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1. INTRODUCTION 

A shear zone is a tabular to sheet-like, planar or curviplanar zone composed of rocks that are more 

highly strained than rocks adjacent to the zone. Shear zones have certain characteristics that permit us 

to recognize them in the field, in thin section, and on geologic maps and cross sections. The 

distinguishing characteristics vary, depending on whether the shear zone formed under brittle, ductile, 

or intermediate conditions. A fault zone is a shear zone formed under brittle conditions. Displacement 

Abstract: The  before  mentioned  activities  led  to  the  definition  of  three  encouraging  uranium 

occurrences  in  the  granite;  and  metamorphic  rocks  of  the  Eastern  Desert  of  Egypt. These are, G.  

Qattar occurrences (Northern Eastern Desert), G. El Missikate, and G. El Erediya occurrences (Central 

Eastern Desert), Abu Rusheid and Sella occurrences (Southern Eastern Desert). Abu Rusheid area is 

bounded from east and west by two sub-parallel master left-lateral strike-slip shear zones; namely, Nugrus 

and El Gemal shear zones. The area is crossed by N–S to NNW-SSE trending extensional strike-slip fault 

shear zones with oblique left-lateral dislocation brittle features and ends on the Nugrus shear zone. In 

addition, the detailed field study recorded the development of ENE-WSW to E-W and/or NE-SW array of 

strike-slip faults with oblique to dip slip reactivation evidences. The cataclastic rocks of the study area are 

cross-cutting by three shear zones parallel and perpendicular to each other taking NNW-SSE and ENE-WSW 

directions. Two  brecciated  discontinuous  shear  zones  (NNW-SSE  and  ENE -WSW)  crosscut  the  

cataclastic rocks. Lamprophyre dykes (0.5-1.0 m in width and 0.5-1.0 km in length) bearing mineralization 

(REEs, Zn, U, Cu, Sn, W, Ni and Pb) were emplaced along the shear zones.  

Uranium mineralization in the El Missikate - El Erediya area, Central Eastern Desert, has been affected by 

both high temperature and low temperature fluids. Mineralization is structurally controlled and is associated 

with jasperoid veins that are hosted by a granitic pluton. This granite exhibits extensive alteration, including 

silicification, argillization, sericitization, chloritization, carbonatization, and hematization. The primary 

uranium mineral is pitchblende, whereas uranpyrochlore, uranophane, kasolite, and anunidentified hydrated 

uranium niobate mineral are the most abundant secondary uranium minerals.  

Secondary uranium mineralization is controlled by shear zones in which the degree of fluid-rock interaction 

was very high and argillic alteration is abundant. The argillic alteration, represented mainly by kaolinite and 

illite, played an important role in uranophane precipitation within the altered parts of the Gattar granites. 

Presence of calcite as void-filling in association with uranophane within the shear zones of Gattar granites 

may indicate that uranium was probably transported as uranyl-carbonate complexes. U could be removed 

from solution through dissolution of feldspar, formation of clay minerals and subsequent precipitation of 

uranophane.  

El Sella granite is highly fractionated of HKCA magma (High-K Calcalkaline) comprises primary muscovite and 

represents a  granite pluton (80km2) which was highly affected by weathering processes where the granite appears as 

isolated “relatively” small masses. The recording of numerous magmatic facies which injected in the area, started by 

the fine-grained granite enriched in uranium. The microprobe analyses proved the presence of easily leachable (low 

thorium) primary uranium mineral represented by pitchblende as well as autunite, coffenite and uranophane as 

secondary uranium minerals. Some features indicate that the late hydrothermal activities in the mineralized shear 

zone (ENE-WSW) played an important role in exceeding the U-potentiality. The genesis of uranyl mineralization 

in the Sella area supports the use of apatite-based technologies for U remediation in an oxidizing 

environment. 
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is taken up on a network of closely spaced faults. When shear zones form under ductile conditions, 

deformation is accompanied by metamorphism and produces rocks with foliations, lineations, folds, 

and related features. Some shear zones develop under conditions that are intermediate between strictly 

brittle and strictly ductile deformation. These may consist of zones that are partly faults and partly 

ductile shear zones, and may have formed in interlayered rocks with contrasting strengths (Billings, 

1972, Davis & Reynolds, 1996, Davis, 2000 and Gash, 2001). Geologic structures in the most 

general sense include all parts of the Earth’s crust where the properties of the rocks either vary from 

place to place (i.e. they are heterogeneous); or vary with direction (i.e. they are anisotropic). That 

includes a lot of structures that can be conveniently either primary – formed at about the same time as 

their host rock, or secondary - imposed on older rocks (form after a rock's genesis) as a result of 

displacement, deformation, or dynamic metamorphism. Displacement occurs when an applied force 

causes a rock mass to move, Deformation is the process by which rocks respond to stress (applied 

force per unit area). The deformation process causes strain (change in geometry) as recorded by 

deformed primary features called strain markers. Dynamic metamorphism (recrystallization during 

deformation) produces fabrics and textures. Fabrics are spatial orientation patterns such as aligned 

elongate or platy minerals; slaty cleavage is an example. Textures are spatial distribution patterns; for 

example, post-deformation growth of polygonal, strain-free grains produces annealed texture. 

1.1. General Characteristics  

All shear zones reflect a localization or concentration of deformation into a narrow zone. The presence 

of a shear zone indicates that within a given deforming rock mass, the distribution of strain was 

heterogeneous rather than homogeneous. As a result, shear zones are characterized by spatial gradients 

in the amount of strain. The amount of strain is generally highest within the center of a shear zone, 

decreasing outward into the wall rocks adjacent to the zone. If the decrease in strain away from the 

zone is gradual without any distinct physical break, the shear zone is considered to be continuous (Fig. 

1A). Continuous shear zone most commonly form under ductile conditions, where the rocks flow in 

the solid state without loss of cohesion. If the decrease is more abrupt, the zone is considered to be 

discontinuous (Fig. 1B). In most discontinuous shear zones, strongly deformed rocks within the zone  

are  juxtaposed against much less deformed rocks along a sharp physical break or a very thin band 

along one or both margins of the shear zone (Twiss and Moores, 1992). 

 

Fig1. Continuous and discontinuous shear zones: (A) continuous shear zone deflecting a marker that passes  

uninterrupted  through  the  shear  zone.    (B)  Discontinuous  shear  zone  that  truncates  a marker. 

1.2. Geometries 

Shear zones are typically planar to gently curved, but some can have complex geometries. Most shear 

zones have subparallel margins and retain a fairly consistent thickness over much of their length (Fig. 

2A). Where the margins diverge, the shear zone becomes wider (Fig. 2B). widening is most common 

near the ends of a shaer zone, where strongly deformed rocks within the zone grade into a wider zone 

of less deformed rocks. A shear zone may also thin or taper as the margins converge, such as where a 

shear zone passes near or between rigid objects (Fig. 2C). 

