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On the Features Solitary Wave Solutions for the Double-
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Abstract: In this paper, we propose to describe a nonlinear model from the first principle for the double 

structures DNA in specific static case, with neglect the chain orientation degrees of freedom. This model 

includes the base pair stretchings and reduced its great complexity for two main interactions. One is the 

stacking interaction between neighboring bases along the each chain and another is the nonlinear coupling 

between two adjacent bases in opposite chain. Here both the discrete and continuum model are performed for 

(2+1)-dimensional to study the nonlinear traveling waves solutions (TWS) on the stretching transition for the 

long DNA molecules. We discuss the dynamics features, such as amplitudes, velocities in nonlinear traveling 

waves at the base-pair scales.  
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1. INTRODUCTION 

Deoxyribo-Nucleic Acid (DNA) molecule has been recognized constitutes the basis of the genetic 

information of this key molecule of life [1]. Since the structure of DNA double helix has been 

discovered by Watson and Crick in 1953 [2]. Many researchers, especially ones in theoretical physics 

and nonlinear dynamics and also triggered the formulation of several simple models of nonlinear 

DNA dynamics corresponding to geometric structure, namely, the DNA double-stranded [3-14] or the 

double helix [15-28]. These models had been developed during the past decade to describe the 

nonlinear dynamics properties of open base-pairs in DNA, which commonly called denaturation 

bubbles [29].  

In 1964 Robin Holliday has a well-proposed that double structures of DNA a four-stranded junction 

would be involved as an intermediate to allow reciprocal exchange of genetic information through 

recombination across two homologous DNA duplexes [30,31].  

In this paper, we introduce a description of mathematical formulation model which incorporates 

elastic membrane (H-bond) with nonzero distance length between double structures at small 

stochastic two-degrees of freedom into a discrete version as a continuum distribution in a plane. 

Further, we estimates of the geometrical and dynamical parameters is used to discuss the dynamics 

features of each double-stranded wave motions.  

2. DNA MODEL 

In this section, we have used a microscopic model for a double-structures of DNA to describe the 

dynamics of the openings DNA. From theoretical viewpoints, we ought to take three assumptions (i) 

we neglect the helical structure of DNA. So that, we shall take four parallel strands. (ii) We consider 

the transverse motions of DNA strands. (iii) a homogeneous model, i.e. all bases are in this sequence 

equal, as are the interactions between bases in opposite sites.  

Recently, This model includes the neighboring bases are coupled by a harmonic stacking potential V1 

represent the stacking interaction between neighboring bases along each strand. The nonlinear 

coupling between two adjacent bases stretched (as the H-bonds between complementary bases), when 

the four-stranded opens locally is given by the V2 . Here, we use a Morse potential as fully the 

nonlinearities to represent the interaction of the bases in a pair [4].  

Hence, the model includes four degrees of freedom, u i, vi and i = n,  m for the transverse 

displacements of the four-stranded respectively. Therefore, the equilibrium the displacement of the 

bases from their equilibrium positions along the direction of H-bonds are  
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un ,  m = (u i + v j)/(√(2)),  vn , m = (u i − v j)/(√(2)) i,  j = n,  m,  i ≠ j [3,11,12]. 

The Hamiltonian of such a model of the DNA can be written as: 

H = T + V ,                                                                                                                                             (1) 

where the kinetic energy of the elastic strands is  

T = ∑n , m  = 1
N(M)/(2)[ un , m

2 + vn , m
2 ] ,                                                                                                         (2) 

and the potential energy is 

V = V1 + V2 ,      V1 = (1)/(2)[κ1( (un  + 1, m − un , m)2 + (vn  + 1, m − vn , m)2)    + κ2( 

(un , m  + 1 − un , m)2 + (vn , m  + 1 − vn , m)2) ] ,   V2 = (1)/(2)[D1∑n , m  = 1
N( e  − α

1

u
n , m − 1)2    + D2∑n  = 1

N( 

e  − α
2

(v
n , m

 − u
n , m

 + h ) − 1)2] ,                                                                                                                               (3) 

Where κ i,  α i
 − 1 and D i are are an elastic constant, width and depth for each duple-stranded, 

i = n,  m respectively. While h is the distance between tow structures from the center of bases and M 

is the mass of each nucleotide (taken to be the same for each base).  

