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1. INTRODUCTION 

Sorghum [Sorghum bicolor (L.) Moench] is a photosynthetically efficient C4 grass, represents an 

essential source of grain, forage, fermentable sugars, and cellulosic fibers that can be utilized in 

myriad applications varying from bioenergy to bio industrial feedstocks (Boatwright et al., 2021). 

Drought is a recurring phenomenon that puts crop yields production at risk and threatens the 

livelihoods of communities around the world (Liedtke et al., 2020). A grand challenge fronting 

agriculture is the advance of crop varieties with better drought resilience through breeding or 

biotechnology (Rajiv et al., 2020). Therefore, understanding the effect of drought on plants is critical 

for developing improved varieties with stable high yield. However, plant responses to drought stress 

are complex, depending on environmental conditions, frequency and duration of the stress, the species 

and variety of the plant, and the physiological stage of the plant at the time of the stress (Khan et al., 

2016). To develop drought-resilient sorghum lines either through genetic engineering or molecular 

breeding is necessary to identify genes whose expression is associated with drought resistance about 

which little is known. Increased expression of rapidly induced transcription factors identified in 

drought-resistant genotypes in drought-sensitive genotypes through genetic engineering approaches 

could lead to the generation of drought-resistant cultivars (Salah et al., 2020).  

For a successful breeding program, enough genetic diversity must be present in the starting population 

to find the right allelic combinations to enhance the resistance level through MAS or GS. New 

developments in biotechnology can create new sources of resistance and with potential to rapidly 

introgress in elite backgrounds (Khan et al., 2016). 

Conventional breeding for improved grain production resulted in the development of improved 

cultivars with significant increase in the productivity of crop. However, several biotic and abiotic 

factors such as drought, insect pests, fungal pathogens and parasitic weed like striga could not be 

combated efficiently through conventional breeding techniques alone (Girijashankar and Swathisree, 

2009). Advances in marker-assisted selection, in vitro cellular techniques and recombinant DNA 
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Abstract: Sorghum is one of the major important and multi-purpose cereal and more resilient crop to 

performs well under water constraints environment. Adaptation to harsh environments and crop with diverse 

end-uses makes sorghum a marvelous potential crop to meet the increasing demand of food security globally. 

However, under the variability and change of climate, drought is a major cause imposing yield reduction in 

sub-Saharan Africa countries in which the majority of farmers livelihoods depends on agriculture. Besides 

under rainfed condition potential of sorghum yield production affecting by terminal drought stress. Therefore, 

focusing on the drought tolerance genotype and drought tolerance related traits speed up the advancement of 

sorghum breeding program. This review update understanding of drought tolerant mechanisms, important 

drought related traits and breeding for drought tolerance of sorghum and genotype selection for moisture 

stress environments. The molecular breeding approaches provides unique benefits to researchers and scientists 

seeking to understand, characterize, and exploit agronomic traits and increase overall productivity of crops. 

That ultimately increase the availability of nutritious food and sustainable yield production. It can also serve 

as a fundamental breeding approaches to explicate the relationship among phenotypic and genotypic 

expression of crops and to create crops for upcoming needs of agricultural production. 
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technologies are underpinning major innovations in plant breeding. The full range of biotechnologies, 

including genome editing is well placed to play a significant part in meeting the challenge of global 

food security (Jones, 2016).  

In recent years, plant biotechnology, including molecular genetics and genomics as well as plant 

transformation, has provided a powerful means to supplement traditional breeding approaches. The 

high variation among the sorghum genotypes was distinguished by using ISSR markers which 

demonstrating that, the technique was resourceful in determining the genetic diversity among 

sorghum genotypes (Nada et al., 2016). Also, the SSR data are useful in identifying genetic 

relationships among genotypes. The clustering generated by the molecular markers, combined with 

the drought tolerance information, can be useful in selecting parents for crossing to breed drought 

tolerant varieties (Ahmed et al., 2009).  