 

Fig2. Shear zone margins: (A) parallel, (B) diverging, and (C) converging near a rigid pluton. 
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Shear zones are commonly arranged in networks or sets composed of a number of individual shear 

zones. They may occur in subparallel sets, may deflect toward one another and link up in an 

anastomosing pattern, or may crosscut and displace one another (Figs. 3A, B & C). Some shear zones 

have a curviplanar or folded geometry. Such a geometry may indicate that an originally planar shear 

zone (Fig. 4A) was folded or warped by subsequent deformation (Fig. 4B). Alternatively, many shear 

zones form with an original curviplanar geometry, encompassing and warpping around more rigid, less 

deformed objects (Fig. 4C). 

 

Fig3. Shear zone sets: (A) parallel, (B) anastomosing, and (C) conjugate. 

 

Fig4. Curviplanar shear zones: (A) originally planar shear zone, (B) folding and erosion of same zone to expose 

a curved shear zone, and (C) shear zone formed with an originally curviplanar geometry. 

1.3. Offset and deflection of markers 

In keeping with fault terminology, there are strike-slip, normal, low-angle normal, reverse, thrust, and 

oblique-slip shear zones. Strike-slip shear zones may be right-handed (dextral) or left-handed 

(sinistral) (Figs. 5A & 9B). Normal-slip shear zones are marked by hanging wall displacement 

downward relative to the footwall (Fig. 5C). Reverse- and thrust-slip shear zones are marked by 

hanging wall displacement upward relative to the footwall (Fig. 5D). Oblique shear zones have 

components of both strike-slip and dip-slip (Woodcock and Fischer, 2002). Another way of 

describing the sense of shear on subhorizontal or variably dipping shear  zones is by specifying which 

way the hanging wall moved, such as “top to the west” (Fig. 5E). For vertical shear zones with a dip-

slip component of motion, use phrases such as “west-side up” (Fig. 5F) or “northeast-side down” to 

convey the sense of shear (Dennis and Secor, 2001). 

 
Fig5. Deflection and offset across shear zones: (A) right-handed or dexteral, (B) left-handed or sinistral, (C) 

normal, (D) reverse, (E) top to the west, and (F) west side up. 
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1.4. Plate Tectonic Settings of Shear Zone  

Shear zones form in a wide variety of tectonic settings (Fig. 6), including plate boundaries of all types. 

They are undoubtedly forming at depth today in any region with abundant earthquakes or other 

manifestation of active deformation. Shear zones are present along seismically active strike-slip zones, 

such as the San Andreas fault of California, the Alpine fault of New Zealand, and the numerous strike-

slip faults that dissect China and Tibet north of the India-Asia continental collision. Sites of past 

extreme extension are represented by shear zones in metamorphic core complexes of western North 

America and the Aegean (Fig. 7), and by the south Tibetan detachment, which has aided in unroofing 

the high grade metamorphic rocks of the Himalaya. 

1.5. Types of Shear Zones 

Shear zones were subdivided into four general types, based on the characteristic type of deformation 

(Davis and Reynolds, 1996): 1- A brittle shear zone contains fractures and other features formed by 

brittle deformation mechanisms. 2- A ductile shear zone displays structure, such as foliation and 

lineation, that have a metamorphic aspect and record shearing by ductile flow. 3- Semibrittle shear 

zones include en echelon veins and stylolites, and involve mechanisms such as pressure solution and 

cataclastic flow. 4- Brittle-ductile shear zones, which show evidence for both brittle and ductile deformation, 

form where conditions during shearing either were intermediate between brittle and ductile or change from 

ductile to brittle or from brittle to ductile. 

 

Fig6. Plate tectonic settings of some shear 

zone. 

Fig7. Schematic evolution of a low-angle shear zone with both 

ductile and brittle segments. Normal displacement along the 

shear zone progressively unroofs footwall rocks, causing early 

ductile fabrics to be overprinted by brittle ones as the rocks are 

isostatically uplifted and cooled. This is one model for the origin 

of metamorphic core complexes (after Davis, 2000). 

1.5.1. Brittle Shear Zones 

Brittle shear zones form in the shallow parts of the crust, generally within 5-10 km of the earth’s 

surface, where deformation is dominated by brittle mechanisms, such as fracturing and faulting. 

Accordingly, shear zones formed in this environment are characterized by closely spaced faults, 

numerous joints and shear fractures, and brecciation. Brittle shear zones are in effect fault zones, and 

they are marked by fault gouge and other rocks of the breccia series (megabreccia, breccia and 
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microbreccia). The dominance of faulting and fracturing in brittle shear zones results in abrupt, 

sidcontinuous margins that truncate and offset markers. Closely spaced faults define brittle shear zones 

composed of numerous discrete fault surfaces (Fig. 8) and a chaotic assemblage of strongly fractured 

and brittely  disrupted rocks (Choukroune et al., 1987). 

1.5.2. Ductile Shear Zones 

Ductile shear zones are formed by shearing under ductile conditions, generally in the middle to lower 

crust and in the asthenosphere. For the most common crustal rocks (e.g. granite), brittle deformation at 

shallow crustal levels gives way downward into ductile deformation at the brittle-ductile transition. 

Most ductile shear zones form under metamorphic conditions, and the resulting sheared rocks are 

metamorphic in character, typically prossessing foliation and metamorphic minerals. Rocks within a 

ductile shear zone may be so changed by the intense shear, by metamorphism, and by fluids passing 

through the shear zone that it becomes  very  difficult,  if not impossible, to decipher the original rock-

the protolith (Fig. 9). More commonly, the deformed rocks are assigned to the important family 

metamorphic tectonites called mylonitic rocks (Ernst, 1999). 

1.5.3. Semibrittle Shear Zones 

Although semibrittle shear zones dominated by brittle deformation  mechanisms  like fracturing and 

cataclastic flow,  they  contain some ductile aspects as well (Fig. 10). A common example of a 

semibrittle shear zone is a zone of en echelon veins or en echelon joints (Fig. 10A). Deformation along 

the zone is accommodated by brittle mode fracture, no filled by veins, and by distributed deformation 

between the veins. Another common example is a zone of en echelon stylolites, formed by pressure 

solution (Fig. 10B). Some shear zones contain both veins and stylolites, so arranged that the shorteing 

direction for the stylolites is approximately perpendicular to the extension direction indicated by the 

veins. Shear zones defined by en echelon folds (Fig. 10C) can be either semibrittle or ductile, 

depending on the conditions under which they form and on the character of associated structures. 

Some zones of en echelon folds are formed at greater depths, where trully ductile prevail, but such 

environments more commonly favor the formation of classic ductile shear zones composed of mylonitic rocks 

(Gash, 2001). 

1.5.4. Brittle-Ductile Shear Zones 

Brittle-ductile shear zones contain evidence of deformation by both brittle and ductile mechanisms and 

come in many flavors. Many brittle-ductile shear zones contain boundins, rock fragments and 

prophyroclasts  of  the  more  brittle minerals and rock types. 