Then the discrete equations of motion are  

m ün , m = κ1(un  + 1, m + un  − 1, m − 2un , m) + κ1(un , m  + 1 + un , m  − 1 − 2un , m)   

 − 2α1D1(e  − 2α
1

u
n , m − e  − α

1
u

n , m) + 2α2D2(e  − 2α
2

(v
n , m

 − u
n , m

 + h) − e  − α
2

(v
n , m

 − u
n , m

 + h)) ,  m 

v̈ n , m = κ1(vn  + 1, m + vn  − 1, m − 2vn , m) + κ1(vn , m  + 1 + vn , m  − 1 − 2vn , m)   

 − α2D2(e  − 2α
1
(v

n .m
 − u

n , m
 + h) − eα

1
(v

n , m
 − u

n , m
 + h))                                                                                      (4) 

Here, we construct the continuum DNA model. As the distance between two successive bases along 

the axis of the two chain (δ≃3.44Ao). Assumptions of the Taylor expansion, we have  

un±1, m = un , m±δ (∂un .m)/(∂n) + (δ2)/(2)(∂2un .m)/(∂n
2)±(δ3)/(6)(∂3un .m)/(∂n

3) + ⋯,    un , m±1 = un , m±δ 

(∂un .m)/(∂m) + (δ2)/(2)(∂2un .m)/(∂m
2)±(δ3)/(6)(∂3un .m)/(∂m

3) + ⋯,      vn±1, m = vn , m±δ 

(∂vn .m)/(∂n) + (δ2)/(2)(∂2vn .m)/(∂n
2)±(δ3)/(6)(∂3vn .m)/(∂n

3) + ⋯,    vn , m±1 = vn , m±δ 

(∂vn .m)/(∂m) + (δ2)/(2)(∂2vn .m)/(∂m
2)±(δ3)/(6)(∂3vn .m)/(∂m

3) + ⋯                                                             (5) 

This suggests that to consider the sequence of bases as a continuum distribution in a plane. Thus we 

write u i(t)≃u(δi, t) and v i(t)≃u(δj, t),  i = n,  m with δn = x and δm = y. Therefore un , m = u(x, y, t) 
and vn , m = v(x, y, t) [32].  

By neglecting the terms of O (δ3) and higher, so that the equation (4) becomes  

u t t = κ1uxx + κ2uyy − D1( α1u − (3α1)/(2)u2 + (7α1
3)/(6)u3)   

 + D2(α2(v − u + h) − (3α2
2)/(2)(v − u + h)2 + (7α2

3)/(6)(v − u + h)3) ,        v t t = κ1vxx + κ2vyy − D2( 

α2(v − u + h) − (3α2
2)/(2)(v − u + h)2    + (7α2

3)/(6)(v − u + h)3) ,  .                                                       (6)                                                                 

where κ1 = (δ2κ1)/(M),  κ2 = (δ2κ2)/(M),  D1 = (α1D1)/(M) and D2 = (α2D2)/(M).  

3. SOLUTIONS OF EQUATION (6)  

The traveling wave solutions TWS of equation (6), are obtained by taking u(x, y, t) = u(ξ),  
v(x, y, t) = v(ξ) and ξ = η1x + η2y + ωt. Where η1

 − 1 and η2
 − 1 designate the characteristic wavelengths 

and ω is the and frequency. Thus, the equation (6) reduce to  

σ u ′′ + D1( α1u − (3α1
2)/(2)u2 + (7α1

3)/(6)u3) − D2( α2(v − u + h) 

 − (3α2
2)/(2)(v − u + h)2 + (7α2

3)/(6)(v − u + h)3) = 0 ,   σ v ′′ +  − 2D2( 

α2(v − u + h) − (3)/(2)α2
2(v − u + h)2    + (7)/(6)α2

3(v − u + h)3) = 0 ,                                                  (7) 

whereσ = (ω2 − κ1η1
2 − κ2η2

2). By introducing the transformation v(ξ) = a u(ξ) + b (a and b are 

constants), the equation (7) gives  
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σu ′′ + D1( α1u − (3α1
2)/(2)u2 + (7α1