In most breeding programmes, the genetic enhancement for drought resistance is achieved through 

selection for yield and because of low heritability of yield under stress and the spatial as well as time-

based variation in the field environment, conventional breeding approaches are slow. Whereas 

molecular markers such as restriction fragment length polymorphism (RFLP), random amplified 

polymorphic DNA (RAPD) and isozyme will facilitate development of drought-resistant genotypes 

more effectively as their expressions are independent of environmental effects. Subsequently 

identification of the molecular markers linked with yield or other morphological traits related to 

drought resistance, those markers could be used as selection criteria for drought resistance. The 

application of marker assisted selection in evolving drought resistant genotypes is in an experimental 

stage; more specifically just identification of RFLP markers associated with osmotic adjustment, stay 

green, root traits have been achieved (Mc Couch CL et al., 1998). 

The empowerment of standardized protocols for gene transformation and regeneration in sorghum 

opens up new opportunities to improve protein nutritional quality, high yield and drought resistant 

cultivars which serve as an ideal staple food for ever increasing population. The ultimate aims of 

genetic transformation studies are to develop user friendly vector system applicable to a wide range of 

species (Darika et al., 2013). Besides genomics has opened up new perspectives and opportunities for 

marker assisted selection for plant breeders, to assess and enhance diversity in their germplasm 

collections, to introgress valuable traits from new sources and to identify genes that control key traits 

(Sharmila et al., 2014). The ability to manipulate drought tolerance through marker-assisted 

backcrossing makes it much simpler to introduce such a new trait into a breeding program (Kassahun 

et al., 2010). 

Crop genome sequencing projects generate enormous amounts of genomic sequence information, and 

the utilization of this information in applied crop improvement programs has been augmented by the 

availability of sophisticated bioinformatics tools. Based on sequence homology, we aligned all 

publicly available simple sequence repeat markers on a sequence-based physical map for sorghum 

(Ramu et al., 2010). The genomic regions enriched with heat shock protein (HSP), expansin, and 

aquaporin genes responsive to drought stress could be used as powerful targets for improvement of 

drought tolerance in sorghum and other cereals (Zhang et al., 2019). 

Understanding the molecular response of crops to drought is critical to determinations to enhance 

agricultural yields under progressively frequent droughts (Varoquauxa et al., 2019). The aim of this 

review to investigate sorghum molecular breeding aspect, important drought related traits and its roles 

in drought tolerance. 

2. SORGHUM GENETIC DIVERSITY 

Sorghum is further improved and diversified into diverse end uses through breeding selection. The use 

of sorghum varies significantly amongst different regions of the word (Figure 1). Generally, it is 

mainly used for food in developing countries and for feed in developed countries (Huaiqing et al., 

2021). Due to its extensive genetic diversity and worldwide colonization, sorghum has considerable 

diversity for a range of phenotypes influencing productivity, composition, and sink/source dynamics 

(Boatwright et al., 2021). 

The eastern Africa region, Ethiopia and its surroundings, is considered as the center of origin and 

diversity for sorghum, and has contributed to global sorghum genetic enhancement (Girma et al., 

2019). As Cuevas et al., 2017 reported that the Ethiopian germplasm genetic diversity is largely 
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unused in sorghum breeding programs, this indicating sorghum breeders and geneticists worldwide 

with knowledge and tools to utilize and conserve this germplasm. For the fact that Sorghum is one of 

an indigenous crop of Ethiopia, there are tremendous amount of variability exists in the country 

(Adugna, 2007). Sorghum germplasm from Ethiopia is one of the richest for characters diversity. This 

diversity has evolved under the diverse and unique environmental conditions and also selected by 

farmers for diverse uses. The core of genetic and genomic resources is the availability and 

accessibility of germplasm to relation genotype to phenotype (Richard et al., 2019). Ethiopian farmers 

mostly grow sorghums with colored pericarps as they consider them better in nutritional values and 

are better tolerant to biotic and abiotic stresses (Girma et al., 2019).  

