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1. INTRODUCTION 

Transport phenomena problems (mass, momentum, and heat transfer) are described by differential 

equations, hence, to determine the velocity, temperature, pressure and concentration profiles in 

various kinds of systems, we need to solve differential equations which cannot be solved analytically 

in most cases, see for example [1-16]. 

Therefore, to obtain an approximate solution numerically, we have to use a discretization method 

which approximates differential equations by a system of algebraic equations (discretized equations) 

[17] where the finite volume method may be used as a powerful tool. For this purpose the differential 

equations can be transformed to algebraic equations (nonlinear equations) by the finite volume 

method in which the discretized equations must be set up at each of the nodal points [18]. To solve this 

nonlinear system, an iterative algorithm may be applied, i.e., they begin with an initial guess of the 

optimal values of the variables and generate a sequence of improved estimates until they reach a 

solution [19]. The general procedure due to the numerical solution of transport phenomena problems 

is shown schematically in Figure1. 

 

Figure1. A schematic flowchart which shows how a transport phenomena problem is solved numerically. 

When the iterative algorithms are programmed on a computer, we may encounter difficulties, 

including 1) finding good initial guesses for some unknowns, especially in the case where the 
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efficiency of the method strongly dependent upon the initial guess 2) evaluation of equations which 

may be expensive because of a large number of equations and unknowns (too much computer time) 3) 

requiring too much computer storage on large problems. 

In this paper, we propose an efficient computational approach for laminar single phase flow of a fluid 

(a single component or a homogeneous mixture) in which the size of nonlinear equations (discretized 

equations) obtained by the finite volume method can be greatly reduced. To clarify benefits of using 

our proposed approach, as an example, we consider the laminar flow of a pure fluid and a nanofluid in 

a horizontal circular tube where the improvement in the implementation due to two iterative 

algorithms is discussed in detail. 

This paper is structured as follows. The proposed approach is first presented in section 2. The 

descretized equations due to a case study are given in section 3. Two numerical algorithms for solving 

nonlinear equation are also introduced in section 4. The proposed approach is applied  and discussed 

in detailed for the case study in section 5. Finally, a summary of main conclusions are given in section 

6. 

2. PROPOSED APPROACH 

The finite volume method uses the integral form of the conservation laws where the solution domain 

is subdivided into a finite number of small control volumes by a grid which defines the control 

volume boundaries and computational nodes are located at each control volume [17]. In general, the 

velocity components, the temperature, the species concentrations (for fluid mixtures) and the pressure 

have unknown distribution in transport phenomena problems. The scalar variables (temperature, 

pressure and species concentrations) are defined at the computational nodes (such as n1 and n2 in 

Figure 2) and the velocity components are defined at control volume faces (such as S0 and S2 in 

Figure 2) [18]. Here, each differential equation (conservation laws at the microscopic level) due to the 

problem appears as an algebraic equation (conservation laws at the macroscopic level) for each 

control volume where these algebraic equations (discretized equations) have relations with each other. 

For instance, to set up a balance of propertyin control volumes n1 and n2 in Figure 2, a flux of 

due to fluid flow or diffusion through face S2 in the positive x direction is interpreted as an outgoing 

flux of for control volume n1 and an ingoing flux of for control volume n2. Our proposed 

approach is based on using these relations. 

 

Figure2. A schematic illustration of control volumes including nodes and faces. 

2.1 Analyzing the equation of continuity (for a pure fluid) 

The equation of continuity: 

 . u 0,
t





  


 

where is the differential operator (known as nabla or del), is the density (it can be considered as a 

function of temperature for a pure fluid), u is the velocity, t is the time and 
. denotes the scalar product 

of two vectors. Using Gauss’ divergence theorem, the discretized form of the equation of continuity 

can be obtained, for obtaining the discretized form, detailed information were given in books on the 
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finite volume method, for example, see Refs [17,18]. The discretized form of the equation of 

continuity has a form similar to the following equation: 

           1 1 2 2 3 3e w n s t b
(accumulation term) 0, (1)x x x x x xu A u A u A u A u A u A           

where A is the cross-sectional area of the control volume face. Each control volume has six faces 

labeled north (n), south(s), west(w) ,east(e), top(t) and below(b), as will be explained in section 3.2, 

also, (ux1, ux2, ux3) are the velocity components in the three coordinate direction x1, x2 and x3. It can 

be seen that the coefficients of the velocity components (A) in the discretized form of the equation of 

continuity are in general independent of the velocity components; this fact suggests that one of the 

velocity components can be obtained as a function of other unknowns.  To better describe the 

proposed approach, face w and face e in Eq. (1) are considered as face S0 and face S2 in Figure 2, 

respectively. Now, if 1 S0
( )xu  at face S0 due to control volume n1 is considered to be known, because 

of the boundary conditions or physical properties of the domain, 1 S2
( )xu is obtained as 

