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1. INTRODUCTION 

The various risk associated with the continuous use of chemical insecticides mainly development of 

resistance, resurgence in insects, accumulation of pesticide residues in food chain, environmental 

pollution, health risks have led to development of alternative strategies of pest management. The 

necessity for sustainable crop production through eco-friendly pest management technique is being 

largely felt in recent times. Thus, the exploitation of bio-control agents is considered as a suitable 

alternative to the use of chemical pesticides (Dhaliwal and Koul, 2007). Among the various bio-

control agents, entomopathogenic fungi are being a major component of an integrated approach that 

can provide significant and selective insect control. A group of fungi that kill an insect by attacking 

and infecting its insect host is called entomopathogenic fungi (Singkaravanit et al., 2010). Because of 

their wide host range they are potentially the most versatile biological control agents. These fungi 

comprise a diverse group of over 100 genera with approximately 750 species, reported from different 

insects. 

Myco-biocontrol is an environmentally sound and effective means of reducing insect-pests with its 

effects through the use of natural enemies. It is the exploitation of fungi in biological processes to 

lesser the insect density with the aim to reduce crop damage by insect pests. The effectiveness of 

myco-biocontrol agents depend on the susceptibility of the insect and also virulence of the fungus. 

Virulence of the fungus depends on the selection of the stable strain with specific efficacy for the 
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target hosts. All groups of insects may be affected and over 700 species of fungi have been recorded 

as pathogens. Unlike other potential biocontrol agents, fungi do not have to be ingested to infect their 

hosts but invade directly through the cuticle and so they can be used for control of all insects 

including sucking insects. Thus, entomopathogenic fungi are a major component of integrated pest 

management techniques as biological control agents against insect pests and other arthropods in 

horticulture, forestry and agriculture (Inglis et al., 2000).  

Entomopathogenic fungi are among the first organisms to be used for the biological control of pests. 

These entomopathogens, due to their eco-friendliness and bio-persistence, are preferred to kill insects 

at various stages of its life cycle (Gul et al., 2014). Entomopathogens such as Metarhizium anisopliae 

and Beauveria bassiana are well characterized because of their pathogenicity to several insects of 

different orders. B. bassiana and M. anisopliae are among the first entomopathogenic fungi being 

successfully used for the myco-biocontrol of insect pests.  Therefore the objective of this review was 

to overview fungi entomopathogenic research and its application to insects’ management in 

agriculture. 

2.  HOST RANGE OF ENTOMOPATHOGENIC FUNGI 

Entomopathogenic fungi cause lethal infections of insects and can regulate their populations in nature 

by epizootics. Today, about 35 genera with more than 400 species of entomopathogenic fungi are 

known. Pathogenic fungi have a broad host range. About 1800 associations between fungi and 

different insects were recorded. A host range is the set of species that allow survival and reproduction 

of a pathogen. The ecological host range is the current, yet evolving, set of species with which a 

parasite naturally forms symbioses, resulting in viable parasite offspring (Onstad and McManus, 

1996). Physiological host range is based solely on laboratory observations of infection. Species 

identified as hosts in the laboratory may not be hosts in the field (Federici and Maddox, 1996). An 

association between pathogen and an insect exists when the host is naturally infected in field or in the 

laboratory by the pathogen and the infectious propagule is produced. When infection has been 

attempted but not observed, then no associations exist. 

3. CLASSIFICATION OF ENTOMOPATHOGENIC FUNGI 

Entomopathogenic fungi are found in the divisions Zygomycota, Ascomycota and 

Deuteromycota (Samson et al., 1988), as well as Chytridiomycota and Oomycota, which 

were previously classified within Fungi. Many of the genera of entomopathogenic fungi 

currently under research belong either to the class Entomophthorales in the Zygomycota or to 

the class Hyphomycetes in the Deuteromycota. It is important to mention that fungal 

infections occur in other arthropods as well as insects and/or species that are not pests of 

cultivated crops. For example, Gibellula species infect spiders and several species of 

Cordyceps and Erynia infect ants. 

