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Abstract: This paper seeks to develop a machine learning workflow for accurately predicting hydrocarbon
recovery factor (RF), a crucial property for exploration and production strategies. The study employed agnostic
method and Bayesian Optimized Decision Tree (DT) model to assess causal relationships between input and
target variables. The decision tree model yielded the lowest error metrics (0.1 MAE and 0.132 RMSE). To
determine how much each input reservoir parameter contributes to the target (RF), the permutation feature
importance and Shapley Value metrics were used to analyze the input features. The decision tree model was
optimized and trained using the chosen parameters, yielding better results of 0.02 MAE and 0.03 RMSE. The
features selected by Shapley values greatly improved the predictive model outcome because it demonstrated a
causal relationship with recovery factor estimation. The proposed method outperformed several reported
models, demonstrating the value of machine learning in petroleum engineering for reservoir characterization.
Improved data pre-processing, analysis, and visualization techniques were also utilized in this study.
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1. INTRODUCTION

The Recovery Factor (RF) is a crucial parameter in hydrocarbon reservoir management, defined as the
ratio of ultimately recovered oil to the initial amount of oil in place (Gulstad, 1995). Estimating the
recovery factor accurately is essential for making sound financial decisions, as it relies on estimated
reserve quantities, production rates, and efficient management of the oil reservoir. However, the
estimation of RF is challenging due to several geological and engineering factors (Holdaway, 2009).
Various methods are used to calculate RF, including volumetric and analogy methods, material balance
calculations, decline curve analysis, and numerical reservoir simulation. Empirical methods such as
material balance equations and numerical simulations have yielded reliable results. Still, they require
significant efforts and detailed reservoir descriptions to build an accurate model and conduct uncertainty
qualifications (Arps, 1955).

The advent of artificial intelligence has revolutionized the petroleum engineering industry, particularly
in the domain of reservoir characterization. Machine learning techniques have gained significant
attention for the potential to improve recovery factor estimation. Several research attempts have been
made to use machine learning to build recovery factors estimation models, such as multiple linear
regression (MLR), artificial neural networks (ANN), Bayesian networks, support vector machines
(SVM), and other techniques. The choice of model and input variables affects the performance of the
ML models, and selecting the best features is crucial for the accuracy of the predictions. In the research
conducted by Lake and Lee (2015), a range of techniques were employed to estimate the oil and gas
recovery factors (RFs) were multiple linear regression (MLR) with sequential feature selection, artificial
neural networks (ANN), and Bayesian network. The findings of the study revealed that the ANN and
MLR with sequential feature selection exhibited superior performance in comparison to the remaining
two approaches. In another study done by Aliyuda and Howell (2019), a combination of multiple linear
regression (MLR) and support vector machine (SVM) techniques utilizing the Gaussian kernel was
employed to analyze 93 reservoirs situated on the Norwegian Continental Shelf. Among these
reservoirs, 75 were located in the Norwegian Sea, the Norwegian North Sea, and the Barents Sea, while
the remaining 18 were found in the Viking Graben within the UK sector of the North Sea. The research
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findings indicated that the SVM model exhibited superior performance compared to the MLR model,
as reported by Aliyuda and Howell (2019). Lastly, Chen in 2019 utilized the Artificial Neural Network
(ANN) technique to construct predictive oil Random Forest (RF) models. The models were developed
by employing various sets of input data sourced from the TORIS database. Throughout their
investigation, the researchers identified a total of 19 principal features from the initial 70 variables to
be included in the construction of their machine learning (ML) model. These works highlight the
potential of ML in RF estimation, and our study builds on their findings by using a broader range of
ML models and assessing the importance of input features.

