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1. INTRODUCTION 

Source localization in seismology is very classic and fundamental concerns that provide significance 

to identify the problems such as seismic activity, Earth’s interior structure, acoustic behavior of Rock 

masses, and rock support under seismic loading related to Rock mechanics and seismology (Codeglia 

et al., 2017;Warpinski, 2009; H. Wang & Ge, 2008;Dong et al., 2018). Moreover, source localization 

plays a significant role in controlling and maintaining the sub-surface risk of earthquake disaster and 

mining earthquake. 

MS Monitoring technology is such a useful tool which have been widely applied in the field of mining 

and geotechnical engineering to locate the fracturing places in rock masses caused by Rock burst, 

water inrush, hydraulic fracturing, and various mine hazards (Ge, 2005; Jiang et al., 2019; Ma et al., 

2018; A. Wang et al., 2019). MS Monitoring Source localization is a beneficial technique for real-

time monitoring of mine seismic hazard because it forecasts the burst location that suggests 

meaningful prospects in rockburst control (Pu et al., 2019).  

However, various factors affect accurate source location such as inaccurate velocity model, improper 

tuning of optimization algorithm parameters, arrival picking, etc. For these reasons,accurate precision 

in Source location has become an essential topic of research for decades. 

The current phase of source localization in MS monitoring in mining engineering still inspired by the 

concept of seismology, Geiger established a mathematical approach based on the principle of time 
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difference of arrival and calculated the source location of the natural earthquake (Geiger, 1912), based 

on his theory Lienert et al. established an algorithm called HYPOCENTER (Lienert et al., 1986). 

However, Nelson and Vidale made a further improvement in the existing algorithm implementing the 

concept of 3D velocity modeling (Nelson & Vidale, 1990). Crosson introduced the idea of the Joint 

inversion localization method, which uses the least square method and inverts a new velocity structure 

along with source parameters (Crosson, 1976). Pavlis et al. used the parameter separation method to 

solve the coupled velocity parameters and source parameters separately, which significantly improves 

the calculation efficiency (Pavlis & Booker, 1980). Waldhauser and Ellsworth put forward the 

concept of earthquake location based on the Double difference algorithm (Waldhauser & Ellsworth, 

2000). Relying on such pioneering methods, various scholars have approached new source 

localization methods, which have been widely applied in mine MS source localization. Lin et al. 

introduced a combined linear location and Geiger location method that increased the precision of MS 

source location (Lin et al., 2010). Dong et al. presented a new source location method that does not 

need to measure the wave velocity in advance (Dong et al., 2011). Chen et al. proposed a Hierarchical 

strategy based on Particle swarm optimization and much-improved location accuracy (Chen et al., 

2009). Huang et al. came with an idea of the relocation method of MS source location that 

significantly outperformed traditional methods (Huang et al., 2016). Dong et al. introduced an 

analytical solution for source calculation, which converts the nonlinear equation of time difference of 

arrival to linear form and obtains the solution (Dong, 2014).  

Some of the localization mentioned above methods are based on a linear approach; however, the right 

seismic problems are more complex and nonlinear. MS source location accuracy is dependent on 

various factors such as the distribution of sensors array, velocity model, picking of arrival time, which 

greatly influence the accuracy (Longjun et al. 2013). The current approach is mainly based on 

nonlinear localization methods, which is far better than the linear approach because the seismic 

inversion process is carried out by the least square method to find the minimum residual. In this paper, 

we have proposed a novel Teaching Learning-based optimization (TLBO) technique to find the 

optimal solution of source location solving a nonlinear equation based on time difference of arrivals. 

It uses the least-square sum of observed arrival time differences for all pairs of sensors as a target 

function and solves the source coordinates and wave velocity. Traditionally applied heuristic 

algorithms in microseismic research often requires proper tuning of algorithm-specific parameters to 

find the optimal solution; for instance, traditional Evolutionary algorithms such as Genetic 

algorithm(GA) uses mutation probability, crossover probability, selection operator, etc. and inertia 

weight, acceleration constants, particle velocity, etc. in case of Swarm intelligence algorithms like 

Particle swarm optimization (PSO) along with standard controlling parameters such as population size 

and several generations. Improper tuning of algorithm-specific parameters either increases 

computational burden or yields the non-unique solution. However, the proposed TLBO overcome 

such difficulties because it does not require to compute any algorithm-specific parameters; instead, it 

simply works on relying standard controlling parameters like population size and the number of 

iterations, which reduces computational burden as well as consumes lots of time. 

