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1. INTRODUCTION 

Heat and mass transfer from spheres immersed in fluids occur in many engineering industries, 
technologies and scientific applications. Among these are: drying, adsorption, extraction,  fixed  and 
fluidized beds, cloud physics, aerosol physics, combustion  of  fuel  droplets and cooling  of  spherical 
uranium fuel elements in certain types of nuclear reactors. 

Although an individual spherical particle or bubble is rare to be found in practical systems, yet 
most of the information of the scientific literature deals with studies of the individual sphere or 
bubble. The heat 

Conduction from a single sphere to the surrounding mass of fluid is given as follows (Leal 1992) 

( ) 2sNu                                                                                                                                              (1) 

The above equation applies also to the case of mass transfer simply by replacing Nu by the Sherwood 
number Sh. Morrison and Reed ( 1974)  derived a solution for the conductive heat transfer 
from two touching spheres. They found that the Nusselt number of a sphere was reduced by the 
presence of a touching sphere according to the following 

2ln 2Nu                                                                                                                                            (2) 

The problem of two, three and multi-sphere or multi-bubble system are now being addressed by a 
number of research workers e.g. Ruzicka ( 2000)  and Ramachandran  et al. ( 1989)  who solved 
the forced convective heat transfer to a linear array of three spheres by using the finite element 
method. In general, an increased rate of convective heat or mass transfer with sphere separation 
was obtained. 

The molecular heat conductin and mass diffusion of the two spheres are governed by the 
following phenomenon: t he  diffusion of heat or mass from one sphere moderates the gradient of 
temperature and concentration around the other sphere and thus Nu or Sh are decreased with the 
separation distance between spheres. This phenomenon is encountered in low Reynolds number 
flow (e.g. Chen and Pfeiffer (1970), Aminzadeh et al. (1974) and Ramachandran and Kleinstreuer 
( 1985) . 

The following conclusions were deduced from the literature review: 

a. Aconfusion exists as to the increase or decrease of heat transfer with sphere spacing. (see 
for example Mulholand et al. (1988). 

b. The majority of the theoretical research was confined to the numerical solution of the conservation 
equations, except for the work of Kendoush (2007). 

c. Two-sphere interactions were not treated experimentally, except for the works of Wang and 
Liu 
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(1992) of the two solid spheres, Kok (1989), and Sanada (2005) of the two bubbles. 

The ideal case of the present paper serves the purpose of modeling practical situations of 
conductive flow of heat in a system of two spheres. The two-sphere analysis may be considered 
as the lowest order effect of thermal interaction of multi-spheres in a swarm. The present 
presentation may be considered as a complementary to that of Kendoush (2007).  

2. THEORETICAL ANALYSIS  

Assume  two  spheres  of  equal  radii  a  separated  by  a  certain  distance   L  as  shown  in  Fig.  
1. Yovanovich (1978) developed a method of dealing with heat conduction in complicated 
geometries.  The method depends on choosing an orthogonal curvilinear coordinate system 
which is most appropriate for the  problem  at  hand,  and  solving  Laplace’s  equation  in  that  
coordinate  system.  Accordingly,   the bispherical coordinate system was chosen here for the 
present problem. The heat conduction equation, in bispherical coordinates, is given as follows 

(𝑐𝑜𝑠ℎ𝜂−𝑐𝑜𝑠𝜃)3
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Fig1.  The two spheres in bispherical coordinates. 

It will be supposed that heat is generated within the two spheres at a rate such that their surface are 
maintained at a uniform temperature Ta . The boundary conditions, which specify the temperature 

and heat flow of the system become the following 

𝑇 = 𝑇𝑎  at    𝜂 = 𝜂𝑜                                                                                                                               (4) 

𝜕𝑇

𝜕𝜂
= 0  at 𝜂 = 0                                                                                                                                     (5)  

𝜕𝑇

𝜕𝜃
= 0  at 𝜃 = 0 −  𝜋                                                                                                                            (6)  

Laplace’s Eq. (3) is solved by separation of variables. A solution of sufficient generality for our 
purpose is the following 