 
 

 
1

1
S0

S2
S2

other terms
. (2)

x
x

u A
u

A






  

Regarding the discretized form of the continuity equation for control volume n2 and similar 

to control volume 1, we have 

 

 

 

 

1

1

S0

S2 S2
S5

S5

other terms
( ) other terms

.

x

x

u A
A

A
u

A








 
  

 
  

Hence, using this approach, all 1xu  along the x1 direction can be obtained, one after another, as 

functions of 2 3,x xu u  and , shown schematically in Figure 3. 

Therefore, it can be concluded that the discretized form of the continuity equation has a special 

structure (i.e., the coefficients of the velocity components are in general independent of the velocity 

components) which can be used to give one velocity component as a function of density (temperature)  

and  two other  velocity components.  It should be noted that when a discretized equation is used to 

obtain an unknown as a function of other unknowns, that equation is removed from the nonlinear 

equations due to the problem. 

 
Figure3. A part of grid used in section 2.1. 

2.2 Analyzing the Equation of Continuity and the Equation of Continuity Due to Species a (For 

A Nanofluid) 

The equation of continuity for nanoparticles in a nanofluid (or for species A in a binary fluid) which 

behaves as a single phase fluid: 

.pu

 Diffusionterms+Reactionterm+accumulationterm0, 
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where p is the density of the nanoparticle, is the nanoparticle volume fraction. It should be noted 

that the single phase model can be selected for modeling of the solid-liquid mixtures which the solid 

particles move in stokes’ regime (homogeneous mixtures) [20]. 

The discretized form of the above equation has a form similar to the following equation: 

           1 1 2 2 3 3e w n s t b
(other terms) 0.(3)p p p p p px x x x x x

u A u A u A u A u A u A             

Similar to the previous section, the coefficients of the velocity components (p A) in the discretized 

form of the equation of continuity due to the nanoparticle are independent of the velocity components. 

Here, we consider two discretized equations, Eqs. (1) and (3) for each control volume. We begin with 

the control volume which its two faces lie on the boundaries of the problem, see node m in Figure 4. 

Considering Eqs. (1) and (3) in this control volume (w=f0,e=f2, s=f1 and n=f3), it  is assumed that 

 1 f0xu  and  2 f1xu  be known because of the boundary conditions of the problem. Therefore, 

 1 f2xu  and  2 f3xu  can be obtained as a function of other unknowns by using Eqs. (1) and (3) as 

follows: 

     1 1 2 2f2 f3

known knownf0 f1

Eq.(1) other terms 0,x x x xu A u A u A u A   
   
        
   
   

 

     1 1 2 2f2 f3
known knownf0 f1

Eq.(3) other terms 0.p p p px x x xu A u A u A u A   
   
        
   
     

Similarly, we can obtain all  1xu  and  2xu  , one after another, in the positive x2 direction toward 

the last control volume (the gray control volume in Figure 4). This procedure can also be applied for 

the next control volumes in the positive x1 direction which leads to obtaining two velocity 

components as a function of other unknowns. 

It should be noted that for a mixture of N species, only (N-1) continuity equations can be considered. 

Therefore, for a ternary fluid, all three velocity components can be obtained as functions of other 

unknowns, similar to the procedure explained for a binary fluid. 

 
Figure4. The two-dimensional grid used in section 2.2. 

2.3 Analyzing the equation of motion (for a pure fluid or a nanofluid) 

The equation of motion: 

.u

u

p.τg


, where p is the pressure, τ is the shear stress tensor, and g is the gravity 

vector. Considering the above equation, it can be seen that the pressure appears only as p. The above 
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equation as a vector equation with components in each of the three coordinate directions x1, x2 and 

x3, gives three   discretized   equations   in   the   three   coordinate   directions   in   which   p   

appears as  
1

p
Vol

x

   
  

  
 ,

2

p
Vol

x

   
  

  
 or 

3

p
Vol

x

   
  

  
 where Vol is the volume of the 

control volume. Considering the boundary condition due to the pressure in one of the three coordinate 

directions (e.g., x1), Pi in Figure 5, we have 



i

known

p(n1) p
Discretized formfor node n1 other terms 0, (4.a)

d0

p(n2) p(n1)
Discretized formfor node n2 other terms 0. (4.b)

d1

Vol

Vol

 
 

    
 
 

 
    

 

 

 

Figure5. A part of grid used in section 2.3. 

