

with n vertices.

The integer factorization problem is the

computational problem of determining the prime

factorization of a given integer. Phrased as a decision

problem, it is the problem of deciding whether the

input has a factor less than k. No efficient integer

factorization algorithm is known, and this fact forms

the basis of several modern cryptographic systems,

such as the RSA algorithm. The integer factorization

P vs NP: One of the Millennium Prize Problems Proposed by the Clay Mathematics Institute

International Journal of Research Studies in Computer Science and Engineering (IJRSCSE) Page 104

problem is in NP and in co-NP (and even in UP and

co-UP[9]). If the problem is NP-complete, the

polynomial time hierarchy will collapse to its first

level (i.e., NP will equal co-NP). The best known

algorithm for integer factorization is the general

number field sieve, which takes time

O(e(64/9)1/3(n.log 2)1/3(log (n.log 2))2/3) to factor

an n-bit integer. However, the best known quantum

algorithm for this problem, Shor's algorithm, does

run in polynomial time. Unfortunately, this fact

doesn't say much about where the problem lies with

respect to non-quantum complexity classes.

3. CONCLUSION

Finally, we conclude that the question of whether P

equals NP is one of the most important open

questions in theoretical computer science because of

the wide implications of a solution. If the answer is

yes, many important problems can be shown to have

more efficient solutions. These include various types

of integer programming problems in operations

research, many problems in logistics, protein

structure prediction in biology, and the ability to find

formal proofs of pure mathematics theorems. The P

versus NP problem is one of the Millennium Prize

Problems proposed by the Clay Mathematics

Institute. There is a US$1,000,000 prize for resolving

the problem.Solving this problem would have

profound effects on computing, and therefore on our

society.

REFERENCES

 Fundamentals of Computer Alogrithms, Ellis

Horowiz, SartajSahni, SanguthevarRajasekaran.

 S.A.COOK, The complexity of theorem proving

procedures, Proceedings of

 The 3
rd

 Annual ACM Symposium on Theory of

Computing, 151-158, 1971.

 History of this letter and its translation from

Michael Sipser. "The History and Status of the P

versus NP question.

