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1. INTRODUCTION 

Many nonparametric estimators of the variance of a single AUC and the difference between two 

correlated AUCs have been proposed. The methods proposed by Bamber in 1975 (based on formula 

from Noether 1967) and Wieand et al (1983) provide unbiased estimators of the variance of a single 

AUC and the covariance of two correlated AUCs correspondingly. Hence, these estimators are useful 

for assessing the magnitude of the variability but may provide no advantages in hypothesis testing. The 

estimator proposed by Hanley & McNeil (1982) explicitly depends only upon the AUC and sample size 

and thus enables simple estimation of the sample size for a planned study. However, this estimator is 

known to underestimate or overestimate variance depending on the underlying parameters (Obuchowski 

1994; Hanley & Hajian-Tilaki 1997) and thus is not optimal for either variance estimation or hypothesis 

testing (an improved estimator of the same kind was proposed by Obuchowski in 1994). Perhaps the 

most widely used estimator which offers both relatively accurate estimator of the variability and leads 

to acceptable hypothesis testing is the estimator proposed by DeLong et al (1988). Therefore 

nonparametric inference for a difference in areas under the curve (AUCs) for paired studies was first 

proposed by DeLong et al (1988), which is based upon asymptotic theory for U-statistics (Hoeffding, 

1948) and estimates the covariance of the 2 U-statistics using the jackknife. Other nonparametric 

inference procedures include those based upon an analysis of variance of jackknife pseudovalues 

(Dorfman et al, 1992; Song, 1997) and bootstrap-based methods (Campbell, 1994; Moise et al, 1988). 

However, the validity of each of these methods is founded in large-sample theory and each does not 

necessarily lead to a valid test of difference in AUC in small samples. A competing approach to the 

above methods is a permutation test, the size of which will remain nominal in small samples. 

Permutation based procedures are specific to hypothesis testing. A permutation procedure constructs a 

*Corresponding Author: Okeh UM, Department of Industrial Mathematics and Applied Statistics, Ebonyi 

State University Abakaliki Nigeria 

 

Abstract: The area under the receiver operating characteristic (ROC) curve (AUC) is a popularly used index 

when comparing two ROC curves. However, this index is less informative when two ROC curves cross while 

the AUCs are the same. In order to detect differences between ROC curves and to be able to tackle the problem 

of transformation of the original data and exchangeability of the labels of two diagnostic tests within subject 

which characterized the methods proposed by Venkatraman and Beggs (1996) as well as Bandos et al(2005), 

an alternative permutation test based on between-subject permutations of the labels of the subjects is proposed 

for assessing a change in the AUCs in a matched pair of data from two diagnostic test procedures having both 

diseased and nondiseased subject in each of the test. Here permutations are made between subjects particularly 

by shuffling the diseased and nondiseased labels of the subjects within each diagnostic test procedure. The 

validity of this permutation test is assured even when the scale of measurement of test results differs for each 

diagnostic test procedure. We demonstrate under the assumption of equality of AUCs that our permutation test 

is a modified Wilcoxon signed rank test for the symmetry of an underlying discrete distribution with valid sample 

size. Through extensive data simulation, we show the numerical studies of operating characteristics of our new 

permutation test and show that our test has equal statistical power to a permutation test proposed by Bandos 

et al(2005). 
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permutation sample space, which consists of the equally likely permutation samples. The permutation 

samples are created by interchanging the units of the data that are assumed to be “exchangeable” under 

the null hypothesis. The permutation sample space is the exact probability space of the possible 

arrangements of the data under the null hypothesis given the original sample. This natural permutation 

test is characterized by exchanging the paired units when two diagnostic systems are to be compared 

with paired data.  Two permutation tests for paired receiver operating characteristic (ROC) studies 

currently exist: one proposed by Venkatraman and Begg (1996) and the other one from Bandos et al 

(2005). The test of Bandos et al(2005) directly tests for an equality of AUCs, while the test of 