 

Source: Huaiqing et al., 2021 

Figure1. A diagram indicated the remarkable feature of sorghum as a multiple-purpose crop.  The 

National Plant Germplasm System (NPGS) of Ethiopian germplasm collection is the major group of 

accessions in the sorghum collection. The Ethiopian NPGS germplasm collection is a greatly 

genetically and phenotypically various. Untapping the genetic variation is needs precise strategies for 

sorghum enhancement. The use of molecular markers associated with important agronomic traits 

could facilitate the identification of valuable accessions (Cuevas et al., 2017). 

The phenotypic characterization of populations is necessary to intensely understand the population 

structure and advance the use of the collection (Cuevas et al., 2017). The genetic architecture of the 

complex Ethiopian sorghum germplasm was established and the characterization of genes and alleles 

controlling agronomic traits contributes as a source of markers for molecular breeding (Girma et al., 

2019). The development of new cultivars with novel alleles is a promising strategy to translate genetic 

diversity into agriculture benefits (Cuevas et al., 2017). 

 

Source: Huaiqing et al., 2021 

Figure2. Breeding scheme for sorghum improvement using the state-of the-art genomics-based 

breeding strategies.  

The breeding programme consists of four key components. Part I: Diagnosis of changes in genetic 

diversity during domestication and diversification; Part II: Discovery and characterisation of genetic 

and genomic variation; Part III: Selection of pre-breeding materials through genome selection; Part 

IV: Genomics-assistant introgression and improvement in elite varieties (Huaiqing et al., 2021).  
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3. BREEDING FOR DROUGHT RESISTANCE 

Drought is a major threat to food production worldwide and its impact is only expected to increase 

with the further onset of climate change (Khan et al., 2016). Increasing water use efficiency under 

climate change will result from two fronts. First, being able to identify genotypes that have high 

assimilation rates under temperature and water-deficit stress. Second, we need to realize that there are 

a range of management practices we can adopt that will reduce soil water evaporation and shift the 

water use by the crop to more transpiration to limit the exposure of the plant to water-deficit stress 

and maintain productivity at the highest level possible (Hatfield and Dold, 2019). Drought is occurred 

by high temperature, low water potential, low humidity and reduced availability of soil moisture 

during pre and post flowering crop grow phase. Avoidance, tolerance and escape are major 

mechanisms of crop to grown in drought prone environments. Escape mechanism includes early 

flowering, early maturity, high leaf nitrogen level, high photosynthetic capacity andremobilization of 

assimilates.  

 A tolerance mechanism includes osmotic adjustments, protective solutes, high proline, desiccation 

tolerant enzymes, and high stomatal conductance. Avoidance mechanism of crop includes deep 

root, stomatal closure, leaf rolling, tissue hydration, stem waxiness, stay-green and 

hightranspiration efficiency (Ashok et al., 2018). Currently,  plant biotechnology is one 

of the most hopeful fields for developing crops that are able to produce high yields in moisture stress 

conditions. Most plants with improved drought resistance have demonstrated decreased crop yield, 

meaning that there is still a requirement to search for novel approaches that can uncouple drought 

resistance from plant growth (Martignago et al., 2020). In response to drought, plants reprogram their 

gene expression, which ultimately regulates a multitude of biochemical and physiological processes. 

The timing of this reprogramming and the nature of the drought-regulated genes in different 

genotypes are thought to confer differential tolerance to drought stress. Sorghum is a highly drought-

tolerant crop and has been increasingly used as a model cereal to identify genes that confer tolerance 

(Salah et al., 2020).  

 

Source: Khan et al., 2016 

Figure3: The complex nature of drought tolerance needs a multipronged approach to develop new 

varieties with stable and enhanced yield under stress conditions.  

High throughput genomics and phenomics offer rapid and targeted drought-tolerant varieties and 

genetic gains via Marker-assisted selection (MAS) and genomic selection (GS). The breeding 

program should be split between a breeding hub (shapes in dark blue) for centralized activities such as 

genotyping, definition of traits of interest, and maintenance of genetic diversity, databases, and 

analytical tools, and field sites (shapes in light blue) with well-characterized stress scenarios, weather 

data, and soil analysis for targeted-site specific phenotyping and stress trials. In this figure, hexagons 

stand for data required as an input, diamonds are steps to be performed, and rectangles are outputs 

(Khan et al., 2016). 

