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Abstract: The P versus NP question distinguished 

itself as the central question of theoretical computer 

science nearly four decades ago. The question to 

resolve it, and more generally, to understand the 

power and limits of efficient computation, has led to 

the development of computational complexity theory. 

While this mathematical discipline in general, and 

the P vs. NP problem in particular, have gained 

prominence within the mathematics community in the 

past decade, it is still largely viewed as a problemof 

computer science.In this paper I shall try to explain 

why this problem, and describe the underlying 

concepts and problems, the attempts to understand 

and solve them, and some of the research directions 

this led us to. I shall also explain some of the 

important results, as well as the major goals and 

conjectures which stilelude us. 

1.  INTRODUCTION 

In 1936, Turing developed his theoretical 

computational model. He based his model on how he 

perceived mathematicians think. As digital computers 

were developed in the 40's and 50's, the Turing 

machine proved itself as the right theoretical model 

for computation. Quickly though we discovered that 

the basic Turing machine model fails to account for 

the amount of time or memory needed by a computer, 

a critical issue today but even more so in those early 

days of computing. The key idea to measure time and 

space as a function of the length of the input came in 

the early 1960's by Hartmanis and Stearns. And thus 

computational complexity was born. In the early days 

of complexity, researchers just tried understanding 

these new measures and how they related to each 

other. We saw the first notion of efficient 

computation by using time polynomial in the input 

size. This led to complexity's most important 

concept, NP-completeness, and its most fundamental 

question, whether P = NP?.The work of Cook and 

Karp in the early 70's showed lalargenumber of 

combinatorial and logical problems were NP-

complete, i.e., as hard as any problem computable in 

nondeterministic polynomial time. The P=NP 

question is equivalent to an efficient solution of any 

of these problems. In the thirty years hence this 

problem has become one of the outstanding open 

questions in computer science and indeed all of 

mathematics. In the 70's we saw the growth of 

complexity classes as researchers tried to encompass 

different models of computations. One of those 

models, probabilistic computation, started with a 

probabilistic test for primality, led to probabilistic 

complexity classes and a new kind of interactive 

proof system that itself led to hardness results for 

approximating certain NP-complete problems. We 

have also seen strong evidence that we can remove 

the randomness from computations and most recently 

a deterministic algorithm for the original primality 

problem. In the 80's we saw the rise of finite models 

like circuits that capture computation in an inherently 

different way. A new approach to problems like P = 

NP arose from these circuits and though they have 

had limited success in separating complexity classes, 

this approach brought combinatorial techniques into 

the area and led to a much better understanding of the 

limits of these devices.In the 90's we have seen the 

study of new models of computation like quantum 

computers and propositional proof systems. Tools 

from the past have greatly helped our understanding 

of these new areas. In the year 2006,On 6 August, 

VinayDeolalikar, a mathematician at Hewlett-

Packard Labs in Palo Alto, California, sent out draft 

copies of a paper titled simply "P ≠ NP".This terse 

assertion could have profound implications for the 

ability of computers to solve many kinds of problem.  

2. CLASSIFICATION OF P, NP, NP-

COMPLETENESS, NP-HARD 

    P: The complexity class of decision problems that 

can be solved on a deterministic Turing machine in 

polynomial time. 

    NP: The complexity class of decision 

problems that can be solved on a non-
deterministic Turing machine in polynomial 

NP-Hard: Class of problems which are at least as 

hard as the hardest problems in NP. Problems in NP-

hard do not have to be elements of NP, indeed, they 

may not even be decidable problems. 
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NP-complete: Class of problems which contains the 

hardest problems in NP. Each element of NP-

complete has to be an element of NP 

The diagrammatical representation for classification 

of complexity when P=NP and when P≠NP. 