 

Fig8. Sets of brittle shear zones (faults and fault zones): (A) parallel, (B) anastomosing, and (C) en echelon. 

 

Fig9. Ductile shear zones : (A) marker offset by 

continuous, dextral shear zone, (B) shear zone 

cutting plutonic rocks with inclusions and 

isotropic initial fabric.  

Fig10. Semibrittle shear zones: (A) en echelon extension 

veins, (B) en echelon stylolites, and (C) en echelon folds, S1 

is the axis of maximum instantaneous stretching, and S3 is 

the axis of maximum intstataneous shortening. 
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Brittle-ductile shear zones form when (a) the physical conditions permit brittle and ductile deformation 

to occur at the same time (Fig. 11A), (b) different parts of a rock have different mechanical properties 

(Fig. 11B), (c) a shear zone “strain hardness”, (d) a short-term change in physical conditions, such as 

strain rate, causes the rock to switch from ductile to brittle mechanisms or vice versa, (e) physical 

conditions change systemically during deformation, or (f) as shear zone is reactivated under physical 

consitions different from those in which the shear zone originally formed. In many cases, the brittle-

ductile character of a shear zone indicates either that physical conditions systematically changed 

during deformation or that the shear zone formed under one set of conditions and was later reactivated 

under much different conditions. When conditions change from ductile to brittle, brittle structures, 

such as fractures, will overprint an earlier ductile fabric in the shear zone (Fig. 12A), a shear zone 

formed during a change from brittle to ductile conditions, because early, brittle structures may be 

totally overprinted and “healed” by later ductile fabric and metamorphic minerals (Fig. 12B). 

 

Fig11. Brittle-ductile shear zones. (A) Formed by 

intermediate (brittle-ductile) conditions, in part due 

to variations in strain rate and fluid pressure. (B) 

formed in interlayered rocks with differing 

rheologies & responses to deformation (Hanmer & 

Passchier, 2000).  

Fig12. Brittle-ductile shear zones formed by a change 

in physical conditions during shearing. (A) Ductile 

structures overprinted by brittle ones. (B) Brittle 

surctures overprinted and largely obliterated by a 

ductile overprint as rocks are buried (Hanmer & 

Passchier, 2000). 

2. VEIN-TYPE URANIUM DEPOSITS RELATED TO SHEAR ZONES 

2.1. Definition 

Much of the world’s currently mineable uranium is found in vein-like deposits of uncertain origin. 

They consist of three general types of unequal importance. Most important are unconformity-related 

deposits and vein-like deposits in metamorphic rocks. Least important and probably of different origin 

are vein-like deposits in sedimentary rocks. The origin of all three types is a matter of much 

conjecture. Major unsolved genetic questions are the source of the uranium and its mode of transport, 

the source of the mineralizing solutions, the nature and role of reductants and the control exerted on 

uranium deposition by structural and lithologic features of the host rocks. Unconformity-related 

deposits and vein-like deposits in metamorphics commonly occur in brecciated and foliated 

metamorphic rocks in stable Precambrian Shield areas, whereas vein-like deposits in sedimentary 

rocks are found only in strata of Palaeozoic and Mesozoic age (Orphan mine, USA). Deposits of all 

three types are associated with faults and/or shear zones, but unconformity-related deposits are also 

closely associated with major regional unconformities where coarse terrestrial clastics overlie 

metamorphosed basement rocks (Wheathey et al., 1999). Vein deposits consist of uranium 

mineralization in lenses or sheets or disseminations filling joints, fissures, breccias and stockworks in 

deformed and fractured rocks. Principal uranium phases are pitchblende, uraninite and coffinite. 

Uranium may forms monometallic mineralization or polymetallic mineralizations. Associated metals 

include Co, Ni, Bi, Ag, Cu, Pb, Zn, Au, Mo, and/or Fe in form of sulfides, arsenides or sulfarsenides 

(Yadava, 1995 and Krishna et al., 1999). 
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Veins are deposited by hydrothermal fluids moving along fractures. They are classified as dilative or 

replacive and are described according to their thickness and extent, their shape, the minerals in them, 

and the textural and structural arrangements of these minerals. Important structural details are breccia 

bodies, folds, faults, stylolites and reopened (multiple) vein fillings. Age relations are determined at 

places where veins cross or where their alteration envelopes overlap. Strikes and dips taken over large 

areas may help in classifying veins by age and perhaps point to the causes of fracturing. Unless 

alteration becomes pervasive in veined rock bodies, individual veins are typically enveloped in 

symmetrical zones of wall-rock alteration. These zones may be uniform and single or may be 

composite. Composite zones must be studied carefully to determine whether or not the different parts 

developed simultaneously or in an age sequence. Simultaneous composite zoning, which is probably 

the most common type, was first proven at Butte, Montana, where an initial phase of high-temperature 

potassic alteration was followed by a protracted period of hydrothermal alteration during which large 

numbers of veins that were opened at various times were all enveloped by the same kinds of composite 

zones (Meyer and Hemley, 1967).  

Two principal subtype are recognized, veins spatially and genetically (a) related to granites and (b) 

veins not related to granites (Table 1). 

Table1. Classification of Vein-Type Uranium Deposits Related to Shear Zones in the World (by G.M. Saleh). 

 

a) granite-related deposits are associated with highly differentiated peraluminous leucogranites and 

form veins either within (intragranitic) or around (perigranitic) the intrusion (IAEA, 1986). 

 Intragranitic deposits are commonly monometallic and occur either as (a) linear ore bodies in form 

of distinct veins or stockworks emplaced in fractured granite or (b) disseminations in pipes or 

chimneys of episyenite, a dequartzified, micaceous vuggy alteration product of granite. Depth 

extension of intragranitic veins is commonly less than 300 m. 

 Perigranitic deposits emplaced in metasediments are either monometallic consisting essentially of 

pitchblende and gangue minerals or polymetallic containing both U, Co, Ni, Bi, Au and Ag 

minerals in economic quantities. Both monometallic and polymetallic veins can persist as much as 

2000 m deep. Perigranitic deposits emplaced in the contact-metamorphic aureole of the intrusion 

have monometallic mineralization in form of veinlets and disseminations in intensely fractured 

hornfels, speckled andalusite-cordierite schist and similar rocks up to approximately 2 km wide 

around the granite. 

b) Not granite-related deposits are similar in mineral composition and wall rock alteration to 

perigranitic veins in metasediments but do not reveal any apparent link to granitic intrusions. 
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2.2. Types of Veinlike-Fructure System  

2.2.1. Seamlike (Beaverlodge-Jabiluka) Type  

This type is characterized by lense- to seamlike orebodies which follow more or less strata concordant 

folded metasediments (Fig. 13). They extend to depths of 1.000 m and more. Besides the seamlike 

mineralization, mineable ore is found, especially in the Beaverlodge mines, Canada, in breccia zones 

adjacent to the strata-bound orebodies. 