3)/(6)u3) + A0 = 0 ,      σ = (1 − a) σ,  A0 =  − (1)/(3)α2
2D2(α2(b + h)2   

(7α2(b + h) − 9) − 6b + 6h) ,                                                                                                                  (8) 

by replacing u(ξ) = w(ξ) + (3/)/(7α1), into equation (8), we have 

σw ′′ + λ w + μ w3 + L0 = 0 ,  λ = α1(α1 − (9)/(7)),  μ = (7)/(6)α1
3 ,    

L0 = (7α1
3A0)/(6) + (3α1)/(7) − (18)/(49),  a ≠ 1 .                                                                                  (9) 

In this work, we have to find the traveling wave solutions TWS of equation (9) by using the unified 

method UM [33]. The outline of this method are introduced as follows:  

(i) Polynomial function solutions  

(ii) Rational function solutions.  

Here, we confine ourselves to find rational function solutions.  

4. RATIONAL SOLUTIONS  

In this case, the solution is constructed by the bilinear transformation form in an auxiliary function 

that satisfies an auxiliary equation;  

w(ξ) = ∑i  = 0
na i φ

i(ξ) ⁄ ∑i  = 0
rqi φ

i(ξ) ,        φ ′(ξ) = ∑j  = 0
k  pcjφ

j(ξ),  p = 1,  2.                                        (10) 

Where a i,  q i are unknown parameters.  

It is worthy to mention that the balance condition in this case be obtained as in the case of polynomial 

solutions but n is replaced by n − r .Here again, the condition for the existence of the solutions of the 

equation (9) is determined from the consistency equation. Indeed, when k = 1 in the solution of the 

second equation in (10) was suggested to describe "a jet stream" or (wave pattern). Thus the first 

equation in (9) describes nonlinear interactions (NLI) of the wave pattern. Further, we mention that, 

when p = 1, the solution of the auxiliary equation gives rise to (explicit or implicit) solutions in 

elementary functions. While when p = 2, they give rise to explicit solutions in soliton and Jacobi-

elliptic (or chirped) waves. By noticing that as the equation (9) is invariant under the transformations 

(x, y, t) → ( − x,  − y,  − t) then periodic and elliptic wave solutions exist. That is the case p = 2 holds 

here.  

The steps of computations are carried in what it follows:  

When substituting from equation (10) into the equation (9), we get the principle equations and the 

following steps are done.  

1. Solve the principle equations.  

2. Solve the auxiliary equations.  

3. Find the exact solution.  

4. Check that the solutions obtained are satisfies the equation (9)  

(i) Soliton Wave  

To find the soliton wave of the equation (9) by using the rational function solution when (k = ,   
p = 2), we assume that 

w(ξ) = (a1φ(ξ) + a0) ⁄ (q1φ(ξ) + q0) ,        φ
′(ξ) = √(c0 + c2φ

2(ξ)) ,                                                       (11) 

where equation (11)2 is the auxiliary equation.  

From equation (11) into equation (9), we get the solution is  

u(ξ) = (3)/(7α1) + (a1)/(q1)(1 + 4a1 ⁄ ( (L0q1e  − ξ  √( (L
0

q
1
3 − 2a

1
3μ)/(a

1
q

1
2σ ) )

)/(σ)  + (2a1
4
μ( − 4a1

3
q0μ + 2q0L0q1

3
  

  + a1q1
3
σexp[ξ √((L0q1

3 − 2a1
3
μ)/(a1q1

3
σ ))] ))/(q0(L0q1

3 − 4a1
3
μ)

2
) )                                                      (12)                                                                 
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Figs1. (a) and (b) are soliton solutions of the equation (12), against x-axis and y-axis. 

