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Abstract: CNC interpolation is essentially a numerical approximation in mathematics. The Bernstein 
polynomials have played an important role in the area of approximation ever since it was created. Hence 

the study on their rapid computations is valuable in CNC interpolation. Classical studies on rapid 

computations always focus on improving the computational efficiency by software algorithms and seldom 

associate the problem with the working process of the computer’s processor. This paper introduces a 

different thought. The paper presents a method that can rapidly compute the cubic Bernstein polynomials in 

accordance with the working traits of computers’ processors. Consequently, the computational routine can 

be implemented both by software and by hardware, which greatly enhances the computational efficiency. 

The principles and process of the method are presented together with its application in shape optimization. 
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1. INTRODUCTION 

CNC interpolation in industrial applications is essentially implemented by means of numerical 

approximation in mathematics (Haslinger & Makinen 2003). This is because a parameterized 
curve on industrial model is mathematically expressed with three real functions, say in a 3-

dimensional space. Hence numerical optimization lays the foundation for the CNC interpolations.  

The Bézier curves and surface are fundamental tools in computer graphics (CG), computer aided 
design(CAD), computer aided manufacture(CAM) and CNC. Theory of computer aided 

geometric design (CAGD) shows that the Bézier curves and surfaces are all generated from the 

Bernstein polynomials (Farin 1998). Hence a rapid computation of the Bernstein polynomials 
directly leads to a rapid computation of the Bézier curves and surfaces. Besides, owing to the 

important position the Bernstein polynomials play in the area of function approximation (Chen 

2000, Gzyl & Palacios 2003, Pallini 2005, Steffens 2006 ), a study of their rapid computation is 

also valuable in theory of approximation(Nataray & Arounassalame 2007).  

Classical studies on rapid computations always focus on improving computational efficiency by 

software algorithms and seldom associate the problem with the working process of the computer 

processor. Recently, we have put forward a new method for high speed CNC interpolation(Wang 
Xingbo,2011 &2014). The method can be implemented both by software and by hardware. This 

paper presents the mathematical foundation of the method. Section 2 shows the principle and 

process of the method and section 3 presents an application in shape optimization. 

2. FAST COMPUTATION OF CUBIC BERNSTEIN POLYNOMIALS 

A Bernstein polynomial ( )t  of degree n is defined by  

0

( ) 0 1
n

i i n

i

B t t  



   
                                                             (1) 

where ( 0 1 2 )i i n       are real numbers, and ( )i nB t  are the Bernstein basis such that  
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It is easy to show that the Bernstein basis fit the following properties 
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from which the subdivision property of the Bernstein polynomials is stated as the following 

lemma. 

Lemma Denote the Bernstein polynomial (1) by 

0 1( ) nt t                                                                    (4) 

then it holds 
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Where i j   is given by 
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The cubic Bernstein polynomials are particularly useful in industrial applications. Let 

0 0 0 0A B C D    be four real numbers; then the cubic Bernstein polynomial ( )t   0 0A B    0C   

0D t  is given by 

3 2 2 3

0 0 0 0( ) (1 ) 3 (1 ) 3 (1 )t A t B t t C t t D t                                                        (7) 

By the subdivision property, taking 0.5t  , which is called a mid-subdivision, yields two cubic 

Bernstein polynomials, 1 1 1 1

l l l l lA B C D t        and 1 1 1 1

r r r r rA B C D t       , which fit the 

following relationship 
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For convenience, the eight numbers, 1 1 1 1 1 1 1 1

l l l l r r r rA B C D A B C D       , are denoted by two quaternions, 

1 1 1 1( )l l l lA B C D    and 1 1 1 1( )r r r rA B C D   , which are called, for convenience, an L-Bernstein Number 

and a xtitR-Bernstein Number, respectively. Obviously, they can be computed just by left-shift 

and addition. As is known, shift operation and addition are faster computations; hence a fast 

computation can be designed for the cubic Bernstein polynomial. 

Now performing the mid-subdivision on 1 1 1 1( )l l l lA B C D    and 1 1 1 1( )r r r rA B C D    obtains 4 

quaternions 

2 2 2 2

2 2 2 2 2 2 2 2( ) ( )l l l l lr lr lr lrA B C D A B C D       ,
2 2 2 2

2 2 2 2 2 2 2 2( ) ( )rl rl rl rl r r r rA B C D A B C D        

where 2l ll  means left to left and lr  means right to left, and so are the meaning of other 

symbols. 

Obviously, repeating the mid-subdivision process on the quaternions will result in a sequence of 

the quaternions: 
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And each quaternion in the sequence will give a value of ( )t  by the first or the fourth 
component. 

Conventionally, the above computation process is designed and implemented by a recursion 
routine. However we design a new routine for it because, as is known, the recursion routine is less 

efficient. 

Let BCU denote a Basic Calculation Unit, such that it performs the calculation defined in the 

equation (8). That is, a BCU will outputs two quaternions, 1 1 1 1( )l l l lA B C D    and 1 1 1 1( )r r r rA B C D   , 

and a number 1 1

l rres D A   byan input 0 0 0 0A B C D   , as illustrated in figure 1. 

Now this BCU is used to design a generator of cubic Bernstein polynomials, as illustrated in 

figure 2. 