4. GEOGRAPHICAL AND ECOLOGICAL DISTRIBUTION OF EPF 

Entomopathogenic fungi are an important and widespread component of most terrestrial ecosystems. 

It seems they are not only in places where there are neither victims’ insects nor other arthropods. Of 

course spread of individual species of entomopathogenic fungi are different. Entomopathogenic fungi 

have been also recorded in north of the Arctic Circle. They have been Tolypocladium cylindrosporum, 

B. bassiana and M. anisopliae in Norway (Klingen et al., 2002), and B. bassiana, M. anisopliae and 

Isaria farinosa (Paecilomyces farinosus) in Finland (Vänninen, 1995). What more, entomopathogenic 

fungi have been reported also from Arctic Greenland (Eilenberg et al., 2007) and Antarctica. In the 

latter location including endemic Antarctic species Paecilomyces antarctica isolated from the 

Antarctic springtail Cryptopygus antarcticus in the peninsular Antarctic (Bridge et al., 2005). Forest 

Ecosystems, more than just trees also cosmopolitan fungi belonging to the genus Beauveria, 

Lecanicillium, Conidiobolus and Neozygites have been found on Antarctic sites, but without their 

arthropod hosts (Bridge et al., 2005). Studies of Quesada-Moraga showed that altitude has no 

influence on presence of entomopathogenic fungi in range up to 1608 m, what more altitude was 

found to be predictive for the occurrence of B. bassiana (Quesada-Moraga et al., 2007). However, 

studies made on wider range of altitudes (up to > 5200 m) made showed great importance of this 

factor on the species diversity of insect-associated fungi (Sun and Liu, 2008). While other species of 
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Hypocreales such as Beauveria, Metarhizium and Isaria were the dominant fungi found on soil 

insects (Samson et al., 1988). Despite the fact that both B. bassiana and M. anisopliae are common 

everywhere there is known that B. bassiana seems to be very sensitive to the disturbance effects of 

cultivation and thus restricted to natural habitats. Entomopathogenic fungi are commonly found in soil 

and leaf litter of worldwide forests, however in temperate forests the diversity of entomopathogenic 

fungi are relatively low in comparison with tropical habitats (Aung et al., 2008). However, compared 

to agricultural areas the diversity of entomopathogenic fungi in the temperate forests is quite high 

(Sosnowska et al., 2004).  

5. BIOLOGY AND LIFECYCLE OF HYPOCREALES AND ENTOMOPHTHORALES 

The life cycles of Hypocreales and Entomophthorales are slightly different. Nevertheless, the survival 

and spread in the environment of both groups is dependent on the infection of the host that invariably 

leads to its death. The life cycle of entomopathogenic fungus consists of a parasitic phase (from host 

infection to its death) and a saprophytic phase (after host death). In contrast to other entomopathogens 

(bacteria and viruses), which enters the insects with food, entomopathogenic fungi infect their host 

through the external cuticle. The process of infection involves: adhesion of the spore on the insect 

cuticle, penetration of the cuticle by the germ tube, development of the fungus inside the insect body 

and colonization of the hemocoel by fungal hyphae. The spores of the entomopathogenic fungi are 

usually covered with a layer of mucus composed of proteins and glucans, which facilitates their 

attachment to the insect cuticle. Germinating spores of several entomopathogenic fungi produce 

specialized structures called appressoria. The appressorium is responsible for attachment of 

germinating spore to the epicuticular surface. The process of penetration of the insect cuticle is a 

result of mechanical pressure and enzymatic activity of the germ tube. The major role in the 

penetration plays the secretion of sequential lipases, proteases and chitinases. Inside the insect body 

most entomopathogenic fungi grow as yeast-like propagules (blastospores), hyphal bodies or 

protoplasts lacking a cell wall. These structures are spread through the hemocoel. Death of an insect is 

usually a result of mechanical damage caused by growing mycelia inside the insect (mummification), 

or toxins produced and released by the pathogen. Beauveria, Metarhizium, and Tolypocladium are 

known that secrete a whole range of toxins. Some of them like destruxin, bavericin, and efrapeptins 

are fully described chemically, and is known their action and contribution in the process of 

pathogenesis (Roberts, 1981; Hajek and St. Leger, 1994). For Entomophthorales there are limited data 

about the release of toxins (Boguś and Scheller, 2002). In this case, death is the result of the total 

colonization of host tissues by the fungus. Forest Ecosystems More than Just Trees After host death; 

the fungus can colonize the cadaver within 2-3 days forms aerial hyphae and then sporulates. Whereas 