Venkatraman and Begg(1996) is more general and tests for equality of the underlying ROC curves. As 

a result, the test of Venkatraman and Begg is less powerful for testing equality of AUCs. In other words, 

this permutation method is for detecting any differences between two ROC curves so that the authors 

used a measure specifically designed to detect the differences at every operating point. Both permutation 

tests are executed by permuting the labels of the two diagnostic tests within each diseased and non-

diseased subject. Such an approach implicitly assumes that both diagnostic tests are exchangeable 

within subject and requires an appropriate transformation, such as ranks, for diagnostic tests differing 

in scale measurement. This means that both of these tests assume the same condition of exchangeability 

of the diagnostic results under the null hypothesis, but differ with respect to their sensitivity to specific 

alternatives and the availability of an asymptotic version. Namely our permutation test better detects 

different ROC curves if they differ with respect to the AUC, and it has an easy-to-implement and precise 

approximation which is unavailable for the test of Venkatraman & Begg. The availability of the 

asymptotic approximation to the permutation test can be an important issue since the exact permutation 

tests are practically impossible to implement with even moderate sample sizes and the Monte Carlo 

approximation to the permutation test is associated with a sampling error. Fortunately, in some cases 

the asymptotic approximation can be constructed by appealing to the asymptotic normality of the 

summary statistic and using the estimator of its variance, if the latter is derivable. For the nonparametric 

estimator of the difference in the AUC we demonstrated (Bandos et al, 2005) that the exact permutation 

variance can be calculated directly without actually permuting the data previously mention estimation 

methods which provide estimators of the variance regardless of the magnitude of the difference. 

However, the properties of the statistical tests can be compared directly with Monte Carlo and the 

availability of the closed-form solution for the permutation variance greatly alleviates the computational 

burden of this task. The comparison of the asymptotic permutation test with the widely used procedure 

of DeLong et al. indicate the advantages of the former for the range of parameters common in diagnostic 

imaging, i.e. AUC greater than 0.8 and correlation between scores greater than 0.4 (Bandos et al., 2005).  

Meanwhile, the estimator proposed by DeLong et al(1988) possesses an upward bias which on the one 

hand results in an improved (compared to the unbiased estimator) type I error of the statistical test for 

equality of the AUCs when AUCs are small, but on the other hand results in loss of statistical power 

when AUCs are large (Bandos 2005; Bandos et al, 2005). Bandos et al (2005) compared the 

performance of their test to that of DeLong et al (1988) via simulation and found that the permutation 

test had greater power than the nonparametric test developed by DeLong et al(1988) when there was 

moderate correlation between diagnostic tests, large AUCs, and small sample sizes.  

We propose an alternative permutation test based on between-subject permutations of the diseased non-

diseased labels of the subjects. These permutations do not require the exchangeability of the two 

diagnostic tests and do not require transformations of the original data. In Section 2, we derive our 

permutation test and a corresponding asymptotic normal approximation. In Section 3, we discuss 

simulation results regarding the validity and power of our test in relation to that of Bandos and others 

(2005). In Section 4, we make concluding remarks. 

2. MATERIALS AND METHOD 

2.1. Proposed Permuation Test (Modified Wilcoxon Signed Rank Test) 

This study is aimed at comparing two diagnostic tests in terms of their AUCs, namely, 1 2AUC and AUC with 

a view to identifying a change where both diagnostic tests are each having diseased and nondiseased 

subject. A total of N subjects passed through the two diagnostic tests out of which altogether a total of 

m subjects are nondiseased while n represents the total number of subjects who are diseased. For the 
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nondiseased subject(i) in both diagnostic tests, let 1 2i iX and X respectively represent the tests results from 

diagnostic test 1 and 2 where 1,2,..., .i m Also for the diseased subject (j),let 
1 2j jY and Y respectively 

denote the test results from diagnostic test 1 and 2 where 1,2,..., .j n  Given the two diagnostic tests,the 

vector of paired test results for the nondiseased subjects are denoted by  11 12 21 22 1 2( , ),( , ),....,( , )m mX X X X X X X

while the vector of paired test result for the diseased subjects in diagnostic test 1 and 2 is denoted as 