Considering Eq. (4.a), P(n1) can be obtained as a function of other unknowns, then, using P(n1) in Eq. 

(4.b), P(n2) can also be obtained as a function of other unknowns, and so on. Therefore, we can obtain 

all the pressures at the nodes of control volumes, one after another, in the positive x1direction. 

 

Figure6. A schematic flowchart which shows an overall view of the proposed approach. 

3. STEADY LAMINAR FLOW OF A NANOFLUID (BINARY FLUID) AND A PURE FLUID IN A 

HORIZONTAL CIRCULAR TUBE (A CASE STUDY) 

The flow of fluids in circular tubes is encountered frequently in physics, chemistry, biology, and 

engineering [21], so one of the most widely used flow geometries in literature is the three- dimensional 

flow of a fluid through a circular tube. When we speak of “three-dimensional flow”, we mean that all 

the flow parameters (e.g., velocity) are functions of three space coordinates, adopting the cylindrical 

coordinates, which are the natural coordinates for describing positions in a pipe of circular cross 

section [21], we consider here the radial, angular and axial directions (r,,z). 

Here, we consider a nanofluid/pure fluid in the three-dimensional developing laminar flow in a 

circular tube, as the result of a pressure difference, this flow geometry may be considered in both heat 

and mass transfer problems. Nanofluids can be considered as single phase fluids with changed thermo 

physical properties [22]. The conservation equations are given in vector notation. 

3.1. Differential Equations 

The equation of continuity: 

   nanofluid . u 0, purefluid . u 0, (5)
nf

      
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where 
nf

 is the density of the nanofluid.  

The equation of continuity for the nanoparticle: 

 . u .(I) 0, (6)p  

where I is the vector of the mass rate due to the nanoparticle diffusion.  

The equation of motion: 

       nanofluid . uu .τ g, purefluid . uu .τ g, (7)
nf nf

p p                                       

The equation of energy: 

         nanofluid . u . 0, pure fluid . u . 0, (8)
nfnf

c T k T c T k Tp p          

where T  is the temperature ,  p nf
c is the specific heat of the nanofluid,  pc  is the specific heat of 

the pure fluid, 
nf

k  is the thermal conductivity of the nanofluid and k  is the thermal conductivity of 

the pure fluid. There is no need to give the boundary conditions since the proposed approach has no 

dependency on boundary conditions. Equation of motion, Eq. (7), gives three partial differential 

equations, therefore, in general we have six partial differential equations for the nanofluid (binary 

fluid) and five partial differential equations for the pure fluid. In general, unknowns are 

, , , ,r zT p u u u
and  (for the nanofluid). For instance, to obtain the temperature profile for heat 

transfer problems, theses differential equations must be solved simultaneously. 

3.2. Discretized Equations 

The domain (tube) is divided into discrete control volumes in which the nodal points are placed. 

Figure 7 shows the shape of a control volume in the domain which has six faces labeled north(n), 

south(s), west(w) ,east(e), top(t) and below(b). Considering unit vectors r zθ
δ ,δ ,δ in three directions, 

face w is the face with the outwardly directed normal vector in zδ  direction. For faces (e, n, s, t, b), 

the outward normal vectors are in (- zδ ), rδ ,(- rδ ),
θ

δ and (-
θ

δ ) directions, respectively. Applying the 

Gauss’ divergence theorem, the discretized equations can be obtained, here, we neglect to give details 

of obtaining the discretized equations.  

           
t b

0, (9)
e w n sz z r rnf nf nf nf nf nf

u A u A u A u A u A u A          
 

where 
nf

 is replace by   in the discretized form of Eq. (5) for the pure fluid. 

 

Figure7. Illustration of a control volume in cylindrical coordinates. 
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The discretized form of Eq.(6): 

           
           

t be w n s

0. (10)e w n s t bz z r r

p z p z p r p r p pu A u A u A u A u A u A

I A I A I A I A I A I A 

        

     

 

 

The discretized form of Eq. (7) for the nanofluid, in the radial direction: 

       

   

               

Snode

t b

e w n s

t b

0, (11)e w n s

z r z r r r r rnf nf nf nf

r rnf nf

zr zr rr rr r r nf

u u A u u A u u A u u A

p p
u u A u u A V

dr

A A A A A A g V

 

 

   

 

      

   


   

       

 

where V is the volume of the control volume, dr is the node spacing in the radial direction, 
node

p is 

the pressure at the considered node and
S

p  is the pressure at its neighboring node in the radial 

direction, see Figure 8,  and 
nf

  is the average of 
nf

 which can be evaluated at the control volume 

node. Also, 
nf

 is replaced by   in the above equation for the pure fluid. 