Hypocreales produce only asexual spores, species of Entomophthorales produce two types of spores: 

asexual (primary conidia) and sexual (zygo or azygospores) called resting spores. Conidia of 

Hypocreales and primary conidia of Entomophthorales are produced externally on the surface of an 

insect after its colonization and death. Entomophthorales and Hypocreales differ in the way dispersal 

of spores. The first of these are actively discharged from cadavers by hydrostatic pressure, while the 

latter are spread by wind. If primary conidium from cadavers does not land on a new host, it 

germinates and forms secondary conidia (some species can also produce tertiary and quaternary 

conidia). The majority of Entomophthorales produce resting spores (internally within cadavers). 

Cadavers containing resting spores (azygospores) initially attach to the branches of trees, and then fall 

to the ground and then azygospores are leached into the soil. Under favorable conditions, azygospores 

begin to germinate to form germ conidia and infect new hosts. Resting spores allow entomophthoralen 

species to survive unfavorable periods or the temporary lack of hosts. In this way many species of 

Entomophthorales synchronize their development with the development of insects. Hypocrealen fungi 

can also survive in the environment (if do not land on a new host), as mummified cadavers or as 

conidia in soil (Hajek and St. Leger, 1994; Hajek and Shimazu, 1996).  

6. ENTOMOPATHOGENIC FUNGI AND THE ENVIRONMENT 

An improved understanding of the ecology of indigenous populations of these beneficial organisms is 

a prerequisite for the evaluation of their contributions to pest control and for predicting the impact of 

agricultural practices on their populations. The anamorphic entomopathogenic fungi B. bassiana 

(Balsamo) Vuillemin and M. anisopliae (Metschnikoff) Sorokin are natural enemies of a wide range 

of insects and arachnids and both fungi have a cosmopolitan distribution (Rehner, 2005). Due to 

natural occurrence of EPF, it is thought that they are generally environmentally friendly with low to 
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no mammalian and residual toxicity. As a result they have been developed as microbial insecticides 

for controlling many major arthropod pests in agriculture, forestry and urban settings in several 

countries, including the United States (Goettel et al., 2005). In air samples, B. bassiana was isolated 

among a large array of airborne fungi (Airaudi and Marchisio, 1996) and deposition from the air could 

be one likely source of the newly documented occurrence of B. bassiana on phylloplanes of hedgerow 

plants (Meyling and Eilenberg, 2006). However, localized transmission onto plant parts by rain splash 

has also been shown (Bruck and Lewis, 2002) but rainfall also removed fungus inoculum that had 

been applied to foliage (Inglis et al., 2001). In the soil environment the hypocrealen 

entomopathogenic fungi can persist, but extensive proliferation and dispersal are limited. Population 

build up relies on the conversion of host cadaver resources into infective conidia that are released 

from cadavers over time following sporulation (Gottwald and Tedders, 1982). The number of conidia 

released per host is dependent both on fungus species, host species, and host size. For example, B. 

bassiana released 10–200 times more conidia than M. anisopliae from adult pecan weevils (Gottwald 

and Tedders, 1982). Entomopathogenic fungi are dispersed by living infected hosts which migrate and 

die in another place than where they became infected (Hajek, 1997). This implies that B. bassiana is 

able to travel over long distances as infections in hosts, which can later lead to new infections and 

establishment far away from the original site of the fungus. The potential of arthropods to disperse 

and vector entomopathogenic fungi by their activity has been demonstrated in different terrestrial 

ecosystems. In the soil, collembolans dispersed conidia of B. bassiana and M. anisopliae which were 

not pathogenic to them (Dromph and Vestergaard, 2002), both by carrying conidia on the cuticle and 

by ingesting conidia which, after passage through the digestive tract, could remain viable (Dromph, 

2001). 