 

Fig13. Veinlike-type (seamlike type). 

The host rocks are graphite-chlorite-sericite-schists, silicifed feldspar rocks, resulting from retrograde 

metamorphism of metasediments originally metamorphosed into amphibolite to granulite facies. The 

ore is dominantly monometallic, but locally also polymetallic (e.g. Jabiluka). The main ore minerals 

are Th-free pitchblende, coffinite and additional alteration minerals such as sooty pitchblende and in 

zones of oxidation/weathering secondary U-minerals. Gangue include calcite, dolomite, quartz and 

hematite. The average uranium grades vary between 0.1 and 0.4% U. Thicknesses range from a few 

centimeters to several meters (Dahlkamp, 1979 and Beck, 1994). 

2.2.2. Unconformity-(Key Lake) Type 

The deposits of this unconformity type as represented by the Key Lake deposit in Canada, occur in 

fault-and shear zones along a Middle Proterozoic Paleo-surface weathered into a regolith. They form 

massive ore bodies (Key Lake) as well as impregnations (Rabbit Lake, Canada; Upper portion of 

Koongarra and Nabartek, Australia).The host rocks are graphite, chlorite, sericite schists, meta-

arkoses, carbonatic (dolomitic) quartizites, altered gneisses (Fig. 14). The later retrogradely 

metamorphosed sediments were originally metamorphosed into the amphibolite-granulite facies. 

 

Fig14. Veinlike (Key Lake type). 
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The main mineralizations are bound by and concentrated beneath this unconformity but mobilized 

uranium enters also fractures in the overlying sandstones. The oregrade mineralization is dominantly 

mono, more rarely polymetallic (Key Lake: uranium and nickel). Main ore mineral is colloidal, 

thorium-free pitchblende. Alteration minerals are sooty pitchblende and coffinite. Gangue, it consist of 

quartz and carbonates, occasionally hematite and/or chlorite and kaolinite. Average uranium contents 

in these deposits vary between 0.1 and 0.4%, in some deposits between 1 and 3% (Dahlkamp, 1978, 

Gatzweiler et al., 1997 and McMillian, 1998). 

2.2.3. Granite Endocontact- (Massif Central, France) Type  

This vein like type of deposits, as found especially, but not exclusively in the Massif Central in France 

is characterized by near-surface (contact) uranium veins and disseminated mineralization in fault and 

shear zones of intrusive, deuteric granite, named autometasomatic granite and two-mica granite (Fig. 15). 

 

Fig15. Veinlike type (Massif Central, France). 

The main ore mineral is colloidal, thorium-free pitchblende. Alteration products are para-pitchblende, 

neo-pitchblende (sooty pitchblende) and, partly in unusually deep penetrating oxidation zones, colored 

secondary uranium minerals. Gangue is variably abundant in form of quartz, carbonates and fluorite. 

Average uranium contents vary between 0.05 and 0.3%. thicknesses of ore zones range from a few 

centimeters to meters, rarely tens of meters (Cuney, 1978 and Cathelineau, 1981). 

2.3. Classical Vein Deposits  

Two end-member compositional varieties of vein have been recognized: (1) veins with simple 

mineralogy, with uranium predominantly as pitchblende (2) veins with complex mineralogy that 

includes Ag, Co, Ni, Bi and other elements such as As, Au, Se and Cu chiefly in the form of sulfides, 

selenides and sulfarsenides (Ruzicha, 1993 and McMillian, 1996). 

2.3.1. Veins with Simple Mineralogy  

 Shear Zones of the Xiazhuang Uranium Deposits in China  

The Xiazhuang ore field is one of the important uranium districts of China from which substantial 

uranium resources are known. All deposits of this area belong to the hydrothermal vein-within 

metamorphic rocks, surrounding granites. Uranium mineralization is controlled by structures and 

favourable lithological units. Faults and shear zones generally have an NE-SW direction (Fig. 16). 

Principal uranium minerals are pitchblende and coffinite. Associated minerals can include a variety of 

sulfides, arsenides, ilmenite, fluorite, apatite. The average grade of uranium within these veins ranges 

from 0.1 to 0.5% U and the size of the orebodies varies considerably (Li Tianging, 1986). Several 

stages of oxidation and reduction affected the host rocks. Alteration processes include pyritization, 

hematitization, hydromicatization, argillitization of feldspars and silicification. 
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Fig16. Sketch map of Xiazhuang shear zone uranium deposits. 1- Porphyritic biotite granite, 2- Intermediate 

basic dyke, 3- silicified shear zone, 4- orebody.  

2.3.2. Veins with Complex Mineralogy 

 Shear zones of the schwartzwalder uranium deposits in Colorado, USA 

Host rocks include a variety of mafic metasediments often, but not necessarily, metamorphosed to 

amphibolite grade facies. Schwartzwalder ore is associated with large tensional structures (Illinois and 

Rogers shear zones) and their branching horsetail fractures that discordantly transect strata (Fig. 17). 

They contain ore almost exclusively where they cut horizons of garnet-biotite-gneiss (protolith : iron 

and surface-rich pelitic sediments) and quartizite adjacent to hornblende gneiss (mafic volcanite). 

Principle uranium minerals are uraninite, pitchblende, coffinite and in oxidized zones hexavalent U 

minerals. Associated minerals can include a variety of sulfides, aresenides, selenides mostly of Fe, Cu, 

Pb, Zn, Mo and trace amounts of Ag, Au, Co, Ni, Hg and Sb. Gangue minerals may be carbonates 

(calcite, dolomite, ankerite), quartz, adularia, fluorite and barite. Fluids migrated along the fracture 

systems to zones of low hydraulic potential. These fluids contained CO2 and had a metastably large 

K/Na ratio; they altered the gneissic wall rocks to a carbonate-sericite assemblage, adding K+ and CO2 

and removing SiO2 with little or no change in volume. As the fractures continued to open , CO2 was 

evolved from the fluids, increasing the pH and superimposing a hematite adularia alteration 

assemblage on the earlier alteration. 