2. MATHEMATICAL EXPRESSION FOR SOURCE LOCATION PARAMETERS 

The n number of microseismic sensors are placed in a monitoring area with known three-dimensional 

coordinates which are (𝑥1,𝑦1,𝑧1), (𝑥2,𝑦2,𝑧2),……(𝑥𝑖,𝑦𝑖,𝑧𝑖) and (i =1,2,3….n). Most Microseismic 

phases are body waves; therefore, once a microseismic event occurs, energy emits in the form of 

seismic waves called P-waves, which propagates from the source location (𝑥0,𝑦0,𝑧0) to each sensor 

and the arrival time of P-wave to the ith sensor is recorded as 𝑡𝑖. If we consider propagation media as a 

homogeneous medium, then the equivalent average propagation velocity of the P-wave in the medium 

is V. The general principle of MS source location is shown in (Fig.1). 
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Fig1. Schematic diagram of MS source location principle 

The distance between the MS source and the given sensor can be expressed as: 

𝑅𝑖 =√(𝑥0 − 𝑥𝑖)2 + (𝑦0 − 𝑦𝑖)2 + (𝑧0 − 𝑧𝑖)2                                                                                        (1) 

According to the distance formula in terms of velocity and time, 𝑅𝑖 can be written as: 

𝑅𝑖 =V𝑡𝑖                                                                                                                                                 (2) 

From equation (1) and (2), we can obtain following equation,        

𝑡𝑖 =
√(𝑥0−𝑥𝑖)2+(𝑦0−𝑦𝑖)2+(𝑧0−𝑧𝑖)2

𝑉
                                                                                                             (3) 

According to the principle of time difference of arrival for the two different sensors, i and j equation 

(3) can be expressed as: 

=f (𝑥𝑖,𝑦𝑖,𝑧𝑖, 𝑥𝑗,𝑦𝑗,𝑧𝑗,𝑥0,𝑦0,𝑧0, 𝑉)                                              (4) 

 

In equation (4) sensor coordinates (𝑥𝑖,𝑦𝑖,𝑧𝑖), (𝑥𝑗,𝑦𝑗,𝑧𝑗) and arrival time for two different sensors 𝑡𝑖, 𝑡𝑗 

are already known parameters, where Microseismic source coordinates 𝑥0,𝑦0,𝑧0 Moreover, the 

equivalent average velocity V are unknown parameters. Therefore, as it is a three-dimensional source 

location technique that requires more than four sensors to solve unknown parameters solving the 

nonlinear equations. 

For observed data (𝑥𝑖,𝑦𝑖,𝑧𝑖 , 𝑥𝑗,𝑦𝑗,𝑧𝑗) we can establish a regression value Δ𝑡̂𝑖𝑗. The difference between 

Δt𝑖𝑗 and Δ𝑡̂𝑖𝑗 shows the degree of variation between observed data and calculated (regression) data. 

The sum of their squared deviations reflects how well data fits the line. The more the deviation 

between observed and calculated data becomes small, the more the data fits the line. The equation for 

the estimation of the MS source location can be expressed as: 

f (𝑥0, 𝑦0, 𝑧0, 𝑉) = ∑ [Δ𝑡̂𝑖𝑗 −
𝑅𝑖−𝑅𝑗

𝑉
]

2
= min𝑛

𝑖,𝑗=1                                                                                    (5) 

Equation (5) is a nonnegative function of unknown variables (𝑥0,𝑦0,𝑧0, 𝑉), which always has the 

minimum and the calculated microseismic source, and equivalent average velocity reaches the global 

minimum. The benefit of the above method is that it is not necessary to measure the average velocity 

in advance, and there is no need to fit the original time of the event beforehand.  