7. ENTOMOPATHOGENIC FUNGI AS BIOPESTICIDES 

The significance of fungi in regulating insect populations was noted early in recorded history by the 

ancient Chinese (Roberts & Humber, 1981) due to the frequency of natural epizootics and the 

conspicuous symptoms that are associated with fungus-induced mortality (Steinhaus, 1964; McCoy et 

al., 1988). EPF, like other natural enemies of insects, can be employed in classical biological control, 

augmentation or conservation. The safety of EPF for humans, for the environment and for non target 

organisms makes for a safer alternative for IPM than is the use of chemical insecticides (Goettel and 

Hajek, 2000).  Although fungal pathogens have much in common with viruses, bacteria and other 

insect pathogenic microbes, they are unique in several different ways (Ferron, 1978). The most 

significant difference lies in their mode of infection. Whereas most entomopathogens infect their 

hosts through the gut following ingestion, fungi typically penetrate the insect cuticle, thus becoming 

the only major pathogens that are known to infect insects with sucking mouthparts in the orders 

Hemiptera and Homoptera (Roberts and Humber, 1981).  Most EPF are best used to control insect 

populations below a specific economic threshold, with some crop damage being regarded as 

acceptable, rather than for the total eradication of a pest. Despite there being an estimated 700 species 

of EPF in approximately 90 genera (Roberts & Humber, 1981), most of the commercially produced 

fungi are species of Beauveria, Metarhizium, Lecanicillium and Isaria, which are all relatively easy to 

mass produce. Fungal pathogens, particularly B. bassiana, Vuillemin, Isaria fumosorosea Wize and 

M. anisopliae, are currently being evaluated for use against agricultural and urban insect pests. 

Several species belonging to the orders Isoptera (Hussain et al. 2010, 2011), Lepidoptera and Diptera 

(Goble, 2009), Coleoptera (Ansari et al., 2006), Hemiptera (Leite et al., 2005) are susceptible to 

various fungal infections. This has led to a number of attempts to use EPF for pest control, with 

varying degrees of success.  

8. MODE OF ACTION OF EPF 

All fungi have the same basic mode of action. Insect control by entomopathogenic fungi is achieved 

when sufficient infective propagules (generally conidia) contact a susceptible host and conditions are 

suitable for a lethal mycosis to develop. Fungi have been applied for soil pest control by direct 

incorporation of conidia, mycelial pellets, microslerotia or inert or nutrient-based granules containing 

fungal propagules (conidia or mycelia), whereas foliar-feeding pests have typically been targeted by 

sprays of formulated conidia (Jaronski, 2010). Fungal isolate virulence toward different arthropod 

hosts varies. Virulence generally decreases with repeated sub-culture on artificial media, and can 

often be regained through host passage (Nahar et al., 2008). Virulent isolates generally express an 

abundance of spore-bound proteases, efficiently produce and release exoenzymes during cuticular 
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penetration, and generate toxins as the fungus colonizes the host (Vey et al., 2001). Selecting superior 

strains exhibiting these characteristics, or manipulating isolates to promote these traits, has been seen 

as a way of overcoming what is often considered a significant impediment to their wider use, i.e., 

fungi kill their hosts too slowly. Fungal virulence can also be improved through directed genetic 

manipulation whereby specific genes are inserted into the fungal genome to promote expression of 

toxins that increase the virulence of the parent organisms, e.g., insertion of scorpion toxin genes into 

M. anisopliae and B. bassiana (Wang and Leger 2007). Entomophthoralean fungi actively eject 

spores when conditions are favorable (high humidity) that can rapidly infect a susceptible insect, even 

when these conditions only prevail for short periods (Steinkraus, 2006). This trait gives these 

pathogens great epizootic potential, and in many groups of insects, they are among the most important 

natural mortality factors. In contrast, spores of the hypocrealean fungi Beauveria and Metarhizium 

spp. tend to be dispersed passively, via wind currents or rain splash, although transmission can also 

occur when susceptible insects contact infected individuals, or conidia can be distributed on the 

bodies of other arthropods (Vega et al., 2007). Both hypocrealean and entomphthoralean fungi can 