 

Fig17. Cross section of the Schwartzwalder mine, showing the distribution of shear zones and rock units (after 

Wallace & Whelan, 1986).  
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2.4. Shear Zone Uranium Deposits in Metamorphic Rocks 

Vein-type uranium deposits have been placed with deposits of uncertain genesis by Bendix. This type 

of deposit occurs in structurally controlled sites adjacent to steeply dipping, major shear zone systems 

(Mathews, 1978). Most of the larger veins are found in metamorphic rocks of Proterozoic age and 

consist of pitchblende either alone or in association with a variety of sulfides, arsenides and other 

minerals. Mineralization includes Co, Ni, Cu, Au and Ag in the deposits of the Echo By-Eldorado 

Mines area of the Northwest Territories, Canada. These deposits are commonly strongly influenced by 

wall-rock lithology adjacent to the vein with carbonaceous, chloritic, and carbonate units being 

favorable hosts. Hydrothermal alteration of the wall-rocks produces chlorite, hematite, quartz and 

carbonate minerals. In the fools peak area of the Rawhide Mountains, Arizona, high-grade uranium 

mineralization is present in veins that are associated with hematite and silicification. The veins 

discordantly cut mylonitic fabric of Tertiary age. Uranium mineralization is present in small veins in 

the Harcuvar Mountains to the south where it is accompanied by copper and gold. The mineralization 

is probably magmatic-hydrothermal  due to its spatial and possible genetic relation with microdiorite 

dykes that intrude amphibolite-grade metamorphic rocks and nearby foliated granites. 

Favourable host rocks are carbonaceous slates,chloritized schists and gneisses, graphitic units, 

metacarbonates and metavolcanics. All these rocks are characterized  by retrogressive chloritization 

that predates uranium mineralization. Hematite haloes are common around ore, and carbonatization 

and chloritization are also normal features of the deposits. Both monometallic and polymetallic types 

of deposits are recognized (Badham, 1996 and Bain, 1998). Pitchblende is the principal uranium 

mineral in both types of deposits, and Ag, Au, Ni, Cu, Co form accessory minerals (sulphides and 

arsenides) in the polymetallic deposits. Minerals assemblages, wall rock alteration types and mineral 

formation temperatures suggest that these deposits were generated from medium-to low temperature 

hydrothermal solutions (Ferguson, 1998 and Oliver et al., 1999). 

2.4.1. Shear Zone Uranium Deposits in Northern Saskatchewan, Canada  

The northeren Saskatchewan area is characterized by monometallic vein-like uranium deposits in 

metamorphic rocks (Sassano et al., 1972) Underlying this metamorphosed and granitized gneiss of the 

lower Huronian Tazin Grou. The gneiss is unconformably overlain by continental red beds of the 

Middle Huronian Martin Formation. Pitchblende and calcite occur in veins multiple-vein systems in 

the Tazin, and some pitchblende occurs in the overlying Martin. Uranium-bearing veins have a strike 

length of more than 4500 m and they extend to a depth of more than 1645 m. The pitchblende occurs 

as vein fillings in shears, fractures and brecciated zones within 100 m of the St. Louis Fault. It is also 

disseminated in rocks adjacent to the veins. Initial pitchblende deposits (1780 m.y age) was followed 

by a thermal event that remobilized and redeposited the uranium about 1140 m.y. age. 

2.4.2. Shear Zone Uranium Deposits in Echo Bay-Eldorado Mine, Canada  

The Echo Bay and Eldorado uranium-silver mines in northwest Territories Canada are polymetallic 

vein-like deposits in metamorphic rocks (Robinson and Ohmoto, 1990). The two mines are in a vein 

system containing U, Ag, Au, Ni and Cu. The veins occur in roof pendants of Aphebian sedimentary 

and volcanic rocks (Echo Bay Group) within a Hudsonian granitic intrusive. The margins of the 

pendants were thermally metamorphosed, but the centres are little metamorphosed. Mineralization 

occurs in green and red banded andesitic tuffs in the pendant centres. Ore occurs in three steeply 

dipping veins that average 0.5 m in thickness, 1500 m in length and more than 400 m in depth. Shear 

zones contain pitchblende, coffinite, gummite, native silver, native bismuth with small amounts of 

base-metal sulphides, fluorite, galena, adularia and Co-Ni arsenides. Shear zones are surrounded by a 

halo of feldspatization, choritization, carbonatization and pyritization (Table 1). 

2.5. Structural Setting of Shear Zones and Associated Uranium Deposits 

The structural modes of deposit and orebodies occurrence are characterized by folded and fractured 

structures which, according to the scale of distribution and significant influence, can be subdivided 

into: 

1. Regional structures which determine the localization of ore-bearing regions or belts. 

2. Structures which determine the localization of ore fields and deposits. 

3. Structures which control the localization of individual orebodies. 
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4. Structures which determine the distribution of mineralization within the orebodies. 

The tectonic structures of different deposits and orebodies have different influences on the process of 

ore formation and, consequently, on the regularity of a deposits distribution in space (Table 2). 

Table2.  Ore control by tectonic shear-sense structures (after Belevtsev, 1980). 

Structures Characteristics 

1- Regional structures determining 

the localization of mineral regions 

and belts. 

During the geosynclinal cycle large folded-fracture zones were 

initiated and developed in synclines.  Abyssal faulting began and 

developed during the final phases of the geosynclinal period. 

2- Structures enclosing ore fields 

and deposits. 

Compressed, steeply dipping synclines complicated by transverse 

folds, longitudinal and intersecting faults.  Open, steeply dipping 

synclines were complicated by faults.  Large shear zones are areas of 

conjugation with stratified metamorphic rocks.  Shear zones are 

marked by single fissures or series of conjugal shear fissures. 

3- Structures controling the 

localization of separate orebodies. 

Bends complicated the limbs of syncldines.  Fractures developed on 

the limbs and in areas of closure.  Areas of conjugal shearing and 

feathered fissuring developed. Single fractures are curved.  Fissured 

blocks are isolated between contiguous fractures 

4- Structures determining the 

localization and distribution of 

orebodies. 

Shear zones were accompanied by microfolding.  The development of 

small joints increased porosity. Brecciation, cataclasis and myloni-

tization developed 

2.5.1. Structures controlling the localization of separate orebodies  

Shear zones are related to intrageosynclinal structures; they are developed along the edges of marginal 

troughs and inner geosynclinal areas. The faults are contained within a series of submeridional zones 

of fracturing, brecciation, and cataclasis.  Shear zones are also featured in the development of separate 

areas of alkaline and carbonate metasomatism.  The pegmatite veins occurred earliest in the shear 

zones and were followed by the formation of albitites and albitized rocks.  The albitized rocks, in 

many cases, were later brecciated and broken down.  Uranium minerals and post-ore-stage minerals 

were superimposed on the albitized rocks.   Shear zones are situated within transition areas where 

migmatites and granites are altered to gneisses.  Consequently, faults with hydrothermal alterations are 

situated on the edges of thermal domes. Thermal domes represent the maximum to which a rock can 

be granitized (Fig. 18). The renovating of faults and hydrothermal alteration are confined to a post-

granitized area. 

 

Fig18. Schematic representation of the thermal dome and distribution of deposits, Russian. 1-granite; 2-migmatite; 

3-albitized granite; 4-amphiboittic facies rocks; 5-shear zones; 6- ore deposits (after Belevtsev, 1980). 
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The fracture structures controlling the localization of separate orebodies are: 

1. Compressed, steeply dipping synclinal folds (broken or refolded) by transverse and longitudinal 

bends. 