𝑇 = (𝑐𝑜𝑠ℎ 𝜂 − 𝑐𝑜𝑠𝜃)1/2[𝐵𝑒(𝑛+0.5)𝜂 + 𝐷𝑒−(𝑛+0.5)𝜂]𝑃𝑛(𝑐𝑜𝑠𝜃)                                                           (7) 

where B and D are arbitrary constants and (cos )np  is the associated Legendre function of the first 

kind. Applying the boundary conditions makes the complete solution as follows 
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𝑇 = 𝑇𝑎[2(𝑐𝑜𝑠ℎ 𝜂 − 𝑐𝑜𝑠𝜃)]0.5 ∑ 𝑒−(𝑛+0.5)𝜂𝑜∞
𝑛=0

𝑐𝑜𝑠ℎ(𝑛+0.5)𝜂

𝑐𝑜𝑠ℎ(𝑛+0.5)𝜂𝑜
𝑃𝑛(𝑐𝑜𝑠𝜃)                                              (8) 

Assume that the mass of the stationary fluid round the two spheres has a constant thermal 
conductivity k. 

The heat flux from the spheres surfaces S o is given by the following 
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The metric coefficients of the coordinates are the following 

1 2g g                                                                                                                                                 (11) 
 

And 
2 2

3 2

sin

(cosh cos )

c
g

n







                                                                                                                      (12) 

The following dimensions are defined as follows: / sinh oa c n  and 2 / tanh oL c n . The temperature 

gradient is obtained from Eq. (8) and substituted into Eq. (9) to get the following equation 

0

( 1) sinh
4

sinh( 1)

n

o
a

n o

n
q akT

n n










                                                                                                              (13)  

Equating the above equation to 2(4 )q h a T , gives the following equation 
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Or the following 

1

10

( 1) sinh cosh
2

sinh( 1)cosh
2

n

n

L

a
Nu

L
n

a







 
  

 
 

  
 


                                                                                                                   (15) 

Equation (15) reduces to the single sphere solution (that is, Nu=2 of Eq.(1) upon increasing the value 
of ɳo or L. This increase tends to make the two spheres an infinite distance apart. On the other hand, 
when ɳo=0.2 (the case of almost touching spheres), we obtain from Eq. (15) the solution of Morrison 
and Reed [2] (that is, Nu=2ln 2 of Eq. (2)). Dividing Eq. (15) by the single sphere, we get the 
following equation 

0

/ ( ) ( 1) sinh / sinh( 1)n

s o o

n

Nu Nu n 




                                                                                                 (16) 

3. DISCUSSION 

The above analyses of the two spheres apply to both fluid and solid spheres. Figure2 shows that 
when the centers of the spheres are only 4 radii apart the Nusselt number is approximately 1.6 and 
when the centers of the spheres are 100 radii apart the Nusselt number is approximately 1% less  
than the limiting value of 2. It can be deduced from Fig.2 that as the number of spheres is 
increased the Nusselt number becomes progressively smaller until a condition is reached in which a  
particular sphere is surrounded by multiple spheres of the same surface temperature. This means 
that a point will be reached where the Nusselt number approaches zero. Figure 2 shows a 
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comparison between the present solution and that of Morrison and Reed ( 1974) . Both solutions 
agree on the decrease of Nu number with separation but the present solution has the following 
merits  

(i) It is in a closed form. This would enable researchers to utilize the present solution together with 
the earlier solution of the author (Kendoush (2007)) to obtain the complete solution of heat 
transfer to two bubbles vertically above one another, as follows 
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where 
3[1 ( / ) ]H a L   

and 
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Subscripts A and B refers to top and bottom bubbles respectively. 

(ii) The present results are closer to those of Russell (1911) than Morrison and Reed ( 1974) . 
Russell (1911) calculated electric charges on two spherical condensers whose surfaces were at 
the same potential. His results were presented in approximate formulas and tables.

 

 

Fig2. Comparison between the present solution (------) and that of Morrison and Reed ( 1974)  ( -------)

 4. CONCLUSION 

The present paper revealed and proved analytically the following phenomenon: 

“A decrease in the heat conduction and mass diffusion between two solid or fluid spheres 
occurs when they approach one another.” This is contrary to the case of heat convection Kendoush 
(2007). 

In general, the present analytical results compared well with the available theoretical models. 
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NOMENCLATURE 

ɑ           =  radius of the sphere 

h  =  convective heat transfer coefficient 

k  =  thermal conductivity of the fluid 

L           =  the distance between centers of the two spheres   

    

 

q           =  the heat flux on the sphere surface 

 
T           =         temperature 

Ta        =           absolute temperature of the sphere surface 
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