survive repeated intervals of low humidity, recommencing development (infection) when favorable 

conditions return. This can result in spectacular epizootics such as those observed in whitefly 

infestations on cotton when the canopy closes and creates a humid microclimate that favors host 

infection and spread of the disease within the population (Lacey et al., 1996). These fungi can, 

though, infect insects even under conditions of low ambient humidity; attachment of the small conidia 

at infection sites within inter-segmental folds or under elytra where humidity levels are high may 

account for this, and the localized microclimate that exists around an insect or at the insect–leaf 

interface may have a more significant impact on the infection process than ambient conditions (Inglis 

et al., 2001).  

9. ISOLATION AND CHARACTERIZATION OF ENTOMOPATHOGENIC FUNGI 

Several methods have been used to describe the variation within a species of entomopathogenic and 

mycoparasitic fungi. These include morphological characteristics of spores and colonies, extracellular 

protein profiles, pathogenicity and growth or nutrient requirements (Samson 1981). Furthermore, 

immunotaxonomic and chemotaxonomic methods have been used, though only with limited success 

(Bidochka et al. 1994). Obviously, taxonomic procedures are becoming more and more complex and 

it is generally accepted that some forms of molecular identification techniques are needed in addition 

to the traditional morphological characteristics formally used to classify fungal species (Bridge and 

Arora 1998). Different molecular techniques were used for various applications and on different 

entomopathogenic and mycoparasitic fungi (Castle et al. 1998). The RAPD (random amplified 

polymorphic DNA) technique was described in 1990 (Williams et al. 1990). It is a modification of 

PCR (polymerase chain reaction) and allows revealing polymorphism within completely unknown 

samples without the need of probe hybridization or DNA sequencing. Only one short oligonucleotide 

primer (6–12 bases) is used for the reaction, and the sequence of primers is fully arbitrary. The 

product of a reaction is a spectrum of DNA fragments differing from each other in length and 

nucleotide sequence. The total number of products and the length of each depend on the template 

DNA and primer used and is specific for a particular combination. (Williams et al. 1990). 

Hyphomycetes are distinguished by the morphology of their conidia and conidiogenous cells and by 

the identity of their hosts. However, it is almost impossible to distinguish individual isolates using 

only morphological characters because of limited distinctive characteristics (Samsinakova et al. 

1983). Moreover, neither standard laboratory bioassays nor interactions with their natural hosts offer 

sufficient information to identify fungi on the subspecies level (Osborne and Landa 1992). 

9.1. Isolation of Entomopathogenic Fungi (EPF) 

Enthomopathogenic fungi can be isolated by different methods from different areas for their important 

application of insect management 

9.1.1. Methods for isolation of EPF from soil sample 

There are methods to isolate EPF from soil that using Selective media and Insect bait method are the 

major one. 

9.1.1.1. Selective media 

A wide range of fungi occur in the soil environment and they have various ecological functions. Most 

of these fungi, along with a range of bacteria, can grow on artificial media in vitro. These abilities 
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have long been exploited to isolate microorganisms from soil samples and specific media have been 

developed to select for certain groups of microorganisms. Some media for the selective isolation of 

entomopathogenic fungi have also been developed. Bacteria can be inhibited by the application of 

broad-spectrum antibiotics such as chloramphenicol, tetracycline or streptomycin (Goettel and Inglis, 

1997). The main remaining obstacle in using this isolation method is that the hypocrealean 

entomopathogenic fungi grow relatively slowly in comparison to the ubiquitous opportunistic 

saprotrophic fungi found in the soil environment. Thus the contents of the media need to include 

substances that prevent these fungi from overgrowing the species of interest. Generally, the species 

Metarhizium anisopliae, B. bassiana  and B. brongniartii have been investigated the most. Goettel 

and Inglis (1997) provide a list of suitable selective media for Beauveria and Metarhizium (Goettel 

and Inglis, 1997). The suggested medium for isolation of Metarhizium spp. is often called Veens 

semiselective medium (Hu and St Leger, 2002). The medium contains the antibiotics chloramphenicol 

as well as the fungicides dodine and cyclohexamide (Goettel and Inglis, 1997). In different 

laboratories modifications have usually been made to optimize isolation results based on experience. 