Important sorghum Traits to Drought tolerance 

Drought tolerance refers to the ability of plants to withstand shortage of water while maintaining 

appropriate physiological activities to stabilize and protect cellular and metabolic integrity at tissue 
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and cellular level (Xiong et al., 2006; Tuinstra et al., 1997). Survival is the ability of the crop to 

survive drought, irrespective of the yield it produces, while production is the ability of the crop to 

grow and yield under water stress conditions (Beyene et al., 2015). The important mechanisms in 

drought tolerance are including osmotic adjustments, stay green, leaf rolling, waxy ness on stem, 

root morphology and its architecture, transpiration efficiency and secretion of soluble 

solutes (Ashok et al., 2018).  

Early Flowering and Drought Escape 

Drought escape is a classical adaptive mechanism to enable plant to complete full life-cycle prior to a 

coming drought occurred. Early flowering time and shorter vegetative are important traits in 

conditions of terminal drought that can minimize exposure to dehydration during the sensitive 

flowering and post-anthesis grain filling periods (Shavrukov et al., 2017). Drought stress during 

flowering will reduce silk elongation rate, increase the anthesis silking interval and result in reduced 

ovule fertilization and increased kernel abortion. Therefore, flowering before the onset of growth 

limiting drought is an important way to ensure yield formation in environmental conditions with 

insecure rainfall/ terminal drought. In the past selection for drought tolerance has been carried out for 

improved harvest index, stay green and shorter ASI (Edmeades et al., 2000). The pre-flowering 

tolerant genotype RTx430 and for post flowering tolerant genotype BTx642 had fewer genes 

differentially expressed in the leaf after a week of drought exposure. Genotype-specific adaptationto 

pre-flowering and post-flowering moisture stress mainly determined by attempts to maintain normal 

activity in leaves (Varoquauxa et al., 2019). The maximum detrimental drought stress is that which 

happens during the post-flowering stage of crop growth (Kassahun et al., 2010) 

Source: Ashok et al., 2018 

 

 

 

 

 

 

 

 

Figure4. Different growth stages of sorghum and effect of Pre and post flowering drought stress on 

various sorghum agronomic traits. 

4. LEAF AREA 

Leaves subjected to drought stress show variable responses in water use efficiency. The response of 

water use efficiency at the leaf level is directly related to the physiological processes controlling the 

gradients of CO2 and H2O between the leaf and air surrounding the leaf (Hatfield and Dold, 2019). 

Leaf area had important role in drought tolerance of sorghum. In drought prone areas leaf area of 

sorghum is smaller for save loss of water through evapotranspiration. Under drought environment 

optimum leaf area is vital for optimum photosynthetic activity. Besides, optimum leaf area is 

important for producing high dry matter as well as grain yield in drought areas (Tesfamichael et al., 

2015). 

Water stress decreased leaf area index, leaf area duration, crop growth rate and tillers per plant. Fazeli, 

2015 research result shown that the applied SAP had an important effect on forage sorghum and 

increased leaf area index, leaf area duration, crop growth rate and tillers per plant. Probably the 

application of SAP could be an effective management practice in soils characterized by low water 

holding capacity where irrigation water and fertilizer often leach below the root zone within a short 

period of time, leading to poor water and fertilizer use efficiency by crops. Therefore, SAP increases 

leaf area index through increasing both water and nutrient use efficiency in crops. The higher LAI 
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causes an increase in LAD and results in increasing available assimilate in the plant. The increasing 

available assimilate caused increasing in crop growth rate (Fazeli, 2015). The dynamics of crop water 

use and biomass accumulation have to consider soil water evaporation rate, transpiration from the 

leaves, and the growth pattern of the crop. Enhancing water use efficiency at the canopy level can be 

achieved by adopting practices that reduce the soil water evaporation component and divert more 

water into transpiration (Hatfield and Dold, 2019). 

As Alemu et al., 2020 reported that leaf area showed a significant negative association with root 

length and root angle, however significant positive association to stem diameter, shoot fresh weight, 

shoot dry weight and root fresh weight.  In order to increase fresh and dry weight of shoot, the 

breeders must select germplasm having narrow root angle. 