 

Figure8. Two-dimensional illustration of a control volume with its surrounding nodes. 

The discretized form of Eq. (7) for the nanofluid, in the angular direction: 

       

   

            

Bnode

e w n s

t b

0, (12)
e w n s t b

z z r rnf nf nf nf

nf nf

z z r r

u u A u u A u u A u u A

p p
u u A u u A V

d

A A A A A A

   

   

     

   

 


     

   


  

      

 

where d  is the node spacing in the angular direction and 
Bp  is the pressure at its neighboring node 

in the angular direction. Also, 
nf

 is replaced by   in the above equation for the pure fluid.   

The discretized form of Eq. (7) for the nanofluid, in the axial direction: 

       

   

            

Wnode

e w n s

t b

0, (13)e w n s t b

z z z z z r z rnf nf nf nf

z znf nf

zz zz rz rz z z

u u A u u A u u A u u A

p p
u u A u u A V

dz

A A A A A A

 

 

   

 

     

   


  

      
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where dz is the node spacing in the axial direction and
Wp  is the pressure at its neighboring node in 

the axial direction. Also, 
nf

 is replaced by   in the above equation for the pure fluid. 

The discretised form of Eq. (8) for the nanofluid: 

           

     

.

e w n s

t b e w

1 1
0 (14)

n s t b

z p z p r p r pnf nf nf nf

p p nf nfnf nf

nf nf nf nf

u c TA u c TA u c TA u c TA

T T
u c TA u c TA k A k A

z z

T T T T
k A k A k A k A

r r r r

 

   

 

 

 



 

 

 

    
    

    

          
        

          

 

Also, 
nf

k and  p nf
c are replaced by k and  pc , respectively, in the above equation for the 

pure fluid. 

The discretized equations due to each control volume, construct a system of nonlinear equations 

which its size depend on the number of control volumes in the domain as 

Number of partitions in the r-direction = r-part

Number of partitions in the θ- direction = θ-part

Number of partitions in the z- direction = z-part

Number of control volumes in the domain = (r-part) (θ-

  

    

tube surface

part) (z-part)=n

equations= Eq.(5) Eq.(6) + Eq.(7) + Eq. (8) + Eq. (9) + Eq.(10) 6 n

unknowns =[n] [n] [n] [n] [n] [n (z-part) ] 6

=

n n n n n n

system(1.a), Non-isothermalnanofluid

=

z rp u u uT 









     

  



 n (z-part)

.

 
 
 
 

 
 
 

System (1.a), as a very general case, is due to the flow of a nanofluid with varying temperature, while 

we can consider other conditions which lead to simpler systems. Considering the flow of a nanofluid 

with constant temperature (the temperature T and the energy equation, Eq. (14), are removed from the 

nonlinear system), we have 

  

   

tube surface

equations= Eq.(5) Eq.(6) + Eq.(7) + Eq. (8) + Eq. (9) 5 n

unknowns =[n] [n] [n] [n] [n (z-part) ] 5 n (z-part)

=

n n n n n

system(2.a), Isothermal nanofluid .

=

z rp u u u





 
 
 
 

      
 
 

 





 

Considering the pure fluids, we have 

 

   

tube surface

equations= Eq.(5) + Eq.(7) + Eq. (8) + Eq. (9) + Eq.(10) 5 n

unknowns =[n] [n] [n] [n] [n (z-part) ] 5 n (z-part)

=

n n n n n

system(3.a), Non-isothermalpure fluid ,

=

z rp u u uT 





 
 
 
 

      
 
 

  





 

 

  

tube surface

equations= Eq.(5) + Eq.(7) + Eq. (8) + Eq. (9) 4 n

unknowns =[n] [n] [n] [n (z-part) ] 4 n-(z-part)

=

n n n n

system(4.a), Isothermal pure fluid .

=

z rp u u u





 
 
 
 

    
 
 

 




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Indeed, nonlinear systems (2.a), (3.a) and (4.a) are simplified version of system (1.a), which may be 

encountered in transport phenomena problems. When the equations outnumber the unknowns, 

combining the extra equations with the other remaining equations, yields a system with the same 

number of unknowns and equations. 