2. Open, steeply dipping synclinal folds complicated by longitudinal and transverse faults. 

3. Large shear zones with stratified layers of metamorphic rocks broken or crushed by numerous 

small faults in areas of conjugation. 

4. Single fissures or a series of conjugated shear fissures caused by fault zones. 

5. Intersections of shear zones trending in different directions. 

6. Areas of bedding in fracture systems or individual faults. 

3. URANIUM MINERALIZATION IN THE EGYPTIAN SHEAR ZONES 

3.1. Firstly in Granitic Rocks  

3.1.1. El-Missikat - El Erediya Area  

The geology of El Erediya area has been extensively studied by many authors including El Tahir 

(1985), Abu-Deif (1985, 1992), Hussein et al. (1986), El Kassas and Bakhit (1989), El-Kammar et 

al. (1997), Osmond et al. (1999), and Abu Deif et al. (2001). The oldest rock units are ophiolitic 

rocks followed by metavolcanic rocks, then an early magmatic phase, which is represented by diorites 

and granodiorites, followed by a later magmatic phase of undeformed granites, felsites, and finally, a 

swarm of mineralized jasperoid veins and post granitic dykes (Fig. 19).. Uranium mineralization is 

associated with the hydrothermally altered parts of the El Erediya granite and localized within several 

shear and fractured zones that are filled with jasperoid veins. Chemical analyses of eight mineralized 

samples from the jasperoid veins indicate that U ranges from 200 to 600 ppm with an average of 462 

ppm, whereas Th ranges from 13 to 16 ppm with an average of 15 ppm (El-Kammar et al. 1997). The 

mineralized shear zones are controlled by N–S to NE–SW and NW–SE fractures with infilling 

jasperoid veins. Massive and disseminated pitchblende, as well as other secondary uranium minerals 

such as uranophane, kasolite, and renardite were detected in shear zone (Hussein et al. 1986). Based 

upon the U–Pb isochron method, the estimated age of the pitchblende varies from 130 to 160 Ma (Abu 

Deif 1992). 

Two relatively big siliceous veins mineralized by uranium were detected in El-Missikat area 

occupying the center of the two main shear zones (El-Missikat shear zone I, and El-Missikat shear 

zone II) (Fig. 20 a, b and c). These two veins as well as the shear zones are crosscutting metaluminous 

to slightly peraluminous monzogranite, and have a general ENE trend and dip about 60o-70o toward 

SSE. The siliceous veins, in general, are irregular in shape and variable in thickness from few 

centimeters to about 3 meters and extends more than 2 km. Three main types of silica may be 

distinguished namely : light coloured silica, smoky or black silica, and jasperized silica. The light 

coloured silica displays various light colours such as white, light grey and pale brown. All these 

varieties are microcrystalline or crystalline and non mineralized by uranium, they have normal 

intensity of gamma-radioactivity. The black silica is cryptocrystalline, with brownish, smoky to black 

colour and mineralized by uranium. The jasperized silica is cryptocrystalline, with deep red colour, it has 

moderate intensity of gamma-radioactivity, and it is also uranium mineralized. Brecciation is common, in 

which both black and jasperized silica include sub-angular fragments of the light coloured silica (Abu Dief, 

1985).  

El Missikat Granite is H-KCA (High-K Calcalkaline), low biotite "7%" with rare muscovite and low Ca 

with Th/U ratio of about 2.5. It has three phases; started as metaluminous granite and became slightly 

peraluminous with advanced differentiation. Uranium in this granite type is incorporated mainly in 

refractory minerals. The presence of numerous and wider alteration zones in El Missikat granite 

increase its chance for liberating more uranium with respect to G. Gattar U-sites, where the rock is 

massive and has very narrow alteration zones. Although a considerable alteration processes affected 

the present granite in comparison with G. Gattar, they may satisfactory to leach enough uranium from 

the refractory minerals in the granite. It is worthy to mention that the both Kab Amiri, El Sella and El 

Missikat occurrences are interpreted  as vein type mineralization (Ibrahim,  2007). 
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Fig19. Geologic map of the main U-bearing in El-Missikat-El Erediya shear zone (Abu-Deif 1992 and Abd El-

Naby, 2008). 

Black silica on the other hand is brecciated and invaded by straight and sinuous veinlets of red 

jasperized silica. Vugs also are common. Empty cubes seem to be present after pyrite crystals which 

were oxidized and removed; sometimes these cubes are filled with sulphide oxidation products. Black 

and jasperized silica are the most important from the radioactive point of view because they include all 

uranium mineralization, mainly sooty pitchblende, uranophane, and sulphides (galena, pyrite, 

chalcopyrite, sphalerite, molybdenite). Some gangue minerals are found associated with both uranium 

and sulphides. These ganguges are mainly fluorite (anthozonite), iron oxides and manganese oxides. 

The average chemical analysis data of the mineralized black and jasperized silica from El-Missikat 

shear zone is given in Table (3). In addition, Attawiya (1984) concluded that the black silica ranges in 

U-content from 497 – 8856 ppm. 

 
Fig20a. Sketch showing the two main shear zones in El-Missikat U-occurrence and the siliceous veins (after Abu 

Dief, 1985). 
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Fig 20b. Veiw showing G. El-Missikat U-occurrence (Photo by G.M.Saleh). 

 
Fig 20c. Veiw showing G. El Erediya uraniferous shear zone (Photo by G.M.Saleh). 

Table3. Average chemical analysis data of some trace and rare earth elements of the mineralized silica vein in 

shear zones. 

Trace / REEs 1 2 3 4 

U 958 937 714.4 461.9 

Th - 20.8 26.6 15 

Nb 200 130 73.1 46.1 

Ta - 21.4 - - 

LREE - 74.2 - - 

HREE - 2509 - - 

1- Mineralized black silica (after Guirguis, 1981), 2- Silica veins (after Ibrahim, 2002) and 3-&4- Mineralized 

silica veins of El-Missikat – El-Erediya (after El-Kammar et al., 1997). 

The area is highly altered especially along the structural lines and around the shear zones, the most 

common alteration are: silicification, sericitization and kaolinitization. The three types of alteration 

mainly occur in a consistent zonal arrangement in which silicification occurs in the innermost zone 

followed successively by sericitization and then by kaolinitization. Widespread hematitization and 

manganese staining are superposed on these alterations. 

 Genesis of El-Missikat Uranium Deposits  

The uranium-bearing shear-zones were subjected to successive phases of rejuvenation (Abu Dief, 

1985 and 1992): 

1. Fracturing the granite along ENE-WSW structures. 

2. Invasion of these fractures by light coloured silica this might have taken place more than once 

giving more than on phase of light coloured silica. 

3. Rejuvenation of the fractures and brecciation of the light coloured silica and introduction of the 

black type carrying the uranium-minerals. 
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4. In the last stage of rejuvenation, brecciation of earlier silica took place accompanied by the 

deposition of the red jasperized silica with some uranium minerals. 