 11 12 21 22 1 2( , ),( , ),....,( , ) .n nY Y Y Y Y Y Y Based on these definitions,the nonparametric estimate of the difference in 

AUC between the two diagnostic tests denoted as 2 1AUC AUC AUC   is given by 
1 1

1ˆ
m n

ij

i j

AUC S
mn



 

 

ijwhere S  is an indicator variable for the two diagnostic tests denoted as 

 2 1

1
( ), 1,2.

2
ij ij ij ijk ik jk ik jkS U U and U I X Y I X Y for k       Note that 1 2ij ijU and U are  indicator variables for 

diagnostic tests 1 and 2 respectively. Given the nonparametric estimate of AUC  above, the null 

hypothesis suitable for testing it is given as 0.AUC  The test this hypothesis formally in terms of 

permutation test here, we combine all the subjects into 1 group of N subjects. Let the N test results from 

diagnostic test 1 be  1 11 12 1 1, 1 1, 2 1, ,..., , , ,...,m m m NZ Z Z Z Z Z Z  in which the subscripts 1,2,...,l m  denotes values 

of subjects having non-diseased test results and 1, 2, 3,...,l m m m N    representing values of subjects 

having diseased test results. Based on these information, we compare every subject’s value to every 

other subject’s value. This means comparing every diseased subject to all nondiseased subjects and all 

(n-1) other diseased subjects. These comparison yields 1 1 1 1 1

1
( ) ( ), .

2
ll l l l lV I Z Z I Z Z for l l  

     In a similar way, 

we are comparing every nondiseased subject to all diseased subjects and all (m-1) other nondiseased 

subjects. Following the same procedure, from diagnostic test 1 and 2,we have that 

 2 21 22 2 2, 1 2, 2 2, ,..., , , ,...,m m m NZ Z Z Z Z Z Z  denoting N test results from diagnostic test 2 in which the subscripts 

have already been defined in diagnostic test 1 above. Also for diagnostic test 2 

2 2 2 2 2

1
( ) ( ), .

2
ll l l l lV I Z Z I Z Z for l l  

      By these definition 1 , 1,2.ll l lkV V for k    Following these definitions and 

in other to adjust for the possible presence of tied observations, we generalize the definition of the 

estimate of AUC  as   

 
1ˆ

ll ll

l l l

AUC r T
mn

  


                                                                                               (2.1) 

Where 

1, ,

0, ,

1, ,

ll

if subject l is nondiseased and subject l is diseased

if subjects l and l are both diseased or both nondiseased

if subject l is diseased and subject l is nondiseased

 




 
 

 

And 2 1( ).ll ll llT V V     

Here ll  is the sign rank of ,llT  llT   is absolute value of the difference between two diagnostic tests 

resulting from when every subject’s value is compared to every other subject’s value,  llr T   is the 

signed rank of ,llT  while 1 2ll llV and V   are figures obtained when every subject’s value is compared to 

every other subject’s value from diagnostic test 1 and 2 respectively. The second summation sign in 

(2.1) is restricted to l l   because of the fact that .ll l lT T   This simply means that both values correspond 

to a comparison of the same diseased and non-diseased subject, but in reverse orders. In other to validate 

the permutation test based on the condition that the two diagnostic tests have continuous distributions, 

we prove here that testing the hypothesis 0AUC  is equal to testing the hypothesis that llT  has a 

distribution symmetric about zero.  

Suppose 1 2ll llV and V  have distribution 
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, 1, , 1,

ll ll

p if v p if v

ob V v p p if v and ob V v p p if v

p if v p if v
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  
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                                                 (2.2) 

So that 
1 10 10 11 2 20 20 21

1 1
(1 ) (1 ).