For example, Hu and St. Leger (2002) used Veens medium to isolate M. anispoliae, but omitted 

cyclohexamide to study the occurrences of other fungi than M. anisopliae.  

9.1.1.2. Insect bait method 

The use of selective media exploits the saprotrophic abilities of hypocrealean entomopathogenic 

fungi. However, to exploit the ability of the fungi to infect host, the insect bait method can be used. 

This method was originally developed to isolate entomopathogenic nematodes from soil samples, but 

fungi were sometimes additionally isolated (Zimmermann, 1986). Thus Zimmermann (1986) 

suggested that this method could also be a standard isolation method for entomopathogenic fungi. For 

the method to be feasible insects, which are easily reared and are susceptible to the fungi, must be 

used. The traditional bait insect is the highly susceptible larvae of the wax moth, Galleria mellonella, 

(Lepidoptera: Pyralidae) but also mealworm larvae, Tenebrio molitor (Coleoptera: Tenebrionidae), 

are suitable. Few studies has evaluated the use of several bait insects from different taxa. Klingen et 

al. (2002) found that dipteran larvae isolated fungi differently than G. mellonella. More specifically, 

larvae of Delia floralis (family Anthomyiidae) isolated Tolypocladium cylindrosporum more 

frequently than did G. mellonella (Klingen et al., 2002). Thus the use of insect baits can also be 

considered to be a selective isolation method. However, the "Galleria bait method" appears to be 

more sensitive than traditional plating on media (Keller et al., 2003) and is therefore useful for 

isolation and identification of the spectrum of entomopathogenic fungi indigenously present in soils. 

10. CURRENT MARKETS OF EPF 

During the last four decades, over 80 companies worldwide have developed 171 mycoinsecticides and 

mycoacaricides. This contrasts sharply with the situation less than three decades ago, when only one 

commercial mycoinsecticide was available (Ignoffo and Anderson, 1979). Although most products are 

based on specific types of propagules, the end product may contain small or even substantial amounts 

of other propagule types. Products based on aerial conidia may contain hyphae, and vice-versa, and 

mycoinsecticides produced through liquid fermentation may present a mix of submerged conidia, 

blastospores and hyphae (Leite et al., 2003). The exact propagule composition of biopesticide 

products is rarely stated by manufacturers, and, in some cases, the specific propagule comprising the 

active ingredient is not indicated. For many of these products, the active ingredient is quantified in 

terms of colony forming units. Based on the available information, a significant proportion of 

products (25.7%, most of these classified as technical concentrates) contain both asexual spores and 

hyphae. However, 67.5% of all products are described as being based exclusively on asexual spores, 

with aerial conidia being the most common among all products (41.2%). Only 4.1% of listed products 

are claimed to contain only blastospores, whereas this kind of propagule is also present in two other 

products, one including submerged conidia and one including submerged conidia and hyphae. No 

products have been reported as containing only submerged conidia, and those based exclusively on 

hyphae account for only 2.3% of all products. The type of asexual spore could not be determined for 

22.2% of products.  

 10.1. Current markets of EPF in Latin America 

The use of biological control agents as an integral component of biologically-based pest management 

strategies has had increased awareness during the last decades. Microbial pesticides have been 
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successfully promoted to farmers in many countries of South America, mainly in systems where not 

chemical pesticides are available or when pest/disease resistance has made chemical alternatives 

increasingly expensive and or unreliable. Although farmers in general show a high level of 

satisfaction with the microbial pesticides they also recognize technical shortcomings with the current 

generation of biopesticides that will require further technical development to overcome. Faster and 

reliable action, good storage characteristics and technologies to apply are the main constrains 

considered. Brazil, Chile and Colombia have 17, 36 and 48 biocontrol products registered in 2010, 

respectively. However, regulation is critical for the development of biological control; there are 

differences in time and expenses involved in registration where there is a regulatory system. In some 

countries there is no regulation for biopesticides, in others as in Brazil and Chile the legislation is the 

same for chemical pesticides, although in Brazil, a decree establishing the criteria for registration of 

BCAs for organic agriculture was approved in July 2009, and in others as in Colombia, since 1994 

there is a specific regulation, which was updated in 2004. Thus, the low quality of some products and 

the regulatory and bureaucratic problems related to registration process are responsible for the 

increased number of illegal biocontrol products in South America (Cotes, 2010). 