5. NW-SW faulting leading to displacements and causing off-set of the ENE-WSW shear zone. 

6. Uplift and erosion exposed the mineralized shear zones leading to oxidation. Leaching might have 

taken place causing removal of uranium from the oxidation zone, leaving relics protected by silica. 

7. The uranium mineralization of El-Missikat was introduced into the shear zones by the percolation 

of some sort of hydrothermal fluids, probably mixed with meteoric waters. 

3.1.2. El Sella (Halaib Area), SED, Egypt  

It lies at a distance of about 30 km SW of Abu-Ramad city. El-Sella two-mica peraluminous 

monzogranite is dissected by two-shear zones (5-40 m in width and 100-1560 m in length) 

perpendicular on each others, (ENE-WSW and NNW-SSE) (Ibrahim et al., 2003). These shear zones 

are mainly composed of highly brecciated sheared fine-grained two-mica monzogranite with 

muscovite increment at the expense of biotite. They are enriched by pyrite and visible secondary 

uranium minerals (uranophane and ß-uranophane, Assaf et al., 1996 and 1999) and gummite (Saleh, 

G. M. Personal Communication). Moreover, small quartz veinlets (1-5 cm thick) in various directions 

invade the shear zones.  

The first shear zone (ENE-WSW) extends for about 1560 m in length (2-40 m in width) and dips 70° 

due to SSE (Fig. 21) (Ibrahim et al., Op. Cit.). From the structural point of view, this shear zone is cut 

and displaced into three separated parts by two NNW-SSE trending strike-slip faults. Three generations of 

milky quartz (barren) veins are common; the oldest one, at the shear margins, trending parallel to the shear 

zone, and dissected by two young generations; NW-SE and N-S with obvious displacement. Red and grey 

jasperoid (mineralized) veins (0.5-3 m thick, 50-400 m length) are also common (ENE-WSW) parallel to both 

the shear zone and older milky quartz vein generation, with visible, pyrite and secondary U-minerals. 

Argillization, fluoritization, hematitization, silicification, carbonization and sulphidization are the main 

alteration processes (Fig. 22). Acidic dykes (muscovite microgranite) as well as intermediate and basic dykes 

(amygdaloidal latite and amygdaloidal quartz dolerite respectively) characterized by vugs completely filled by 

calcite are dominant along ENE-WSW shear zone. The second shear zone (NNW-SSE) extends for a short 

distance (100 m) and dips 80 due to ENE. Also latite (trachyandesite) dyke (chemical trap for uranium) (20-

50 cm thick) is invaded in parallel trend to the shear zone. Along the shear zone, the two-mica monzogranites 

are highly sheared, kaolinized and completely eroded. The intensity of radioactivity and mineralizations in the 

first shear zone are very common and more pronounced than the second one. No visible uranium 

mineralization is recorded in the fresh samples. The excavations revealed the increase of radioactivity all over 

the trench (up to 7000 ppm eU) faces in close contact to silica veinlets with steeply angle of dip (>75o) or 

nearly vertical. Also visible secondary U-minerals appears and increased with depth sporadically on joint 

surface as well as replacing the oxidized sulphide and filling the vugs. Based on geochemical data, both types 

of the Sela granites are categorized as peraluminous and were derived from K-rich calc-alkaline magma 

(Ibrahim et al., 2007). Spectrometric data of the El Sella shear zone in the first, second and third parts were 

summarized in Table (4). 

 

Fig21. Geologic map of ENE-WSW major shear zone of El-Sella (after Ibrahim et al., 2003). 
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Fig22. View showing exfoliated, cavernous external features due to subsequent weathering processes and fluoritization, 

hematitization, silicification, carbonization and sulphidization are the main alteration processes in G. Qash Amir younger 

granites, SED, Egypt. (photo by G.M.Saleh). 

Table4. Averages and ranges of eU, eTh (ppm), eU/eTh and K% contents in the shear zone, El-Sella area. 

Shear  zone eU (ppm) eTh (ppm) eU/eTh K (%) 

First part 

(500 m) (n=22) 

126.7 

18-850 

11.6 

1.8-89 

15 

7-55 

2.3 

1.0-8.8 

Second part 

(230 m) (n=15) 

49.3 

6-194 

3.7 

0.8-9.3 

13.8 

5.5-38 

1.8 

0.8-3.1 

Third part 

(850 m) 

Jasper vein 

(n=10) 

44 

15-121 

3.7 

1.2-7.5 

13.9 

2-36.6 

1.1 

0.5-1.9 

Hematitization 

zone 

(n=6) 

33 

25-52 

112 

55-155 

0.32 

0.21-0.46 

3.6 

2.6-4.5 

Argillization zone 

(n=10) 

204 

29-991 

26 

2.6-136 

10.4 

4-12 

3.4 

0.7-11.2 

n = number of analyses. 

El Sella granite is highly fractionated of HKCA magma (High-K Calcalkaline) comprises primary muscovite 

and represents a  granite pluton (80km2) which was highly affected by weathering processes where the granite 

appears as isolated “relatively” small masses. The recording of numerous magmatic facies which injected in 

the area, started by the fine-grained granite enriched in uranium. The microprobe analyses proved the presence 

of easily leachable (low thorium) primary uranium mineral represented by pitchblende as well as autunite, 

coffenite and uranophane as secondary uranium minerals (Fig. 23). Some features indicate that the late 

hydrothermal activities in the mineralized shear zone (ENE-WSW) played an important role in exceeding the 

U-potentiality (Ibrahim, 2007). These features are summarized as follow:- 

1. The abundance of lead, indicating an old mineralization, but has been leached from the primary uranium 

minerals due to the surface oxidation. 

2. The occurrence of strongly altered microgranite within the shear zone. 

3. The simultaneous increase of thorium with uranium determined by ground spectrometric measurements 

which showing as much as 250 ppm eTh correspond to 3000 ppmeU. Such features clearly indicate the 

percolation of late high potential fluid phases in the shear zone. These fluids leading to the simultaneous 

enrichment of uranium, thorium and may other minerals. Such an enrichment has been also observed 

from the geochemical analyses of El Missikat silica vein and the illite zone (Ibrahim, et al. 2005). 

4. The disequilibrium between the equivalent (>2500 ppm eU) and the elemental uranium (1300 ppm) 

assures that the majority of the U may concentrated at depth in the ENE-WSW shear zone which acts as 

good channel and trap. 
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Fig23. Photographs for the mineralized zone (coffenite, uranophane and authunite), in El Sella granite, SED, Egypt 

(Ibrahim, 2007). 