2 2
AUC p p p and AUC p p p        But 

 
2

( 1)
d

mn
P

N N



is the probability that only one 

of the subjects l and l is diseased, while 
 

2
(1 ) 1

( 1)
d

mn
P

N N
  


is the probability that subjects l and l are both 

diseased or both nondiseased. Because of that, 1 2ll ll llT V V     has distribution 

10 21,
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                                                         (2.3) 

Under the null hypothesis 1 2 *,AUC AUC AUC  we find that ll   is the sign of ( )llT   and its meanis given by  

11 21 20 11 10 21( ) [( ) * (1 ) (1 )].ll dE p p p AUC p p p p                                                                                       (2.4) 

If continuous distributions are assumed for both diagnostic tests, then 10 11 20 21* (1 ) (1 )AUC p p p p       and 

we find that ( ) 0llE    ,thereby proving that llT  is equally likely to be positive or negative. Diagnostic 

tests producing discrete values will lead to a distribution for llT  that is skewed positively or negatively 

from zero. However, the effect of the skewness will vanish asymptotically as ,N  assuming that the 

ratio m N  remains constant (Romano,1990).As a result, our permutation test will be (asymptotically) 

valid when 0,AUC  irrespective of the value of 1 2.AUC and AUC  

A standard and most appropriate nonparametric test for matched continuous test results and for 

symmetry about zero is the Wilcoxon signed rank test. This means that the null distribution of AUC is 

obtained by calculating AUC for every permutation of ,ll  the sign of the .llT  This is done when we 

permute ,ll  by switching the labels of nondiseased subject l  and diseased subject .l  This corresponds 

to permuting the vector of diseased/nondiseased labels among the subjects. Based on this style of 

permutation, the connection between a subject’s disease status and the values from the two diagnostic 

tests are broken. This permutation scheme validates any test whose 1 2AUC AUC c   where c is a real value 

between 0.5 and 1.0 inclusive. This does not only mean that our permutation test is a valid test of 

0,AUC  that is, the differences in AUC of two diagnostic tests are equally not useful for detecting 

disease. Similar to all Wilcoxon signed rank tests,the validity of our test is observed when llT  has a 

distribution symmetric about zero and has power impacted by 0 Pr ( 0),llp ob T    that is, the quantity of 

mass the discrete distribution of llT  has at zero. Here as either AUC1 or AUC2 increases toward 1.0, 

0p  increases also. In particular as the overlap in the distributions of diseased and non-diseased subjects 

for both diagnostic tests decreases, then the likelihood that 1llV    for the two diagnostic tests increases, 

which will lead to increased probability that 0llT    and decrease in the power of our permutation test. 

Based on this scenario, we adopt the traditional approach of improving power in Wilcoxon signed rank 

tests by proposing a modified statistic 

0* ,D S f S                                                                                                                                                              (2.5) 

Where 0 ( 0), ( 0),ij ij

i j i j

S I S S I S      and f is a proportion describing the degree to which we use 

the number of zeros as evidence against 0.AUC   Surprisingly, the optimal value of  f in (2.5) is difficult 
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to obtain because of the correlation of the .ll  If our ll   were independent, the methods of Irle and 

Klosener (1980), based upon the Neyman–Pearson lemma, would show that the optimal value of  f  is 

a function of Pr ( 0) Pr ( 0),ll llp ob S and p ob S       both of which in our setting will vary depending on the 

actual values of AUC1 and AUC2. Although Putter (1955) suggested f = 1/2 and Coakley and Heise 

(1996) proposed f = 2/3 for use with the standard Wilcoxon signed rank test. Nonetheless,we therefore 

suggest a formula for f denoted as f̂  that appears to perform well in most settings. It is given by 

0log( ) log([1 ] 2)ˆ ,
log( ) ( )

p p
f

p lop p

  


  
                                                                          (2.6) 

Here f̂  is based upon the optimal value proposed by Irle and Klosener (1980) in the setting of 

independent ijS . However, we do not claim this estimate to be necessarily optimal in our setting, but 

rather one that appears to offer our test nominal size and excellent power across a variety of settings. 