It is shown that three BCUs are used. The first one is used for the initial subdivision, which turns 

the quaternion 0 0 0 0( )A B C D    into 1 1 1 1( )l l l lA B C D    and 1 1 1 1( )r r r rA B C D   . The later two 

quaternions are immediately used as theinputs of the other two BCUs, which are called, for 

convenience, L-BCU and R-BCU respectively, and perform afterwards recycling computations. 

The L-memory and R-memory are two FIFO(First in First Out) storagestructures to store the 
output of the L-BCU and R-BCU respectively. The L-result and R-result are another two storage 

structures to store the final results. This generator can automatically generate all the values of a 

Bernstein polynomial. The mechanism is as follows: 
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Fig1. A BCU and its inputs and outputs 
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Fig2. A generator of cubic Bernstein polynomials 

Seen from the figure 2, three outputs, an L-Bernstein Number L , a R-Bernstein Number R  and a 

result number res, denoted also by R, are obtained after the initial computation; and L  and R  are 
put to be inputs of the L-BCU and the R-BCU respectively. After the L-BCU and the R-BCU 

finish their first computations, 4 outputs are obtained, LL and LR from L-BCU, RL, RR from R-

BCU. The two result numbers 2LL L  and RL are stored into L-result and R-result, respectively. 
To continue the computation, LL and RL are used as the inputs of the L-BCU and the R-BCU for 

their next computations while LL and RR are respectively stored into L-memory and R-memory. 

When the L-BCU and the R-BCU finish their second computations, the two outputs, LLL and 

LLR, are stored into the L-memory, and other two ones, RLL and RLR, are stored into the R-
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memory while the two numbers, 3L  and 2RL , are stored into L-result and R-result, respectively. 

The stored LR, RR are then fetched to be the inputs of the L-BCU and the R-BCU to perform 
their third computations.  

Keeping this process leads to a continuous computation in the L-BCU and the R-BCU and a data-

stored sequence in the four memory structures as shown in figure 3. Note that the data stored in 
the L-result and the R-result form a storage structure of a full binary tree, and are easy to fetch. 
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Fig3. Data storage in memory structures 

3. APPLICATION IN SHAPE OPTIMIZATIONS 

A cubic Bézier curve is essentially constructed from the cubic Bernstein polynomials. Hence it 

can be fast commutated via the above process. For a given sequence of N control points 1{ }N

i iP  

together with another boundary points 0P , 1N P , the i-th cubic Bézier interpolating segment that 

passes through iP , 1iP  is defined by  

3 2 2 3

1 1 1 2 1( ) (1 ) 3( ) (1 ) 3( ) (1 )i i i i i i i i ir t P t P P P t t P PP t t P t                                                 (9) 

where 0 1    .  

In fact, by the eq. (9), it yields  

1(0) (1)i i i ir P r P                                                                (10) 

1 1 2(0) (1)i i i i i ir P P r PP                                                            (11) 

Then if we take   , the piecewise curve 
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i
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r
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is a C1-continuous curve that pass through all the control points 1{ }N

i iP . It is of course a 1
GC -

continuous when   . Consequently, when i goes through 1,2,…,N, the curve  passes through 

all the control points 1{ }N

i iP  and ir  has the same tangent vector at the end-point (1)ir with that of 

1ir  at the start-point 1(0)ir  .  

Normally, the curve (9) can be calculated by the De Casteljau’s algorthm. However, one will see 

that, it can be calculated by the generator designed in previous section. In fact, the equation (9) 
can be written by  
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0 1 1( ) ( ) ( ) ( )i i ir t PBZ t P BZ t t  BZ                                             (13) 

where 

3 2 2 3

0 ( ) (1 ) 3 (1 ) 3 (1 )BZ t t t t t t t                                                   (14) 

3 2 2 3

1( ) (1 ) 3 (1 ) 3 (1 )BZ t t t t t t t                                                   (15) 

2 2 3 3

1 2 1( ) 3 (1 ) 3 (1 ) (1 )i i i it P t t P t t P t P t         BZ                         (16) 

Since 0 ( )BZ t  and 1( )BZ t  are two cubic Bernstein polynomials and the ( )tBZ is composed of 

three cubic Bernstein polynomials, it is sure that the curve (13) can be fast calculated with the 

generator of cubic Bernstein polynomials.  

Meanwhile, it can see that, the calculation with eq.(13) is of high precision. In fact, the eq.(13) 
shows different computational traits from the eq.(9). By the eq.(9), it is seen that,in order to 

perform the De Casteljau’s algorithm, it should first to compute the coefficients 1 1i i i  P P P  and 

1 2i i i P P P  . This includes three times of subtraction, two times of multiplication and two times 

of addition. During these computations, especially the subtraction, computational errors will 
occur. These errors will obviously affect the the final precision of computation. In addition, the 

three times of subtraction is also a factor that decreases the computational efficiency. On the other 

hand, by eq.(13), there are no such extra errors and the computational efficiency is improved since 
only one subtraction is performed. Note that, the three items on the right side of the eq.(13) are 

independent each other, thus they can of course be computed by parallel mode. All these show 

that, calculation by the new method is of a good attempt.  
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