4. NUMERICAL ALGORITHMS 

To solve nonlinear equations, optimization algorithms can be used in which a merit function f is 

defined as follows [19]: 

i

21 1 2f(X) F(X) F , (15)
2 2

    

where F is the residual vector and X is the vector of unknowns. The steepest descent method (SDM), 

as an iterative algorithm, may be used for the search direction S:

1 1

n

n

f

x x

S= f = , X= . (16)

f x

x

 
   
   
    
      
  

   

Since derivatives due to f are not practically available, f  is approximated by the finite difference: 

f ( ) ( )
. (17)

x

f x f X



  



 

Indeed, for estimation each component of f , all components of F should be evaluated. Therefore, at 

each iteration of the SDM, the computer program must evaluate  
2

num discretized equations where 

num is the number of either equations or unknowns. However, the SDM can be excruciatingly slow 

on difficult problems [19]. A powerful search direction, as the quasi-Newton search direction, is the 

Levenberg-Marquardt method (LMM): 

T T

1 1

n1

n n

n1

(J J+λI)S J F,      (18)

F F

x x

J= , (19)

F F

x x

 

  
 
  
 
 
  
  
 



 



 

where J  is the Jacobian of F, 
TJ  is the transpose of J ,   is a positive damping factor and I is the 

identity matrix. Computation of S in the LMM includes three steps: 1) estimation of the Jacobian 

matrix 2) calculation of the matrix 
TJ J  3) solving a linear system. The Jacobian is estimated column 

by column, which may be expensive where all equations are evaluated for each unknown since it is 

practically very difficult to separate related equations during evaluation of an unknown. In order to 

estimate the Jacobian for the nonlinear system at each iteration, the computer program must evaluate 

 
2

num  discretized equations. Also, the Jacobian occupies  
2

num  units of memory (it can be 

assumed as 2 Bytes for each real number). Each element of the matrix 
TJ J  is obtained by multiplying 

of two columns of the Jacobian. Since this matrix is symmetric, it is sufficient to calculate  

  m m 1 2  elements for matrix m m , therefore,   2m m 1 2  multiplications and 

  2m m 1 2  additions are required. In order to calculate 
TJ J  for the nonlinear system, 
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     2
num num 1 2   multiplications and      2

num num 1 2   additions are required 

and 
TJ J  occupies  

2
num  units of memory. A common method for solving a linear system is the 

Gaussian elimination method where the pivot elements must be non-zero. For stability, complete 

pivoting may be used to ensure correct solution in which all entries in the whole sub matrix are 

considered (interchanging rows and columns to achieve the highest accuracy). In order to solve the 

linear system in the nonlinear system,  num 1  complete pivot operations (searching in sub matrix 

and interchanging rows and columns) and  num 1  row operations are required. 

5. APPLYING THE PROPOSED APPROACH FOR THE CASE STUDY 

5.1. The Pure fluid 

 

Figure9. Two-dimensional illustration of the tube cross section due to control volumes. 

 

Figure10. An illustration of the partitions made by the finite volume method in the tube. 

The control volumes which their south faces lie in r =0, e.g. the gray region in Figure 9 or S1 in Figure 

10, may now be considered where 0s( )A  (because of the physical property of circular tubes) and 

therefore  Eq. (9) can be simplified as  

         
t b

0, (20)e w nz z ru A u A u A u A u A          

where   can be assumed as a function of temperature, therefore,  nru  is then obtained as a 

function of T , u and zu : 

 
       

 
t bw e

. (21)n
n

z z
r

u A u A u A u A
u

A

    



 



 

Hence, all radial velocities ( ru ) in this region, S1 in Figure 10, are obtained as a function of T , u

and zu . To obtain ru in the top surface, S2 in Figure 10, Eq. (9) may be re-arranged as 
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 
         

 
t bw e s

, (22)n
n

z z r
r

u A u A u A u A u A
u

A

     



  



 

where s( )ru  has been obtained as n( )ru from the control volume which has a smaller radius (S1 in 

Figure 10). Similarly, moving from S3 to Sn-1 in Figure 10, all radial velocities  ru  are obtained as a 

function of T , u and zu . Therefore, all radial velocities and discretized forms of the equation of 

continuity, Eq. (9), are removed from the unknowns and nonlinear equations, respectively (except the 

discretized equations due to the control volumes which their north faces lie in r=R, Sn in Figure 10). 