 Furthermore, because the exact correlation structure of the ll   is quite complicated, permutation 

theory cannot be used to derive the asymptotic variance of *.D As an alternative, we collect the values 

of 0 and  S S from each permutation to give us a joint permutation distribution for 0 and . S S From this 

distribution, we compute 
0

ˆ ˆ ,and 
the respective sample means of S+ and S0, as well as 

2 2

0 0
ˆ ˆ ˆ, ,and    the respective sample variances and covariance of 0 and .S S  Assuming a value for f, we 

estimate the null mean and variance of *D  to be 
2 2 2 2

* 0 * 0 0
ˆ ˆ ˆ ˆ ˆ ˆ2 ,D Df and f f              respectively. 

An asymptotic version of our permutation test would therefore compare the value of  * *
ˆ ˆ* D DD   to the 

appropriate critical value in a standard normal distribution. 

3. RESULTS 

3.1. Description of Extensive Simulation and Results 

We have simulated measurements for both diagnostic tests as follows. We drew the 2 continuous 

measurements for each nondiseased subject from a bivariate normal distribution centered at 0,X   with 

both measurements having a marginal variance of 1.0 and correlation ρ. We drew the 2 continuous 

measurements for each diseased subject from a bivariate normal distribution centered at ,Y  also with 

both measurements having a marginal variance of 1.0 and correlation ρ; the values in Y  are directly 

determined from AUC1 and AUC2. To generate discrete outcomes, we first generated continuous 

outcomes as described above. Within each modality, we then assigned a value of 1 to outcomes in the 

lowest quintile of outcomes, a value of 2 outcomes between the first and the second quintiles, etc., with 

a value of 5 to outcomes above the fourth quintile. 

For each simulation, we examined 3 fixed values f = {1/2, 1/3, 1/4} in our *D statistic, as well as 

the value f̂  which varied among simulations depending upon the values 0
ˆ ˆ ˆ,p p and p  the proportions 

of the ijS  that were greater than, equal to, and less than zero, respectively. This value fˆ is based upon 

the optimal value proposed by Irle and Klosener (1980) in the setting of independent ijS . However, we 

do not claim this estimate to be necessarily optimal in our setting, but rather one that appears to offer 

our test nominal size and excellent power across a variety of settings. Tables 3.1 and 3.2 examine the 

size of the 2 competing permutation tests (both exact and asymptotic versions) for assessing a difference 

in AUC for 2 continuous or discrete diagnostic tests, while Tables 3.3 and 3.4 are the corresponding 

comparisons of the power for the 2 tests. Each setting in Tables 3.1–3.4 is defined by m, the number of 

non-diseased and number of diseased subjects, ρ, the within-subject correlation of the 2 diagnostic tests, 

and the values of AUC1 and AUC2. The size and power of each test were computed as the percentage 

of 5000 simulations in which the null hypothesis 0AUC   was rejected at a level of α = 0.05.We 

generated the permutation distribution of *D  in each simulation by generating 5000 random 

permutations of the diseased/nondiseased labels. 
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4. DISCUSSION 

4.1. Numerical Studies of Operating Characteristics 

Our extensive computer simulation results are presented as a series of 4 tables, which also contains 

specific computational details for the simulations. Based upon 5000 simulations, an approximate 95% 

confidence interval around a nominal size of 0.05 is (0.036, 0.064). Thus, we see in Table 3.1 that our 

permutation test is valid with any value of f when both AUC1 and AUC2 are less than 0.7, regardless of 

sample size or within-subject correlation. However, for higher AUC values, we see that the appropriate 

value of f will vary and if f is set too high, our test can actually have size above the desired level of 0.05. 