5. STAY GREEN 

Stay-green is a moisture stress adaption phenotype found in sorghum and other cereals. Plants 

expressing stay green show maintain functional green leaves for longer when moisture stress occurs 

during grain fill (Liedtke et al., 2020). In grain sorghum breeding grain yield and stay-green are target 

traits in selection for broad adaptation range of environments (Velazco et al., 2019). 

Stay-green has been exhibited to enhance tolerance of post flowering drought in grain sorghum. In 

sorghum a number of QTLs associated with stay green have been identified, therefore facilitating 

transfer of this trait into adapted genetic backgrounds is important (Kassahun et al., 2010). 

Liedtke et al., (2020) reported pre flowering canopy parameters was weakly correlated with stay-

green values for leaf senescence whereas post flowering canopy parameters exhibited a much stronger 

association with leaf senescence. This result indicated that canopy size before flowering made a 

relatively small role to the expression of a stay-green phenotype after flowering. The resistance 

mechanisms exhibited by the studied varieties were acceleration of their leaf senescence to decrease 

water loss and the increase of their roots length density to explore the deeper soil layers moisture 

(Gano et al., 2021) 

6. STOMATAL-MEDIATED DROUGHT RESPONSES 

At the leaf level, water use is controlled by the available energy impinging on the leaf, vapor pressure 

deficit, and aerodynamic exchange, but, regulated by stomatal conductance. While at the canopy level, 

the processes involve energy exchange at the soil surface and the plant canopy and water loss is a 

combination of evaporation from the soil surface and transpiration from the plant canopy (Hatfield 

and Dold, 2019). The varieties physiologically responded to early water scarcity by closing the 

stomata and then decreasing leaf transpiration and photosynthesis rate (Gano et al., 2021). 

7. CUTICULAR WAX PRODUCTION 

Cuticular wax is first protective layer of above ground tissues of many plant species and plays 

significant roles in plant abiotic and biotic stress tolerance and has been implicated in defense 

mechanisms against excessive ultraviolet radiation, high temperature, bacterial and fungal pathogens, 

insects, high salinity, and low temperature. (Xue et al., 2017). Sorghum accumulates epi-cuticular 

wax (EW) in leaves, sheaths, and culms. Epi-cuticular wax reduces the transpirational and non-

transpirational (nonstomatal) water loss and protects the plant from severe drought stress in addition 

to imparting resistance against insect pests (Elango et al., 2020) 

Modern research findings have revealed that small RNAs (sRNAs) such as microRNA and small-

interfering RNA play important roles in plant stress adaptation. In addition, leaf cuticle and surface 

wax serve as an important trait for stress tolerance, and many regulatory genes coordinate wax 

accumulation. (Sajeevan et al., 2017). 

8. ROOT TRAITS 

Roots are the plant organ responsible for water and nutrient uptake and interaction with soil microbes 

and play a crucial role in moisture stress tolerance (Ruben et al., 2020).  Root traits related with 

maintaining plant productivity under moisture stress areas include small fine root diameters, long 

specific root length, and root length density at depths in soil with available water (Comas et al., 2013). 

Phenotyping root is one of the drought management tools. Roots play a significant role in the plant’s 

life by extracting soil resources from deeper soil layers and its phenotyping helps to understand 
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different root traits (Allah et al., 2018). Identified QTL landraces as a source of favorable root traits to 

introgress into adapted phenotypes through marker-assisted (Ruben et al., 2020).  

Sorghum access to extra water through mechanisms of deeper roots (Liedtke et al., 2020). In drought 

environments small xylem diameters in targeted seminal roots save soil water deep in the soil profile 

for use during crop maturation and result in improved yields. Capacity for deep root growth and large 

xylem diameters in deep roots may also improve root acquisition of water when ample water at depth 

is available (Comas et al., 2013). 