The discretized form of equation of motion in the axial direction, Eq. (13), for the control volumes 

which their west faces lie in z=0 may be rearranged as 

       

   

            
node boundary

e w n s
0.5

, (23)
t b

e w n s t b

z z z z z r z r

z z

zz zz rz rz z z

u u A u u A u u A u u A

dz
p p u u A u u A

V

A A A A A A

 

 

   

 

     

 
   

  
    

 
      
 

where 
boundary

p , which plays the same role as 
W

p , as the boundary condition is given. Coefficient 

0.5 in Eq. (23) stands for the distance of the boundary at z=0 to the first node in the axial direction 

which is equal to 0.5 dz .  Here, 
node

p  is obtained as a function of T , u and zu  (since ru  has 

been obtained as a function of T , u and zu ) and it can be used as Wp  in computation due to the 

next control volume on the right hand side, e.g. node E in Figure 8, and so on: 

       

   

            
node W

e w n s

, (24)
t b

e w n s t b

z z z z z r z r

z z

zz zz rz rz z z

u u A u u A u u A u u A

dz
p p u u A u u A

V

A A A A A A

 

 

   

 

     

 
   

 
    

 
      
 

 

All the pressures (p) can be obtained by this method as a function of T , u  and zu .  

Therefore, all the pressures and discretized forms of the equation of motion in the axial direction, Eq. 

(13), are removed from the unknowns and nonlinear equations, respectively.  

It can be seen in Eqs. (23) and (24) that there is no need to give the shear stress equation, i.e. to 

determine the flow behavior, hence, the proposed approach is independent of Newtonian or non-

Newtonian behavior of fluids. 

The new corresponding nonlinear systems are now summarized as follows: 

 

  

z-part

z-part

equations= Eq.(5) + Eq.(7) + Eq. (8) + Eq.(10) 3 n+( )

unknowns =[n] [n] [n] 3 n

=

n n n
system(3.b), Non-isothermalpure fluid ,

=

zu uT 





 
 
 

  
 
 

 

 

 

z-part

equations= Eq.(5) + Eq.(7) + Eq. (8) 2 n+(z-part)

unknowns =[n] [n] 2 n

=

n n
system(4.b), Isothermal pure fluid .

=

zu u





 
 
 

 
 
 



 

It can be seen that system (3.b) in comparison with its corresponding system, i.e. system (3.a), gives a 

reduction of 40% in the total number of the unknowns and equations. The reduction in this number for 

system (4.b) is 50 % compared to its corresponding system (4.a).  
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To show the importance of these reductions in the size of two nonlinear systems, it is assumed that, as 

an example, the tube is divided into 10,000 control volumes. Figure 11 compares the number of 

equations evaluated at each iteration of LMM for estimation of the Jacobian matrix (also the number 

of equations evaluated at each iteration of SDM) in which systems (3,b) and (4,b) reduce 

computations by 64 and 75%,  respectively, relative to their corresponding systems (3,a) and (4,a). 

Indeed, we can save considerable computer time in the calculation of the Jacobian matrix in LMM (or 

in the calculation of f at each iteration of SDM) by using new nonlinear systems. Figure 12 shows 

the amount of allocated memory due to the Jacobian matrix (or the matrix 
TJ J ) in which the 

reductions obtained are same as those obtained in Figure 11, therefore, the storage requirements is 

considerably reduced by the proposed approach.  

It should be noted that reduction rates due to Figure 11 and Figure 12 are independent of the number 

of the control volumes in the domain (based on the discussion presented in section 4) as follows: 

Number of control volumes=n 

Number of equations for each control volume due to main system=m1 

Number of equations for each control volume due to reduced system=m2 

Reduction rate due to number of equations evaluated at each iteration of LMM for estimation of the 

Jacobian matrix (the number of equations evaluated at each iteration of SDM) = 

 

 

2 2

2

n m2 m2

m1n m1

1 1 .




 
   

 
 

Reduction rate due to the amount of allocated memory for the Jacobian matrix (or the matrix
TJ J ) =

 

 

2 2

2

n m2 m2

m1n m1

1 1 .