When AUC1 = AUC2 = 0.80, the results suggest that f = 1/3 may be appropriate, while when 

AUC1=AUC2 = 0.90, f should be set greater than 1/3, but less than 1/2. In contrast to using a fixed value 

of f, our proposed value f̂ appears to work well (whether exact or asymptotic) among all settings, 

although it may produce a slightly conservative test at extreme AUC values. These findings continue to 

hold for discrete modalities, as demonstrated in Table 3.2. Furthermore, although there are slight 

variations in size between our test using f̂  and that of Bandos et al (2005), none of the differences are 

significant, except with discrete diagnostic tests with AUC of 0.80 or higher. Therefore, we conclude 

overall that both approaches have similar size in most reasonable settings.  

In Tables 3.3 and 3.4, we see that the power of the proposed permutation test using an appropriate value 

of f  is comparable with the power of the test of Bandos et al (2005). In fact, the power of the proposed 

permutation test can be increased marginally above that of Bandos et al (2005) with some values of f . 

For example, when testing for a difference in AUC1 = 0.7 and AUC2 = 0.8 with continuous modalities 

using 40 diseased and 40 non-diseased subjects with intra-subject correlation ρ = 0.5, we see in Table 

3.3 that the proposed test has power 0.471 when f = 1/4, as compared to power 0.420 for the test of 

Bandos et al (2005). Nonetheless, choosing a fixed value of f to increase power will be difficult in 

practice as the true AUC values of both diagnostic tests will be unknown. 

Table3.1. Comparison of size for proposed permutation test and that of Bandos et al (2005) for assessing a 

difference in AUC of 2 paired continuous diagnostic tests with within-subject correlation ρ in samples of n 

diseased and m non-diseased subjects. The proposed permutation test is applied with f = {1/4, 1/3, 1/2} as well 

as the value f̂  presented in (2.6). The asymptotic size of the proposed permutation test is based upon ˆf f  

  M 1AUC  2AUC                                      Proposed Bandos et al(2005) 

                                        Exact Asymptotic Exact Asymptotic 

    1 4f   1 3f   1 2f   f̂     

0.0 40 0.6 0.6 0.053 0.053 0.054 0.054 0.053 0.057 0.055 

  0.7 0.7 0.056 0.052 0.055 0.055 0.055 0.062 0.060 

  0.8 0.8 0.055 0.042 0.040 0.045 0.046 0.061 0.063 

  0.9 0.9 0.111* 0.044 0.013 0.039 0.039 0.050 0.051 

 80 0.6 0.6 0.051 0.050 0.048 0.040 0.040 0.041 0.041 

  0.7 0.7 0.047 0.042 0.030 0.036 0.036 0.038 0.039 

  0.8 0.8 0.094* 0.055 0.021 0.035 0.036 0.047 0.045 

  0.9 0.9 0.297 0.098* 0.009 0.041 0.043 0.046 0.047 

0.5 40 0.6 0.6 0.062 0.062 0.061 0.055 0.056 0.060 0.060 

  0.7 0.7 0.051 0.048 0.046 0.043 0.044 0.052 0.053 

  0.8 0.8 0.057 0.044 0.033 0.037 0.036 0.046 0.041 

  0.9 0.9 0.111* 0.047 0.013 0.040 0.040 0.042 0.041 

 80 0.6 0.6 0.043 0.043 0.044 0.051 0.049 0.051 0.052 

  0.7 0.7 0.047 0.047 0.049 0.043 0.039 0.058 0.058 

  0.8 0.8 0.077* 0.051 0.032 0.041 0.045 0.048 0.050 

  0.9 0.9 0.229* 0.089* 0.011 0.036 0.038 0.050 0.048 

*Significantly above desired level of 0.05 
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Table3.2. Comparison of size for proposed permutation test and that of Bandos et al(2005) for assessing a 

difference in AUC of 2 paired discrete diagnostic tests with within-subject correlation ρ in samples of m diseased 

and m non-diseased subjects. The proposed permutation test is applied with f = {1/4, 1/3, 1/2} as well as the value 

f̂  presented in (2.6). The asymptotic size of the proposed permutation test is based upon ˆf f  