Root’s demonstration more transcriptional interruption than leaves. While both leaf and root samples 

exhibited an extensive response to drought, root samples indicated both a larger number of 

differentially stated genes, as well as a larger absolute change in expression of those genes, related to 

leaf samples (Varoquauxa et al., 2019). There was not a large difference in the number of 

transcriptional changes between the pre flowering drought tolerant genotype RTx430 and post 

flowering drought tolerant genotype BTx6422 genotypes in the root after a week of drought exposure. 

These indicated the root is more substantially affected total by moisture stres 

(Varoquauxa et al., 2019). Under moisture stress condition smaller diameter roots, greater SRL, and 

increased root hair density or length should improve plant acquisition of water and reduce plant 

carbon investment required for that acquisition. In addition, crop hydraulic functioning under 

moisture stress may be improved through enhanced capacity for nocturnal refilling of embolized 

xylem and changes in inter-vessel pit anatomy to reduce cavitation (Comas et al., 2013). The 

identification of molecular markers linked to root system architecture (RSA) traits is special interest 

to the breeding community (Ruben et al., 2020). 

 

Source: Richard et al., 2019.  

Figure5. The majority of major effect quantitative trait locus (QTL)/genes projected onto a sorghum 

animation. 

 Asterisks denote traits with multiple QTLs that have yet to be characterized and/or fine-mapped. 

9. MOLECULAR MARKERS 

Sorghum is a cereal crop with distinctive drought resilience and is an unused resource of allelic 

diversity (Rajiv et al., 2020). A molecular marker a DNA sequence that is readily detected and whose 

inheritance can be easily be monitored. The uses of molecular markers are based on the naturally 

occurring DNA polymorphism, which forms basis for designing strategies to exploit for applied 

purposes. A marker must to be polymorphic, it must exit in different forms so that chromosome 

carrying the mutant genes can be distinguished from the chromosomes with the normal gene by a 

marker it also carries. Genetic polymorphism is defined as the simultaneous occurrence of a trait in 

the same population of two discontinuous variants or genotypes. DNA markers seem to be the best 

candidates for efficient evaluation and selection of plant material. Unlike protein markers, DNA 

markers segregate as single genes and they are not affected by the environment. DNA is easily 

extracted from plant materials and its analysis can be cost and labour effective. The first such DNA 

markers to be utilized were fragments produced by restriction digestion the restriction fragment length 

polymorphism (RFLP) based genes marker. Consequently, several markers system has been 

developed (Kumar et al., 2009). 
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Marker assisted selection can reduce the time required for line development. This is due to the fact 

that this method does not require progeny test for each cycle of backcrossing. Moreover, this method 

also reduces costs for labor and progeny trials, and it may also reduce population size for line 

selection. Marker assisted selection requires well-equipped laboratory and the cost for line 

development may be higher than conventional method. However, the method is faster, leading to the 

rapid release of new cultivars (Darika et al., 2013). 

 

 

Source: Darika et al., 2013 

Figure6. Schematic diagrams of marker assisted selection and conventional selection method. 

Marker-assisted backcrossing effectiveness in introgression programs (Kassahun et al., 2010). As a 

consequence of permitting simultaneous foreground selection for introgression of an exotic allele with 

potential to improve performance for a trait of attention and background selection for the preferred 

recurrent parent genotype in other genomic regions.  

Integration of the sorghum genetic map developed from QTL information with the physical map will 

greatly facilitate the map based cloning and precise dissection of complex traits such as drought 

tolerance in sorghum. More research is needed in the area of sorghum DNA based maps for 

identifying and characterizing genes of interest. Tools of biotechnology provide great potential for the 

exploitation of untapped germplasm of sorghum. The research advances in genomics will greatly 

accelerate the acquisition of knowledge with further development of tools for modifying and 

interrogating genomes. ICRISAT developed diversification of sorghum breeding programs by the 

incorporation of new traits and genetic materials. An effort to insert pest resistance in sorghum seems 

to be successful for shoot fly and Midge (Sharmila et al., 2014).  