10.2. Current markets of EPF in Europe 

Europe is the largest market in the world for beneficial insects and the second largest market for 

microbial biopesticides. In 2000, the market was around 97 millions dollars (including pheromones), 

with beneficial organisms accounting for 55 %, microbial biopesticides for 26%. In 2004, the 

European market was estimated to reach 110 million dollars. 27 biological control agents have been 

approved at EU level in 2005. Only 6 biofungicides were registered at a European level. There are 

also 18 old micro-organisms (11 bioinsecticides and 7 fungicides). Among the 27 micro-organisms, 

bacteria (34 %) and fungi (54 %) account for the majority of registered agents, followed by viruses 

(12 %). Fifteen other biological control agents (giving 50 biopesticides products) have been approved 

by national regulatory authorities and are being sold in those countries. 

10.3. Current markets of EPF in Africa 

In Africa, a research programme code named LUBILOSA was launched in 1989 to develop 

mycoinsecticide for the control of locusts and other grasshoppers (Thomas, 1999). The product named 

‘Green Muscle’ was formulated based on the propagules of M. anisopliae var. acridum and registered 

in South African by Biological Control Products SA (Pty) Ltd, under the licence of CABI, UK. It has 

also been registered in East and South African countries including Mozambique, Namibia, Tanzania, 

Sudan and Zambia for the control of locusts. Other mycoinsecticides use in South Africa include Bb 

Plus and Bb weevil based on Baeuveria bassiana propagules for the control of aphids and weevils 

respectively. M. anisopliae (var. acridum) has been found effective against the brown locust, 

Locustana pardalina in Africa, Locusta migratoria in Madagascar and the Australian plague locust 

Chortoicetes terminifera and L. migratoria in Australia. With variable success, M. flavoviride has also 

been tested against the tree locust Anacridium melanorhodon in Sudan, the rice grasshopper 

Hieroglyphus daganensis in Benin, Mali and Senegal and the desert locust, Schistocerca gregaria in 

Mauritania (Ramanujam, 2014). Accordingly, Kenyan Standing Technical Committee of Imports and 

Exports (KSTCIE) has approved mycoinsecticide products based on B. bassiana and M. anisopliae 

propagules for importation and use in Kenya (Songa, 2003). However, as at 2010 in Kenya, Bio-

power and Botanigard all based on B. bassiana GHA were also registered for use (Kabaluk et al., 

2010). In Nigeria, for example, several synthetic pesticides have been registered for production and 

use but not a single mycoinsecticide has been registered for use. 

11. CONCLUSION 

Since the establishment of the fact that fungi pathogenic to insects can be key components in the fight 

against insect pests in agriculture, several large scale researches have been undertaken by 

governments, institutions, organizations and individuals to explore their potentials. To date, a number 

of mycoinsecticdes have been developed and are being used against many insect pests of economic 

importance in a number of countries. Nonetheless, more fungi, which are pathogenic to insects are 

still being discovered, a situation which presents brighter future for the use of entomopathogenic fungi 

in insect pest management. However, use of mycoinsecticides in pest management is generally 

moving at a slow pace even in the developed countries where production of mycoinsecticdes began 

more than five decades ago. In spite of this, mycoinsecticides are gradually becoming market, which 
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mycoinsecticide accounts for 27% of it, use of mycoinsecticides in insect pest management will soon 

increase dramatically. Nevertheless, it is still far behind synthetic chemicals in efficacy and 

popularity. While acknowledging limitations, one can still argue that, use of mycoinsecticdes is likely 

to rise if research is focus on; improving its performance under challenging environmental conditions, 

formulations that will increase persistence, longer shelf life, ease of application, pathogen virulence 

and wider spectrum of action. 
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