  M 1AUC  2AUC                                      Proposed Bandos et al(2005) 

                                        Exact Asymptotic Exact Asymptotic 

    1 4f   1 3f   1 2f   f̂     

0.0 40 0.6 0.6 0.053 0.054 0.056 0.056 0.057 0.057 0.055 

  0.7 0.7 0.056 0.052 0.054 0.056 0.057 0.064 0.060 

  0.8 0.8 0.055 0.042 0.040 0.048 0.045 0.059 0.061 

  0.9 0.9 0.111* 0.044 0.013 0.032 0.030 0.047 0.045 

0.0 80 0.6 0.6 0.051 0.050 0.048 0.050 0.050 0.044 0.045 

  0.7 0.7 0.047 0.042 0.030 0.034 0.039 0.037 0.037 

  0.8 0.8 0.094* 0.055 0.021 0.038 0.038 0.042 0.044 

  0.9 0.9 0.297 0.098* 0.009 0.028 0.030 0.036 0.034 

0.5 40 0.6 0.6 0.062 0.062 0.061 0.063 0.065 0.061 0.061 

  0.7 0.7 0.051 0.048 0.046 0.051 0.050 0.056 0.056 

  0.8 0.8 0.057 0.044 0.033 0.045 0.046 0.046 0.048 

  0.9 0.9 0.111* 0.047 0.013 0.035 0.035 0.042 0.040 

0.5 80 0.6 0.6 0.043 0.043 0.044 0.045 0.044 0.051 0.044 

  0.7 0.7 0.047 0.047 0.049 0.052 0.051 0.058 0.059 

  0.8 0.8 0.077* 0.051 0.032 0.041 0.043 0.048 0.056 

  0.9 0.9 0.229* 0.089* 0.011 0.028 0.030 0.050 0.036 

*Significantly above desired level of 0.05 

Table3.3. Comparison of power for proposed permutation test and that of Bandos et al (2005) for assessing a 

difference in AUC of 2 paired continuous diagnostic tests with within-subject correlation ρ in samples of m 

diseased and m non-diseased subjects. The proposed permutation test is applied with f = {1/4, 1/3, 1/2} as well 

as the value f̂  presented in (2.6). The asymptotic size of the proposed permutation test is based upon ˆf f  

  m 1AUC  2AUC                                      Proposed Bandos et al(2005) 

                                        Exact Asymptotic Exact Asymptotic 

    1 4f   1 3f   1 2f   f̂     

0.0 40 0.6 0.7 0.197 0.184 0.166 0.190 0.190 0.201 0.195 

  0.6 0.8 0.703 0.682 0.622 0.685 0.683 0.691 0.692 

  0.7 0.8 0.295 0.257 0.179 0.235 0.237 0.239 0.237 

  0.7 0.9 0.111* 0.861 0.731 0.842 0.837 0.834 0.834 

  0.8 0.9 0.571* 0.448 0.208 0.374 0.378 0.363 0.361 

 80 0.6 0.7 0.413 0.391 0.341 0.379 0.379 0.380 0.377 

  0.7 0.8 0.615* 0.556 0.407 0.491 0.489 0.487 0.483 

  0.8 0.9 0.913* 0.821 0.506 0.706 0.705 0.696 0.690 

0.5 40 0.6 0.7 0.349 0.338 0.320 0.347 0.350 0.363 0.349 

  0.6 0.8 0.911 0.900 0.875 0.919 0.917 0.921 0.923 

  0.7 0.8 0.471 0.422 0.337 0.409 0.409 0.420 0.413 

  0.7 0.9 0.987* 0.980 0.948 0.979 0.978 0.977 0.978 

  0.8 0.9 0.758* 0.636 0.392 0.626 0.622 0.610 0.598 

 80 0.6 0.7 0.611 0.593 0.555 0.607 0.609 0.619 0.612 

  0.7 0.8 0.796* 0.743 0.630 0.718 0.717 0.716 0.712 

  0.8 0.9 0.975* 0.935* 0.751 0.905 0.907 0.890 0.889 

*Based upon test with supra-nominal size. 
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Table3.4. Comparison of power for proposed permutation test and that of Bandos et al(2005) for assessing a 