10. GENETIC ENGINEERING FOR DROUGHT TOLERANT TRAITS 

The use of genetic engineering techniques has high hopes for the production of transgenic plants with 

no or little effect on plants physiological and morpho biochemical properties. Most of the genes 

reported to be related with drought tolerance also confer resistance, to some extent, to other 

environmental stresses (Rida et al., 2020). Genetic transformation is a powerful tool for genetic 

improvement of arable crops.  

Progress in sorghum transformation has been hampered by difficulties associated with tissue culture, 

such as accumulation of phenolic pigments and low regeneration frequencies. The long periods of 

selection needed for the recovery and regeneration of putative transgenic plants often hampered 

optimization of conditions for sorghum transformation. Probably, low transferability of sorghum was 

predicted as occurrence of DNA methylation in sorghum cells that inactivates the expression of 

transferred genes (Sharmila et al., 2014). Genetic engineering approaches are especially important for 

modification of starch and protein contents, vitamin and micronutrient concentration, improvement of 

nutritive value of protein fractions, and increase tolerance to environmental stresses (Elkonin et al., 

2012). 



Molecular Breeding Approaches for Drought and Drought Related Traits in Sorghum: A Review Article  

 

International Journal of Research Studies in Agricultural Sciences (IJRSAS)                                  Page | 31 

Plant transformation is performed using a wide range of techniques such as Agrobacterium Ti plasmid 

vectors, micro projectile bombardment, electroporation, microinjection, chemical (PEG) treatment of 

protoplasts. Transformation using Agrobacterium and micro projectile bombardment are currently the 

most extensively used approaches. Agrobacterium–based DNA transfer system offers many unique 

advantages in plant transformation: (1) the simplicity of Agrobacterium gene transfer makes it a poor 

man’s vector. (2) A precise transfer and integration of DNA sequences with defined ends. (3) Linked 

transfer of genes of interest along with the transformation marker. (4) The higher frequency of stable 

transformation with single copy insertions. (5) Reasonably low incidence of transgene silencing. (6) 

The ability to transfer long stretches of T-DNA. Genetic transformation of crop species using 

Agrobacterium is believed to be more practical, as the success rates of transformation are greater than 

biolistic approach. Further, unlike later, complex equipment is not involved. However, for a long 

period of time monocotyledons have been considered outside the host range of Agrobacterium. But, 

advances in understanding the biology of the infection process and the availability of suitable gene 

promoters as well as selectable markers improved transformation in monocotyledons (Girijashankar 

and Swathisree, 2009). 

To enhance the tolerance to water deficit and NaCl stress, the mtlD gene encoding for mannitol-

1phosphate dehydrogenase from E. coli was used for sorghum transformation (Maheswari et al., 

2010). The improved drought tolerance of transgenic sorghum was illustrated by the increased 

retention of leaf water. Moreover, there was a significantly improved maintenance in root and shoot 

growth of transformed plants under NaCl stress.   

11. CONCLUSION 

Sorghum is a multipurpose staple crop and the species shows greater diversity. Previously, 

improvement of sorghum has been carried out mostly using traditional plant breeding methods, but 

this method is less realistic. Currently, advances in biotechnology and genetic transformation are used 

commonly to assist traditional breeding for crop improvement. 

Drought is one of the major abiotic constraints to reduced or total loss sorghum grain yield production 

in dry lowland environments. For that reason, improving the drought tolerance of sorghum is required 

focus and research areas of plant breeders, to minimize the yield losses resulting from drought stress.  

Sorghum engineering frequency has increased significantly due to improvements in tissue culture and 

transformation conditions. Genetic transformation offers direct access to a vast pool of useful genes 

not previously accessible to plant breeders. Among the DNA-delivery methods that have been utilized 

for sorghum transformation, the bombardment and Agrobacterium-mediated methods are the most 

efficient. Genome sequencing, together with discovery of candidate genes and promoters, will 

continue to be very useful for sorghum genetic engineering. These new genetic resources provide 

opportunities to develop sorghum varieties with important traits required for food consumption and 

biotic and abiotic resistance. This review contributes to the understanding of the molecular breeding 

approaches of sorghum for drought adaptation and provides hints for identifying key mechanisms of 

drought tolerant and related traits important for sorghum enhancement in drought tolerance. 
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