In order to calculate the origin time 𝑡0 using time difference location principle equation can be 

described below: 

𝑄(𝑡0)𝑡0

𝑚𝑖𝑛 = 𝑡0

𝑚𝑖𝑛 ∑ [𝑡𝑖 − 𝑡0 −
𝑅𝑖(𝑥0,𝑦̂0,𝑧̂0)

𝑉̂
]

2
𝑛
𝑖=1                                                                                    (6) 

Where, 𝑥0, 𝑦̂0, 𝑧̂0 and 𝑉̂ are calculated source location and equivalent average velocity. If we consider 

the propagation medium between source and sensors is homogeneous to 𝑄(𝑡0)𝑡0

𝑚𝑖𝑛  ≈ 0, origin time 

can be obtained as below: 

Δt𝑖𝑗 =𝑡𝑖 − 𝑡𝑗= 
𝑅𝑖−𝑅𝑗

𝑉
, (i, j = 1,2…...n) 
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𝑡̂0 ≈
1

𝑛
∑ [𝑡𝑖 −

𝑅𝑖(𝑥0,𝑦̂0,𝑧̂0)

𝑉̂
]

2
𝑛
𝑖=1                                                                                                                (7) 

To get the solution of origin time, the regression value 𝑥0, 𝑦̂0, 𝑧̂0 and 𝑉̂ should be calculated first using 

Equation (5), then after calculated value can be substituted in Equation (7) to get the origin time. 

As we know, Equation (5) is a nonnegative function, and the global minimum always exists, which 

can be found by the nonlinear fitting methods. 

As there are two broad groups of population-based heuristic algorithms to solve the nonlinear 

problems, evolutionary algorithms (EA) and swarm intelligence (SI) based algorithms hence all these 

probabilistic algorithms are operated under standard controlling parameters such as Population size, 

the total number of generations, select size and so on. Besides having controlling parameters, various 

algorithms have their algorithm-specific control parameters, which is a very crucial factor that directly 

affects the performance of the algorithm. Therefore, it is not so easy to operate these algorithms as 

one should have proper knowledge of parameter tuning, and problems such as the inappropriate 

selection of parameters sometime might lead to getting nonunique solution and solution can be easily 

trapped into local minima. In order to overcome such problems in solving nonlinear MS source 

location, we have introduced a Teaching Learning-based optimization technique which only requires 

common controlling parameters like population size and iteration number to be operated, this 

algorithm is simple to use, and there is less fear of trapping on local minima because it converges 

monotonically due to the method of greedy selection in each iteration. 

3. TLBO FOR SOLVING SOURCE LOCATION PROBLEM 

3.1. Working Principle of TLBO Algorithm 

TLBO algorithm is an optimization technique that simply works with population size and some 

generations. It is developed by Rao et al. (2011), which uses a population of the solution in order to 

proceed with a global solution, and it is mainly inspired by the teaching and learning process in a 

classroom (Rao, Savsani, & Vakharia, 2011, 2012). In the TLBO, a set of learners is considered as the 

population of solutions; different design variables will be similar to various subjects offered, learners 

and the fitness of the solutions are considered as results or grades. The algorithm updates the results 

of each learner of the class by learning from the teacher and learning from the interaction between 

other learners or partners. The Working process of TLBO mainly relies on two operations: ‘Teacher 

phase’ and ‘learner phase.’ 

3.1.1. Teacher Phase 

In the teacher phase, learners acquire knowledge from teachers, depending upon the learner’s 

capability of learning, the teacher attempts to increase the mean result of the class in the subject 

taught by him/her. If it is assumed at any iteration i, there are ‘m’ numbers of subjects (designed 

variables), ‘n’ number of learners (population size, k=1,2…n), then 𝑀𝑗,𝑖 is the mean result of learners 

in particular subject ‘j’ (j =1,2….m). The teacher is often considered as the highly knowledgeable 

person who trains the learner to gain outstanding result; therefore, the learner with the best fitness 

identified by the algorithm is the teacher, and the updated solution is calculated by taking the 

difference between the existing mean result of each subject concerning the result of the teacher for 

each subject. The expression is given by, 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝑚𝑒𝑎𝑛𝑗,𝑘,𝑖 =𝑟𝑖(𝑋𝑗,𝑘𝑏𝑒𝑠𝑡,𝑖 − 𝑇𝐹𝑀𝑗,𝑖)                                                                                   (8) 