The effectiveness of machine learning models and their ability to estimate reservoir recovery factors
depends on the type of model used and the input variables chosen. When irrelevant data is fed into these
models, their performance can significantly decrease. Therefore, developing a procedure to identify and
select the best features and create new ones from existing variables is crucial. By including these new
features, the model’s performance should improve compared to when they are inputted individually.
Combining several robust models into one supermodel can enhance its overall performance. For our
investigation, a dataset comprising of 3420 data points was sourced from published literature to evaluate
the importance of input features in predicting recovery factors. We employed model-agnostic metrics
to identify a relevant dataset with the most valuable features. Next, we tested various machine learning
models to predict recovery factors, and the model with the best results was optimized using the Bayesian
Optimization (BO) algorithm. By following this approach, we can develop a reliable model for
estimating reservoir recovery factors, which can significantly affect the oil and gas industry.

2. METHODS AND MATERIALS

This research employed Python programming to investigate the relationship between crucial input
variables relevant to recovery factor prediction. Various regression models were used to identify the
model with the lowest error rate. The relevant features identified by model agnostic techniques were
selected as input features. Several machine learning models were then utilized to predict recovery
factors based on their learning theory and capacity to work with high-dimensional and complex data. A
significant challenge with machine learning models and their varying performance is the issue of data
quality. Thus, this study aimed to explain the input features, not only in terms of correlation but also in
causation, by developing new methodologies. The goal was to achieve even the slightest increase in
accuracy, which is essential in enhancing the decision-making process in the petroleum industry.

The summary analysis of the reviewed models used in this study is summarized in Table 1.

Tablel. Summary of Algorithms and Corresponding Authors

SN Model Description Authors

1. Ridge Regression.  |Minimizes standard errors by applying a bias to model estimates| Hoerl and Kennard (1970).
2. Lasso Regression Zeroes coefficients of unimportant input variables Tibshirani (1996)

3. Support \(/23:\);) Machine Produces better generalized, sparse, and unique solutions Vapnik and Lerner (1963)

4. Decision Tree Builds hierarchical decision boundaries and removes Gordon et al. (1984)
unnecessary structures

Extreme Gradient

S Boosting

Maximizes the loss function with an extra regularization term | Chen and Guestrin (2016)

6. Random Forest Robust against overfitting and offers easy interpretability Breiman (2001)

2.1 Data Collection and Description
A comprehensive collection of data from 139 sandstone reservoirs was utilized to develop a recovery
efficiency bulletin. The dataset comprises 3197 data points encompassing 23 distinct features, which
were consolidated as reports submitted to the API subcommittee. Descriptive statistics of a subset of
these features are presented in Table 2.

h p K k/Uob Sw T API Pi Boi
count 139 139 139 139 139 139 139 139 139
mean 63.0187 0.1928 198.461 233.997 0.3009 150.86 36.02 843.90 0.528
std 122.523 0.1928 354.98 528.217 0.1012 4491 7.54 631.85 23.77
min 4.5 0.065 0.100 0.200 0.000 75.00 14.00 101.00 0.754
25% 15.00 0.14 25.50 15.17 0.235 122.00 33.00 449.00 31.0
50% 25.00 0.180 66.80 58.86 0.300 144.00 38.00 786.00 68.40
75% 50.00 0.231 239.0 187.55 0.363 183.00 41.20 922.40 84.92
max 1100.0 0.354 2970.0 4500.0 0,600 270.00 49.70 3630 404.40
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1. Energy: initial pressure, bubble point pressure, reservoir pressure at the end of primary,
reservoir temperature

2. Fluid: initial oil viscosity, oil viscosity at bubble point, viscosity at abandonment of primary,
water viscosity

Rock: Porosity, Saturation, Gas Saturation, wettability, salinity
4. Asset size: net pay zone, well spacing

Recovery: API gravity, initial gas-oil ratio, gas-oil ratio at the bubble point, oil formation
volume factor,

Data analytics and machine learning enabled to uncover patterns and extract hidden insights from high-
dimensional data. However, some input data may be missing, distorted, or irrelevant in predicting
recovery factors. The issue of missing, distorted, irrelevant data is addressed using several strategies,
including missing value imputation. The dataset was evaluated to identify missing or malformed data
by counting the rows and columns in the data frame, and it was found that there were no missing or
distorted data in any of the parameters. A statistical analysis of the input was performed to calculate the
sum of data points, mean, standard deviation, minimum and maximum values of all parameters, and
(25%, 50%, 75%) distribution of the data points. The statistical analysis revealed that the data were
normally distributed.