difference in AUC of 2 paired discrete diagnostic tests with within-subject correlation ρ in samples of m diseased 

and m non-diseased subjects. The proposed permutation test is applied with f = {1/4, 1/3, 1/2} as well as the value 

f̂  presented in (2.6). The asymptotic size of the proposed permutation test is based upon ˆf f  

  M 1AUC  
2AUC                                      Proposed Bandos et al(2005) 

                                        Exact Asymptotic Exact Asymptotic 

    1 4f   1 3f   1 2f   f̂     

0.0 40 0.6 0.7 0.197 0.184 0.166 0.176 0.180 0.177 0.178 

  0.6 0.8 0.703 0.682 0.622 0.659 0.660 0.659 0.665 

  0.7 0.8 0.295 0.257 0.179 0.217 0.213 0.225 0.218 

  0.7 0.9 0.903* 0.861 0.731 0.807 0.807 0.817 0.813 

  0.8 0.9 0.571* 0.448 0.208 0.358 0.356 0.365 0.363 

0.0 80 0.6 0.7 0.413 0.391 0.341 0.358 0.363 0.370 0.368 

  0.7 0.8 0.615* 0.556 0.407 0.462 0.460 0.454 0.453 

  0.8 0.9 0.913* 0.821 0.506 0.669 0.669 0.665 0.669 

0.5 40 0.6 0.7 0.349 0.338 0.320 0.328 0.331 0.349 0.339 

  0.6 0.8 0.911 0.900 0.875 0.888 0.889 0.893 0.890 

  0.7 0.8 0.471 0.422 0.337 0.389 0.388 0.390 0.385 

  0.7 0.9 0.987* 0.980 0.948 0.970 0.971 0.967 0.968 

  0.8 0.9 0.758* 0.636 0.392 0.562 0.558 0.553 0.543 

0.5 80 0.6 0.7 0.611 0.593 0.555 0.568 0.569 0.569 0.570 

  0.7 0.8 0.796* 0.743 0.630 0.664 0.668 0.671 0.665 

  0.8 0.9 0.975* 0.935* 0.751 0.861 0.859 0.854 0.853 

*Based upon test with supra-nominal size. 

5. SUGGESTION FOR FUTURE RESEARCH 

Due to the complicated correlation structure of the elements used in the statistic, we have not yet derived 

a theoretically optimal value of the value f necessary for the statistic. Although we have developed one 

possible value that appears in simulations to work well across many settings, we are continuing research 

into deriving a formula for f that will maximize power in all settings. We are also seeking to use our 

permutation test to generate a confidence interval for AUC as a complement to the hypothesis test. 

Furthermore, unlike the test of Bandos et al(2005), our proposed test does not require diagnostic tests 

that are measured on identical scales and thus may prove to be more powerful in settings in which the 

diagnostic test values are skewed; we are pursuing this conjecture in current research.  

Note that the semi-parametric regression model of Dodd and Pepe (2003) uses the ijkU defined in Section 

2 in a generalized estimating equation (GEE) and yields a standardized value of the nonparametric 

estimate of AUC when using an independence working covariance structure of the .ijkU Although, 

inference for AUC could be based upon the sandwich (robust) variance estimator of GEE methods, 

Braun and Feng (2001) showed that score and Wald tests using this approach are known to have liberal 

sizes in smaller sample sizes and developed a permutation test as an alternative to large-sample theory. 

As a result, we are also pursuing use of our permutation approach to the methods of Dodd and Pepe 

(2003) that would lead to exact inference for semi-parametric estimates of difference in AUCs. 
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