 
   

 
 

Figure 13 comprises the number of additions (or multiplications) in the calculation of  
TJ J  matrix at 

each iteration of LMM in which systems (3,b) and (4,b) reduce computations by 78 and 87%, 

respectively, relative to their corresponding systems (3,a) and (4,a), therefore it is clear that the 

computer time for this computation is also significantly reduced by the proposed approach. Also, 

reduction rates due to Figure 13 are dependent on the number of the control volumes in the domain as 

follows: 

Reduction rate due to the number of additions (or multiplications) in the calculation of  
TJ J  matrix at 

each iteration of LMM =
     
     

2
2

2

m2n m2 n m2
m2

m1n m1 n m1 m1

1
1 2

n1 1
1

1 2
n

 

 

 
    

     
    

 

 

 

Figure11. Comparison of the number of equations evaluated in the estimation of Jacobian matrix in LMM (or 

the number of equations evaluated at each iteration of SDM), the number of control volumes in the domain 

(tube) = 10,000.  
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Figure12. Comparison of the amount of allocated memory for the Jacobian matrix (or the matrix
TJ J ) in LMM 

(GigaBytes), the number of control volumes in the domain (tube)= 10,000.  

 

Figure13. Comparison of the number of additions (or multiplications) for calculation of  
TJ J  matrix at each 

iteration of LMM, the number of control volumes in the domain (tube)= 10,000.  

5.2. The Nanofluid (Binary Fluid) 

The discretized form of Eq. (6), Eq. (10), is written as 

           
t b

other terms 0. (25)
e w n sp z p z p r p r p pu A u A u A u A u A u A           

Here, Eqs. (9), (25), (11), (12), (13) and (14) are handled to construct more efficient nonlinear system. 

The control volumes which their south faces lie in r =0, the gray region in Figure 9 or S1 in Figure 10, 

are considered. Since 0s( )A  , Eqs. (9) and (25) can be simplified as  

         
t b

0, (26.a)
e w nz z rnf nf nf nf nf

u A u A u A u A u A          

         
t b

other terms 0. (26.b)
e w np z p z p r p pu A u A u A u A u A         

If  nru is removed between Eqs. (26.a) and (26.b), the following equation can be derived: 

 
        

 
        

t b

t b

1
other terms

e w
n

1
0. (27)

e w
n

p z p z p p
p

z znf nf nf nf
nf

u A u A u A u A
A

u A u A u A u A
A

 

 

   


   


 
   
 
 

 
    
 
 

  


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Using Eq. (27) for the control volume which its west face lies in z=0 and its south face lies in r=0, 

 ezu  can be obtained as a function of  , u  and T : 

 
 
 

     

 

     

 

t b

t b

other terms
boundary

n1 , (e
e e

boundary
nn

n

p z p p

p

z
pnf znf nf nf
pnf

nf

u A u A u A

A

u
A A u A u A u A

AA
A

 

 

  



    




    
        
        
    

  
   
         

   
    
    

     
  

  


28)  

where the subscript “boundary” denotes the boundary conditions at the tube inlet. This  ezu  can be 

used as  wzu  in Eq. (27) to obtain  ezu for the control volume on the right hand side, e.g. node E 

in Figure 8, and so on, hence, all the axial velocities are obtained in this region, S1 in Figure 10, as  a 

function of   , u and T , also, using either Eq. (26.a) or Eq. (26.b),  nru  can then be obtained as a 

function of   , u and T  in this region. Therefore, for the control volumes which their south faces lie 

in r =0, all zu  and ru  are obtained as a function of   , u and T .  This approach can be used for top 

control volumes, S2 in Figure 10, therefore  nru is removed between Eqs. (9) and (25) as 

 
          

 
          

t b

t b

1
other terms

e w s
n

1
0. (29)

e w s
n

p z p z p r p p
p

z z rnf nf nf nf nf
nf

u A u A u A u A u A
A

u A u A u A u A u A
A

 

 

    


    


 
    
 
 

 
     
 
 

  



Similarly, for the control volume which its west face lies in z=0,  ezu can be obtained from Eq. (29) 

as a function of   , u and T : 

 
 
 

       
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       

 

t b

t b
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e e
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u A u A u A u A
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u
A A u A u A u A u A
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A

 

 

   



     




    
        
        
    

  
  
    

   
  

    
   
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
, (30)





 
 
 
 
 



where s( )ru  has been obtained as n( )ru from the previous control volume with a smaller radius (S1 

in Figure 10). This  ezu  can be used as  wzu  in Eq. (29) for the next control volume on the right 

hand side, e.g. node E in Figure 8, to obtain zu in this region, S2 in Figure 10. Also, using either Eq. 