Where, 𝑋𝑗,𝑘𝑏𝑒𝑠𝑡,𝑖is the learner with the best fitness (Teacher).𝑟𝑖 is the random number whose value lies 

in between [0,1], 𝑇𝐹 are a teaching factor and its value heuristically set to be either 1 or 2.𝑇𝐹 is not a 

parameter of algorithm and do not need to give any input; its value is randomly selected by an 

algorithm using the expression below, 

𝑇𝐹 =round [1+rand (0,1)]                                                                                                                       (9) 

Based on Equation (8) the position of each learner is updated, which is given by: 

𝑋𝑗.𝑘,𝑖
′  = 𝑋𝑗,𝑘,𝑖 +𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝑚𝑒𝑎𝑛𝑗,𝑘,𝑖                                                                                                (10) 
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Where, 𝑋𝑗.𝑘,𝑖
′  is the updated value of 𝑋𝑗,𝑘,𝑖. If the updated new value 𝑋𝑗.𝑘,𝑖

′ is better than the old value 

𝑋𝑗,𝑘,𝑖 The only new value is accepted; otherwise, the value remains unchanged; whatever solution 

comes from the teacher phase will be input for the learner phase. 

3.1.2. Learner Phase  

This is the second part of the algorithm where learners try to increase or reinforce their knowledge 

selecting learning partners through various ways such as interacting, communicating, and discussing 

with each other who has more knowledge than him/her. Randomly select two learning partners, say, Y 

and Z, such that 𝑋𝑡𝑜𝑡𝑎𝑙−𝑌,𝑖
′ ≠ 𝑋𝑡𝑜𝑡𝑎𝑙−𝑍,𝑖

′ , where  

𝑋𝑡𝑜𝑡𝑎𝑙−𝑌,𝑖
′  and 𝑋𝑡𝑜𝑡𝑎𝑙−𝑍,𝑖

′ are the updated function values of 𝑋𝑡𝑜𝑡𝑎𝑙−𝑌,𝑖 and 𝑋𝑡𝑜𝑡𝑎𝑙−𝑧,𝑖 of learning 

partners Y and Z that are obtained at the end of the Teacher phase. 

𝑋𝑗,𝑌,𝑖
′′  =𝑋𝑗,𝑌,𝑖

′  + 𝑟𝑖(𝑋𝑗,𝑌,𝑖
′  -𝑋𝑗,𝑍,𝑖

′ ), In case of 𝑋𝑡𝑜𝑡𝑎𝑙−𝑌,𝑖
′ < 𝑋𝑡𝑜𝑡𝑎𝑙−𝑍,𝑖

′                                                        (11) 

𝑋𝑗,𝑌,𝑖
′′  =𝑋𝑗,𝑌,𝑖

′  - 𝑟𝑖(𝑋𝑗,𝑌,𝑖
′  -𝑋𝑗,𝑍,𝑖

′ ), In case of 𝑋𝑡𝑜𝑡𝑎𝑙−𝑌,𝑖
′ > 𝑋𝑡𝑜𝑡𝑎𝑙−𝑍,𝑖

′                                                         (12) 

Similarly, like in the Teacher phase 𝑋𝑗,𝑌,𝑖
′′  is accepted only if it has a better function value. Equation 

(11) and (12) are only applicable to a minimization problem. However, for maximization problem  

Equation (13) and (14) should be preferred. 

𝑋𝑗,𝑌,𝑖
′′  =𝑋𝑗,𝑌,𝑖

′  + 𝑟𝑖(𝑋𝑗,𝑌,𝑖
′  -𝑋𝑗,𝑍,𝑖

′ ), In case of 𝑋𝑡𝑜𝑡𝑎𝑙−𝑌,𝑖
′ > 𝑋𝑡𝑜𝑡𝑎𝑙−𝑍,𝑖

′                                                        (13) 

𝑋𝑗,𝑌,𝑖
′′  =𝑋𝑗,𝑌,𝑖

′  - 𝑟𝑖(𝑋𝑗,𝑌,𝑖
′  -𝑋𝑗,𝑍,𝑖

′ ), In case of 𝑋𝑡𝑜𝑡𝑎𝑙−𝑌,𝑖
′ < 𝑋𝑡𝑜𝑡𝑎𝑙−𝑍,𝑖

′                                                         (14) 

In this way, the algorithm is completed. 