The Spearman rho covariance matrix was used to quantify the degree of correlation between all input
features and the target variable (RF). The Spearman rho covariance matrix helped to identify the
correlations’ strength and direction between the input features and the target variable.

Finally, irrelevant parameters, such as calculated OOIP and produced, were dropped from the input
dataset due to their high potential of correlation to the prediction target (RF). By employing these
strategies, we can effectively tackle incomplete datasets and uncover valuable insights from high-
dimensional data.

2.2 Explainable Al

The data were split randomly into two groups to build the machine learning (ML) models: 80% for
training the model and 20% for testing it. This split ratio was chosen to provide the ML algorithms with
many samples for training. Python programming was utilized in this study, and multiple regression
models were employed to determine the most effective model for predicting the recovery factor with
minimal errors. The same out-of-sample data was used consistently throughout the study to ensure that
all models were evaluated using similar data points.

Model-agnostic techniques were employed to analyze the relevance of input features to separate
explanations from the machine learning models. To achieve this objective, both Permutation Feature
Importance (PFI) and Shapley values were utilized for providing explanations. The desired properties
were model representation and explanation flexibility, which are not specific to any model type. The
inputs required for this analysis included the models, the target variable (RF), and the error metrics.

2.2.1 Permutation Importance Feature

The Permutation Feature Importance method is a model-agnostic technique used to assess the
significance of features in a model, regardless of the model type. It involved randomly assigning a
component with a nearly random value and permuting its relationship with the model output. If
changing the feature value increases model error, then the feature is considered essential. The advantage
of PFI is that it is straightforward to interpret and does not require retraining of the data. This work used
a function based on a regression model to calculate the importance score for each input parameter.
Features with high importance scores are considered to have more substantial predictive potential, as
determined by criteria for importance score, as demonstrated in this study by Otchere et al. (2022).

2.2.2 Shapley Values

The Shapley value is a crucial concept in determining the significance of a feature and its contribution
to a model’s performance. It was developed by Lloyd Shapley from Cooperative Game Theory.
Understanding how the model’s parameters affect its output is vital in grasping the fundamental
elements of creating its output. Unlike other techniques, the Shapley value can be used regardless of the
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model type or structure. However, it has its limitations, the most significant being its high computational
cost. As a result, an approximate solution may be the only feasible option for many real-world scenarios.
Additionally, it can be easily misinterpreted. Fortunately, the Shap library, an open-source tool, is an
excellent resource for working with Shap values and other metrics (Shapley, 1953).
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Figl. Machine Learning Workflow
2.3 Model Evaluation Criteria

The prediction error was measured by the difference between the expected values and the best-fit line
of the actual data to assess the accuracy of model predictions in this study. The appropriateness of the
models used was determined by evaluating and rating their errors based on the following criteria:

1. The Akaike Information Criterion (AIC) assesses the precision and excellence of models by
indicating a greater likelihood of the model is suitable for the data

AIC = 2K — 2(log — likelihood) 1)

2. Mean Absolute Error (MAE) represents the average absolute difference between the actual and
predicted values.

MAE En ilnXi_yl (2)

3. The Root Mean Squared Error (RMSE) is a commonly used metric for assessing model
performance, as it provides an easily interpretable measure of the deviation of prediction errors,
indicating the proximity of predicted values to their expected values. Specifically, the RMSE
represents the standard deviation of the prediction errors.

n —"™)2 (3)
RMSE = NEES itk

n

4. The coefficient of determination (R2) is a commonly used criterion that measures how closely
the dependent variable fits the regression line with the best fit.

—1_2xn—p? (4)
et Xy, —»)?
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3. RESULTS
3.1 Error Metrics

The models were compared using AIC to determine the best fit (Figure 2). Lower AIC values indicate
better predictions. AIC differences of less than 10 are insignificant, while those between 10 and 50 are
moderate, and those between 50 and 100 are significant. Differences greater than 100 are extreme. The
decision tree model was the most accurate for predicting recovery factors. Compared to the Boost
model, which also had low AIC, the decision tree model had a difference of 260 AIC, indicating a
significant improvement in fit. AIC can be used to determine the model’s ability to fit the data
accurately.