(9) or Eq. (25),  nru  can be obtained as a function of   , u and T . By repeating this method from 

S3 to Sn-1, all  ru  and  zu  are obtained as a function of   , u and T  in these regions. The 

control volumes which their north faces lie in r =R (Sn in Figure 10) are now considered, since

  0
nru  , Eq. (9) is simplified as  

         
t b

0. (31)
e w sz z rnf nf nf nf nf

u A u A u A u A u A          
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For the control volume which its west face lies in z=0 and its north face lies in r=R,  ezu  can be 

obtained from Eq. (31): 

 
       

 
boundary t bs

, (32)e
e

z rnf nf nf nf
z

nf

u A u A u A u A
u

A

    



  
 
 
 



where s( )ru  has been obtained as n( )ru  from the previous control volume with a smaller radius (Sn-1 

in Figure 10). This  ezu  can be used as  wzu  in Eq. (31) for the next control volume on the right 

hand side, e.g. node E in Figure 8, to obtain zu in this region. Therefore, all  ru  and  zu  are 

obtained as a function of   , u and T and they are removed from the unknowns. Also, all 

discretized equations of the nanofluid continuity, Eq. (9), and discretized equations of the nanoparticle 

continuity, Eq. (25), are removed from the  nonlinear equations except the discretized equations of the 

nanoparticle continuity for the control volumes which their the north faces lie in r=R (Sn in Figure 10). 

All pressures can also be obtained from Eq. (13) as a function of   , u and T  similar to the pure 

fluid explained in section 5.1. Hence, all the pressures and discretized equations due to the equation of 

motion in the axial direction, Eq. (13), are removed from the unknowns and nonlinear equations, 

respectively. 

The new nonlinear systems are now summarized as follows: 

 

  

z-part

equations= Eq.(6) + Eq.(7) + Eq. (8) + Eq.(10) 3 n+(z-part)

unknowns =[n] [n] [n] 3 n

=

n n n
system(1.b), Non-isothermalnanofluid ,

=
uT 





 
 
 

  
 
 

 

 

 

z-part

equations= Eq.(6) + Eq.(7) + Eq. (8) 2 n+(z-part)

unknowns =[n ] [n] 2 n

=

n n
system(2,b), Isothermal nanofluid .

=

u






 
 
 

 
 
 



 

It can be seen that system (1.b) in comparison with its corresponding system, system (1.a), gives 

reduction of approximately 50% in the total number of the unknowns and equations. The reduction in 

this number for system (2.b) is approximately 60 % compared to its corresponding systems (2.a). 

Once again, as an example, it is assumed that the tube is divided into 10,000 control volumes. Figure 

14, which is similar to Figure 11, compares the number of equations evaluated at each iteration of 

LMM for estimation of the Jacobian matrix (the number of equations evaluated at each iteration of 

SDM) in which systems (1.b) and (2,b) reduce computations by 75 and 84%,  respectively, relative to 

their corresponding systems (1.a) and (2,a). Figure 15 , which is similar to Figure 12, compares the 

amount of allocated memory due to the Jacobian matrix (or the matrix 
TJ J ) in which the reductions 

obtained are same as those obtained in Figure 14. Figure 16, which is similar to Figure 13, comprises 

the number of additions (or multiplications) in the calculation of  
TJ J  matrix at each iteration of 

LMM in which systems (1.b) and (2,b) reduce computations by 87 and 94%, respectively, relative to 

their corresponding systems (1.a) and (2,a).  
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Figure14. Comparison of the number of equations evaluated in the estimation of Jacobian matrix in LMM (or 

the number of equations evaluated at each iteration of SDM), the number of control volumes in the domain 

(tube)= 10,000.  

 

Figure15. Comparison of the amount of allocated memory for the Jacobian matrix (or the matrix 
TJ J )  in 

LMM (GigaBytes), the number of control volumes in the domain (tube)= 10,000. 

 

Figure16. Comparison of the number of additions (or multiplications) for calculation of  
TJ J  matrix at each 

iteration of LMM, the number of control volumes in the domain (tube) = 10,000. 
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6. CONCLUSION 

In this paper, we have proposed an efficient computational approach for laminar single phase flow of 

a fluid (a single component or a homogeneous mixture) in which the size of the nonlinear system due 

to these problems is greatly reduced leading to a considerable improvement in computer 

implementation of numerical algorithms. In general, the proposed approach gives a reduction of 40% 

in the total number of the unknowns and equations for the pure fluid. The reduction in this number for 

the nanofluid (binary fluid) is 50%. Also, it can be about 57% for the ternary fluid. 
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