3.2. TLBO for Optimization of Source Location 

Equation (5) is a multiple local extremum nonlinear optimization problem; the TLBO is mainly 

designed for optimization of such problems and can be implemented in order to search optimal value 

of three-dimensional microseismic source location and propagation velocity i.e. 

(𝑥0,𝑦0,𝑧0,V).  

The procedure that is involved is described below. 

Step 1. Initializethe model parameters of MS source location and TLBO parameters, 

TLBO parameters mainly include population size and the number of iterations. 

Step 2. Start Teacher phase to calculate the mean of the population of designed variables and select 

the best solution(teacher) using Eq. (5) 

Step 3. Update the solution using Eq. (10); if a newly obtained solution is better than the old one, 

accept the new one; otherwise, keep the previous solution. In this way, the Teacher phase ends. 

Step 4. Start the Learner phase randomly selecting two learners, say Y and Z, check the better 

function value, if the function value 𝑋𝑡𝑜𝑡𝑎𝑙−𝑌,𝑖
′ < 𝑋𝑡𝑜𝑡𝑎𝑙−𝑍,𝑖

′ prefer Equation (11) otherwise Equation 

(12) 

Step 5. Upgrade the solution using Equation (11) in case of 𝑋𝑡𝑜𝑡𝑎𝑙−𝑌,𝑖
′ < 𝑋𝑡𝑜𝑡𝑎𝑙−𝑍,𝑖

′  otherwise, use 

Equation (12); if the upgraded solution outperforms the old solution, then take a new solution if not 

keep the old solution. 

Step 6. If the condition satisfied, obtain the final solution (𝑥0,𝑦0,𝑧0,V), if not go back to Step 1. 

Step 7. After obtaining the source coordinates, and equivalent velocity, terminate the algorithm. 

The flow chart of TLBO to calculate source location is shown in (Fig.2). 
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Fig2. Flow chart of microseismic source location algorithm based on TLBO 

3.3. Discussion of TLBO Parameters 

TLBO is based on common controlling parameters like population size and a number of generations 

or maximum iterations; therefore, TLBO does not require any specific parameters like other 

traditional heuristic algorithms, which along with common controlling parameters, also require 

algorithm-specific parameters to be defined before operated. Hence, in TLBO, we do not have to deal 

with other parameters except common controlling parameters, which saves much time and makes 

computation more convenient. 

4. CASE STUDY 

From the underground Geological condition, mine A in central China is a typical mine that is 

seriously threatened by rock bursts. A multi-channel MS monitoring system of ARAMIS M/E was 

installed to monitor the rock fracturing process; eight geophones were installed in 2613 working face 

of mine to detect the seismic events as shown in (Fig.3). 
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Fig3. Layout of microseismic monitoring system in 2613 working face 

Two different blasting experiments were held with known positions to verify the validity of the TLBO 

algorithm. During the first experiment which was conducted on 2019-08-08between the 1st and 2nd 

geophones all devices detected the microseismic signals (i.e. all 8 geophones), similarly, on 2019-08-

09 second blasting experiment was conducted between 7th and 8th geophones where all of the 

geophones received the signals. The received data were preprocessed in order to get good quality 

signal. The position coordinates of first and second blasting experiments are (20513933.5, 3973994.8, 

-1088.34) and (20513882.35, 3974172.25, -1174.23) respectively. 

The coordinates of 8 geophones and the time of arrival to each sensor is shown in Table (1). 

The schematic diagram of source position and sensors position is shown in (Fig.4) 

Table1. Coordinates of sensors and arrival time from burst point 

Geophone 

no. 

Coordinates of Geophones(m) Arrival time(S) 

x y z First experiment Second 

experiment 

1. 

2. 

3 

4. 

5. 

6. 

7. 

8. 