AIC

XGBoost

Gradient Boosting

Extra tree

Random Forest

Decision Tree

40 42 44 46 48 50 52 54 56

Fig2. AIC Results of Models on Test Data

The models' robustness is evaluated using unseen test data. While high training accuracy is expected
since the models have already seen the data, it can lead to overfitting and a non-generalized model that
include noise. Out-of-sample accuracy, which measures correct predictions on unseen data, is more
crucial as models need to perform well on unknown data. In this study, R? values exceeding 0.85 were
deemed favorable for both training and out-of-sample accuracy.

Table 3. Correlation Coefficient Score of all Models for Train and Test Data.

SN Models Train score Test score
1. Ridge Regression 0.372394 0.381738
2. Lasso Regression 0.367822 0.37421

3. Support Vector Machine 0.994892 -0.027344
4, Decision Tree 1 0.90989

5. Random Forest 0.984328 0.855492
6. Extra tree Regression 1 0.861617
7. Gradient Boosting Regression 0.868513 0.801631
8. XGBoost 0.99873 0.839402

Additionally, Figure 3 illustrates the precision, accuracy, and consistency of the models’ outcomes from
a cross-validation analysis. Among all the supervised machine learning models, the decision tree model
yielded the most consistent results compared to the actual RF values, as indicated by the RMSE results.
Furthermore, the decision tree model was the most accurate for RF forecasts based on the MAE metric.
The success of the decision tree model can be attributed to the utilization of the bias-variance concept
in its constructionconcept

International Journal of Petroleum and Petrochemical Engineering (IJPPE) Page | 5



Enhancing Hydrocarbon Recovery Factor Prediction Using Ensemble Machine Learning Workflow

Errar Analysis

Ridge Support [eecisicn Random Extra tree Gradient

Regression  Regression
‘ Tree Forest  Regression  Boasting

u
MWAE RMSE

Fig3. Comparison of Prediction Error of all Models based on MAE and RMSE
3.2 Model Agnostic Analysis

Permutation importance using XGBoost was used to analyze feature importance and evaluate the impact
of multicollinearity. Figure 4 highlights the strong correlation between pay zone thickness (h) and
permeability(K) in predicting RF. Permuting input features decreased model accuracy, indicating the
significance of these features.

Feature importance
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Fig4. XGBoost Feature Importance of the Input Features to the Target

3.2.1 Shapley Value Analysis

The decision tree model predicted the recovery factor using all features and the same datasets for
training, testing, and feature significance analysis. Model agnostic metrics, like Shapley values, help
explain how the model made predictions. Shapley values, originating from game theory, represent the
impact of features on predictions. The feature significance plot in Figure 6 displays the absolute values
of Shapley values, indicating the most relevant features with high absolute values. Permeability (K) was
the most significant feature, with an average effect of 4% (0.04) on the target. API also had an impact.
The plot revealed little connection between PFI results and the relationship of Boa, OOIP, and Pep to
the target, requiring further research on characteristic differences. The permutation feature importance
is defined by the decline in model performance, while Shapley values depend on feature magnitudes.
The bee swarm plot provides more informative details than the feature importance plot.
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Fig5. PFI Analysis of Data Input Parameters

The bee swarm summary plot in Figure 6 displays the absolute values of the Shapley values for both
the train and test datasets. The y-axis represents the features, while the x-axis represents the Shapley
values. This summary figure provides the first cues to the positive and negative correlation between a
feature’s value and its effect on the target. The distribution of Shapley values for each feature is shown
in this type of visualization, listed in descending order of significance. Blue denotes low feature values,
while red denotes high feature values. Examining the impact of permeability reveals that low values
predict high recovery factor values, while high values predict low recovery factor values. This research
emphasizes the significance and necessity of model agnostic to comprehend the impact of other factors
on recovery factor prediction. The bee swarm plot demonstrates that approximately 15 features can
globally explain how the predictions were made.