As you can see from the diagram above, all P 

problems are NP problems. That is, if it’s easy for the 

computer to solve, it’s easy to verify the solution. So 

the P vs NP problem is just asking if these two 

problem types are the same, or if they are different, 

i.e. that there are some problems that are easily 

verified but not easily solved. According to the work 

of Cook and Karp showed a large number of 

combinatorial and logical problems were NP-

complete, i.e., as hard as any problem computable in 

nondeterministic polynomial time. The P=NP 

question is equivalent to an efficient solution of any 

of these problems but after the work done by Vinay 

Deolalikar, proved that the problem P≠NP. It 

currently appears that P ≠ NP, meaning we have 

plenty of examples of problems that we can quickly 

verify potential answers to, but that we can’t solve 

quickly. Let’s look at a few examples: 

 A traveling salesman wants to visit 100 

different cities by driving, starting and 

ending his trip at home. He has a limited 

supply of gasoline, so he can only drive a 

total of 10,000 kilometers. He wants to 

know if he can visit all of the cities without 

running out of gasoline. 

 A farmer wants to take 100 watermelons of 

different masses to the market. She needs to 

pack the watermelons into boxes. Each box 

can only hold 20 kilograms without 

breaking. The farmer needs to know if 10 

boxes will be enough for her to carry all 100 

watermelons to market. 

All of these problems share a common characteristic 

that is the key to understanding the intrigue of P 

versus NP: In order to solve them you have to try all 

combinations. 

It was alsoshown by Ladner that if P ≠ NP then there 

exist problems in NP that are neither in P nor NP-

complete. Such problems are called NP-intermediate 

problems. The graph isomorphism problem, the 

discrete logarithm problem and the integer 

factorization problem are examples of problems 

believed to be NP-intermediate. They are some of the 

very few NP problems not known to be in P or to be 

NP-complete. 

The graph isomorphism problem is the computational 

problem of determining whether two finite graphs are 

isomorphic. An important unsolved problem in 

complexity theory is whether the graph isomorphism 

problem is in P, NP-complete, or NP-intermediate. 

The answer is not known, but it is believed that the 

problem is at least not NP-complete.If graph 

isomorphism is NP-complete, the polynomial time 

hierarchy collapses to its second level. Since it is 

widely believed that the polynomial hierarchy does 

not collapse to any finite level, it is believed that 

graph isomorphism is not NP-complete. The best 

algorithm for this problem, due to Laszlo Babai and 

Eugene Luks has run time 2O(√(n log(n))) for graphs 

with n vertices. 

The integer factorization problem is the 

computational problem of determining the prime 

factorization of a given integer. Phrased as a decision 

problem, it is the problem of deciding whether the 

input has a factor less than k. No efficient integer 

factorization algorithm is known, and this fact forms 

the basis of several modern cryptographic systems, 

such as the RSA algorithm. The integer factorization 



P vs NP: One of the Millennium Prize Problems Proposed by the Clay Mathematics Institute 

 

International Journal of Research Studies in Computer Science and Engineering (IJRSCSE)       Page 104 

problem is in NP and in co-NP (and even in UP and 

co-UP[9]). If the problem is NP-complete, the 

polynomial time hierarchy will collapse to its first 

level (i.e., NP will equal co-NP). The best known 

algorithm for integer factorization is the general 

number field sieve, which takes time 

O(e(64/9)1/3(n.log 2)1/3(log (n.log 2))2/3) to factor 

an n-bit integer. However, the best known quantum 

algorithm for this problem, Shor's algorithm, does 

run in polynomial time. Unfortunately, this fact 

doesn't say much about where the problem lies with 

respect to non-quantum complexity classes. 

3. CONCLUSION 

Finally, we conclude that the question of whether P 

equals NP is one of the most important open 

questions in theoretical computer science because of 

the wide implications of a solution. If the answer is 

yes, many important problems can be shown to have 

more efficient solutions. These include various types 

of integer programming problems in operations 

research, many problems in logistics, protein 

structure prediction in biology, and the ability to find 

formal proofs of pure mathematics theorems. The P 

versus NP problem is one of the Millennium Prize 

Problems proposed by the Clay Mathematics 

Institute. There is a US$1,000,000 prize for resolving 

the problem.Solving this problem would have 

profound effects on computing, and therefore on our 

society. 
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