20513973.1 3973934.6 -1076.6 0.0205 0.0774 

20513903.9 3973995.5 -1080.1 0.0094 0.0599 

20513836.5 3974060.6 -1089.9 0.0336 0.0410 

20513777 3974117 -1095.8 0.0566 0.0391 

20514038.6 3974046.2 -1165.8 0.0389 0.0579 

20513969.4 3974107.1 -1170.7 0.0401 0.0319 

20513903.4 3974168.2 -1174.2 0.0551 0.0078 

20513842.8 3974215.3 -1174.8 0.0717 0.0159 

 

Fig4. Schematic diagram of relative positions of Geophones and blasting points 

The blasting experiment was carried out on the 2613 working face where the first experiment was 

done in between 1st and 2nd geophones similarly, the second experiment was done in between 7th and 

8th geophones, the depth of the borehole is 10m, and the borehole diameter is 42mm, amount of 

explosive used is 1 kg,the sealing length of borehole is not less than half of the hole length. 
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The blasting is done undermining personnel; after the experiment, the authentic calculated 

propagation velocity in the rock media is approximately 3533m/s. However, due to the heterogeneous 

properties of rock, it is always hard to get the accurate velocity; and finally, the TLBO algorithm was 

used to solve the microseismic source location and equivalent velocity; the parameters for the TLBO 

algorithm are as follows: population size is 500, total number iteration 𝑇𝑚𝑎𝑥= 3000. The teaching 

factor 𝑇𝐹 is calculated using Equation (9), and random number r is decided by the algorithm. Based on 

the observed data in Table 1.The TLBO was implemented on MATLAB to obtain the results, and the 

results showed that TLBO achieved high performance in calculating MS source location and unknown 

velocity value, the obtained result for both the experiment was calculated by executing the algorithm 

for 20 times and taking the average value for each experiment which is shown in Table (2). 

Table2. Error comparison of TLBO for first and second experiment 

  Δ𝑥0 Δ𝑦0   Δ𝑧0 ΔV 

First experiment TLBO 2.58 1.03 -0.90 -2.41 

Second experiment TLBO -4.97 0.93 0.57 2.73 

Absolute average error  3.77 0.98 0.73 2.57 

From the result, we can conclude that the result calculated by TLBO is better due to its robustness that 

requires less parameter tuning. The TLBO algorithm can automatically approach the true values with 

the given initial parameter range, and the absolute average error for both experiments together using 

TLBO in X, Y Z axis, and velocity is 3.77, 0.98, 0.73m, and 2.57m/s respectively, which represents 

the errors are below 4%. Therefore, TLBO can achieve good performance accuracy in solving source 

location. From the case studies, it demonstrates that the TLBO algorithm is better in solving 

microseismic source location and equivalent average velocity than traditional optimization algorithm 

because it avoids the burden of tuning lots of algorithm specific parameters which sometimes yields 

non unique result. The algorithm almost took 2.30 minutes to solve the optimal solution and has a 

very fast convergence speed and reaches global optima quickly. It is easy to set initial parameters 

because TLBO is more accurate in fitting the nonlinear relationship of each signal receiving device 

and time difference, which significantly reduces the impact of the velocity error in source localization. 

The absolute average error in x, y, and z-direction along with wave velocity calculated using TLBO is 

shown in (Fig.5). 

 

Fig5. The absolute error for 1st and 2nd experiment 

5. CONCLUSION 

Microseismic source location is always influenced by factors such as premeasured wave velocity and 

the improper tuning of the algorithm-specific parameters of heuristic algorithms. To overcome such 

problems TLBO technique is proposed to solve the microseismic source location with an 

undetermined velocity model. TLBO is simple and easy to execute as it only requires population size 

and the iteration number as an algorithm parameter and finds the optimal solution quickly. The 

method takes the sum of least squares difference of observed and calculated value as a target function 

to solve the source coordinates and unknown equivalent wave velocity. The efficiency of the proposed 

method was verified by the two real field blasting experiment data from mine A in China. The 

obtained final result depicts algorithm perform fast computation speed as well as approaches true 

solution without tuning lots of parameters compared with traditional optimization algorithm. 
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Comparative analysis shows that TLBO performs better in solving positioning accuracy and wave 

velocity. The benefit of TLBO is that it does not need any specific knowledge for parameter tuning 

like in traditionally applied heuristic algorithms, which prevents from yielding non-unique solution.  
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