The results of the bee swarm plot confirmed that features that have high importance in boththe train
and test results exhibit their importance in the global explanation of the target. From the demonstrated
results, the following analysis was derived.

1. Feature importance: The features are ranked in descending order, and from the train and test
data plot, permeability is ranked first. The Boa feature has close to zero importance because it
does not have any causal effect in predicting recovery factor; and

2. Impact: The horizontal location of the data points shows that permeability has a negative
correlation and a high prediction effect in general.

3.3 Evaluation of Top Features

The top 5 performing models for the top 15 features based on PFI and Shapley values underwent
additional analysis to see if they will outperform the initial model forecasts. PFI had the effect of
eliminating OOIP, Rsb, Boa, K/Uob, Pi, and Pep. When Shapley values were applied, OOIP, Rsbh,Boa,
K/Uaob, and Pep were eliminated.

When the features based on PFI and Shapley values were applied, all of the top-performing models
performed better, as shown in Table 3. However, it was clear that Shapley values chose the most
important features, which is mostly seen in the enormous gain in model accuracy.

Table 3. Computed Accuracy on Test Data Using Top 5 Models

SN Models Accuracy basedon all |Accuracy basedon PFI’s| Accuracy based on Shap
features top 13 features values top 13 features

1. | Gradient Boosting 0.8016 0.8057 0.8573

2. Decision Tree 0.9127 0.9510 0.9971

3. Random Forest 0.9000 0.9290 0.9634

4. Extra Tree 0.9095 0.9453 0.9811

5. XGBoost 0.9162 0.9276 0.9795
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3.4 Model Optimization

The model parameters were optimized using Bayesian Optimization (BO) to improve performance.
Figure 7. demonstrates the performance of the Decision tree model using the top 15 characteristics
determined by Shapley values and the BO-DT model. Results were compared with findings from
Gulstad et al. (1995) and Noureldine et al. (2016), who used different methods and models for recovery
factor prediction with the same data. The selected features based on Shapley values significantly
reduced the model error. MAE decreased by 91%, from 1.01 to 0.023, when using Shapley-selected
features compared to the initial extra tree model. The RMSE for the decision tree model with all 15
features was 1.28, while the Shapley-selected features had an RMSE of 0.032, representing a 97%
decrease. Hyperparameter adjustment with BO-DT further improved the decision tree, resulting in an
MAE of 0.02 and an RMSE of 0.022. Overall, the Shapley selected features proved highly relevant,
providing global generalization and improving model efficiency due to the bias-variance concept used
in building the decision tree model.

Optimization Amnalysis

Shapley AMM_Moureldien et a MLE_Gulkstad et a
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Fig7. Comparison of RMSE and MAE for Top-Performing Models and Models by Previous Works on-Test Data

3.5 Sensitivity Analysis

Figure 8. displays the kernel density estimation of expected and actual recovery factor data, with blue
indicating expected values and yellow for actual values. The results indicate that the BO-DT model is
considerably more precise than the actual data, as revealed by the test data. An analysis of errors reveals
that the BO-DT model has a superior capability to capture a broad range of values, making it suitable
for estimating the recovery factor in solution gas drive reservoirs for other wells. Consequently, the
sensitivity analysis reinforces the previously established evaluation metrics.

RF
Predicted DT Values
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Fig8. Kernel Density Estimation Showing Proximity of BO-DT Recovery Factor Prediction.
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4. CONCLUSION

a workflow for choosing relevant features for recovery factor predictions has been described in this
study. The approaches assessed in this study showed that explainable Al can provide insight into the
input features by using model-agnostic metrics. Simple statistical techniques might not be able to
identify the causal effects of each input on the target because correlation does not imply causation. The
models' likelihood of fitting the test data was assessed using the AIC result. On the test data, the R2,
MAE, and RMSE were also compared for accuracy, consistency, and precision.

The input attributes are now explainable thanks to the models and how the target is anticipated using
the PFI and Shapley values. When considering pertinent causal features, model agnostic has offered
some reliable and practicalsolutions for recovery factor prediction.
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