In (a) q0 = 1,  q1 =  − 2,  a1 = 0.8, α1 = α2 = 0.5,  D1 = D2 = 20,  h: = 0.2,  κ1 = 0.7,  κ2 = 0.4,  η1 = 1.2,   

η2 = 0.6,  ω = 0.8,  a = 2,  b = 4, y = 5 and t = 0.5. In (b) at the same values of the parameters in (a), 

but x = 5.  

Fig. 1(a) and 2(b), representative profiles of the solitonic waves solutions the corresponding to the 

first structure (red color) and the second structure (blue color) for the one principal direction, say x-

direction and weak effects in the transversal direction, say y-direction. These show the double 

structures waves traveling with the same behavior along the region except the first is weekly than 

second in the amplitude, width and less steepen.  

(ii) Periodic Wave  

We can also find the periodic solution in the second of equation (9) takes  

φ ′(ξ) = √(c0 − c2φ
2(ξ)) ,                                                                                                                        (13) 

from equation (13) into the equation (9), we get  

u(ξ) = [ − 14√(2)a1
3 ⁄ 2α1q1

3√(σ)√((2a1
3μ)/(q1

2)  − L0q1)√((L0q0
2(2a1

3μ − L0q1
3))/(a1

4μq1σ ))   sin((ξ 

√((2a1
3μ)/(q1

2) − L0q1))/(√(a1)√(σ )))L0q0q1
3(7a1α1 + 3q1)( − cos((2ξ 

√((2a1
3μ)/(q1

2) − L0q1))/(√(a1)√(σ ))))    + B0] ⁄ 14α1q0q1(L0q1
3sin2((ξ 

√((2a1
2μ)/(q1

2) − (L0q1)/(a1)))/(√(σ ))) − 2a1
3μ) ,      

B0 = q0(28α1a1
4μ − 21α1a1L0q1

3 − 12a1
3μq1 + 3L0q1

4).                                                                       (14) 

(iii)Elliptic and chirped waves  

To find the elliptic wave solution, the auxiliary equation is taken  



On the Features Solitary Wave Solutions for the Double-Structures Model of DNA  

 

International Journal of Research Studies in Biosciences (IJRSB)                                                      Page | 38 

 (φ ′(ξ))2 = ∑j  = 0
j  = 4cjφ

j(ξ).                                                                                                                    (15) 

We mention that in the solution obtained a i and qi i = 0, 1 are given in cj, where cj,  j = 0, ⋯, 4 are 

arbitrary parameters.  

As there are classified as varieties solutions of the equation (15), we have to take some particular 

forms for cj [34,35].  

For example, we takes 

c0 = 1 − m
2,  c2 = 2m2 − 1,  c4 =  − m

2,    c1 = c3 = 0,  φ(ξ) = cn(ξ, m2) ,                                              (16) 

thus the solution is  

u(x, t) = Γ((Λ0 + Λ1 cn(ξ, m2))/(2m cn(ξ, m2) + √(2)√((2m2 − 1)))) ,                                                (17) 

where  

Λ0 = √(2)(7α1L0(1 − 2m2)√(σ) + 2√(2m2 − 1)√((2m2 − 1)σ)(λ + (2m2 − 1)σ)) ,    

Λ1 = 2(7α1L0m√((2m2 − 1)σ) + 2√(m2)√(2m2 − 1)√(σ)(λ + 2m2σ − σ)) ,    

Γ = (3)/(14α1√(σ(2m2 − 1))(λ + (2m2 − 1)σ )) ,                                                                                  (18) 

By bearing in mention, the elliptic (chirped) wave solution is considered particular case of m namely 

(m = 0.999) [36].  

 

 

Figs2. (a) and (b) are solutions of the equation (17), at the same caption in figs. 1(a) and 1(b) respectively and 

q0 = 1,  q1 = 2 and m = 0.999.  

These figures are the localized elliptic (chirped) waves are generated for the different structure in the 

x-direction and weakly y-direction.  
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5. CONCLUSION  

We present an exact TWS in double structures model of DNA. The UM has been obtained the several 

nonlinear TWS and the characters of these waves are investigated in detail through defining some 

values of dependent parameters. Especially, amplitude, velocities and steepen stage pulse with 

compression is achieved through a continuum distribution in a plane.  
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