 Genesis of El Sella Uranium Deposits  

The El Sella brecciated continuous shear zone is considered as a good trap for uranium mineralization 

for the following factors (Ibrahim et al., 2003): 

1. The high eU contents of the fertile two-mica peraluminous monzogranites (16 ppm eU). 

2. The high average of eU/eTh ratio in El Sella shear zone (13.3). 

3. A wide barrier of milky silica vein (2-10 m) in El Sella shear zone. 

4. The post-magmatic activities are represented by microgranite and dolerite dykes. 

5. The chemical trap in El Sella shear zone is represented by basic dykes and tertiary olivine 

basalt, as well as mafic–ultramafic blocks are in close contact with the shear zone. 

6. Tectonically, the fault trends NW-SE and NNW-SSE played at least a role in the remobilization of 

uranium along the brecciated shear zone. 

7. The reducing environment is represented by sulphide minerals and carbonate (calcite pockets).  

8. Argillization, hematization, fluoritization, sulphidization and silicification are the main alterations 

variety containing visible U-minerals. 

3.1.3. Gattar Area, NED, Egypt  

 Gi (G. Gattar) - Uranium Occurrence  

 

Fig24. Geologic map of the study area (modified from Roz, 1994) and Abd El Naby, 2009. 
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A major shear zone  (up  to  2  km in length and 0.5 – 20 m wide), associated with a N-S to NNE 

major fracture of 60o-70o angle of dip mainly due to S or ESE directions are crosscutting biotite 

metaluminous monzogranite. Pale yellow to greenish yellow visible secondary U-minerals 

(uranophane, soddyite, kasolite, zippite and tyuyamunite) are encountered. The field observations 

showed that the width of the altered zone, the intensity and distribution of the associated U-minerals as 

well as the degraded of the accompanied wall rock alterations are gradually increasing upward, 

towards the northern part of the shear zone. Generally, the concentration of the secondary uranium 

minerals, along the shear zone, is of discontinuous nature, lensoid in shape and the deposition of 

uranium mineralization mainly occurred at releasing areas along the strike of the main fault zone 

(Salman et al., 1987). 

The geology of Gattar area, has been extensively studied by many authors (El Shazly, 1970, Dardir 

and Abu Zied, 1972, Salman et al., 1986, El Rakaiby and Shalaby, 1992, Roz, 1994, Nossier, 

1996, Shalaby, 1996). The rock units cropping out at this area are mainly metavolcanics, 

granodiorites, diorites, Hammamat sediments and younger granites (Fig. 24). Gattar granitic masses 

are classified as hypersolvus and alkali feldspar granites (El-Sayed et al., 2003). They are red to pink 

in color and consist mainly of orthoclase and microcline perthites, quartz, biotite and muscovite. 

Fluorite, zircon, apatite, titanite, galena and ilmenite are observed as accessory minerals. 

Geochemically, Gattar granites are peraluminous and could be considered as A-type granite (Moussa 

et al., 2007). The Hammamat sediments reach about 5 km in width and extend in a nearly east-west 

direction for about 20 km. They are composed mainly of conglomerates, greywackes and siltstones. 

These sediments are affected by alteration, including argillization, chloritization and muscovitization 

of lithic grains, silicification, pyritization followed by pseudomorphic oxidation and hematization. 

Stern and Hedge (1985) reported a Rb/Sr model age of 575 Ma for Gattar granites. However this age 

is younger than the 206 Pb/238U crystallization ages (between 597 and 613 Ma) reported by Moussa 

et al., (2007). On the other hand, Willis et al. (1988) obtained an age of 585±15 Ma for the 

Hammamat sediments. Presence of some xenoliths of Hammamat sediments in Gattar granites, as well 

as apophyses and offshoots of the granite mass into the Hammamat sediments, suggests an age 

younger than 585 Ma that supports the earlier 575 Ma age of Stern and Hedge (1985) and contradicts 

the recent 597 and 613 Ma ages of Moussa et al., (2007). G. Gattar Granite is a leucocratic H-KCA 

(High-K Calcalkaline) to alkaline granite. Most of the uranium in this type is associated in refractory 

minerals and needs complicated alteration processes to form an ore. The U-mineralization was leached 

with silica from the alteration of the limited fracture walls and redistributed along the contact with the 

Hmammat sediments due to fluids circulation. Few meters away from the mineralized zones, the 

granite lacks micro-fractures, alteration and the granite is still highly dense and has low porosity, 

limiting the chances for U-leaching (Ibrahim, 2007). Table (5) presents the average results of 

radiometric analysis carried out on 47 selected uraniferous samples. 

Table5. Average equivalent uranium-thorium contents (ppm) in the analyzed surface selected from GI and GV 

occurrences (after Abu Zeid, 1995). 

No. of Samples eU (ppm) eTh (ppm) Remarks 

a-GI 

1 (7) 

2 (4) 

3 (5) 

4 (4) 

5 (5) 

 

1180 

1800 

1290 

2880 

9000 

 

50 

45 

35 

75 

75 

 

Sheared silicified + hematitized granites. 

Strongly hematitizatied granites. 

Strongly hematitizatied granites. 

Hematitizatied granites + fluorite + smoky quartz. 

Hematitizatied granites + fluorite. 

b- GV 

6 (12) 

7 (10) 

 

1600 

500 

 

12 

10 

 

Hematitizatied Hammamat sediments. 

Hematitizatied episyenites + fluorite. 

 Gv (G. Gattar) - Uranium Occurrence  

This occurrence represents the most promising and significant uraniferous one in G. Gattar U-prospect. 

U-minerals here are mainly confined to an altered contact zone between the biotite monzogranites and 

its bordered Hammamt sediments along W. Bali. The visible secondary U-minerals are distributed along 

this contact in a separate uraniferous zones ranging in width from 0.5 to 15 m and in length between 1.2 and 

30 m. at the intensely mineralized zones, both biotite monzogranites and the closely adjacent Hammamat 

sediments are intensely affected by a wide spread deuteric and post magmatic hydrothermal alterations. 
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Hematitization, kaolinitization, fluoritization, episyenitization and carbonatization are the most alteration 

processes. The uranium mineralizations and the various alteration features are usually structurally 

controlled and accordingly could classify G. Gattar prospect as a hydrothermal vein-type uranium 

deposits (Abu Zaid, 1995). The presence of uranium mineralizations at different levels confirm the 

role of ascending hypogene solutions in the biotite monzogranites and their adjacent Hammamat 

sediments. These features are mostly conformable with that recorded at the different vein-type of the 

world such as the Boom Lake fault, west of uranium city of Canada and central city district, Colorado, 

USA (Rich et al., 1975). It is found from the relation between structures and uranium mineralization 

within the highly promising shear zones are located within a large pull-apart basin (Fig. 25), having 

about 2 km length and 500 m width (Shalaby, 1996). 

 

Fig25. Rhomb graben (S-shape) of small size controlling the uranium occurrences of GI, GII, GVI in granites of 

G. Qattar area (after Shalaby, 1996). 

WNW-ESE compression coeval with ENE-WSW extension system has resulted in two sets of 

conjugate shears. The first trending ENE-WSW is mineralized at El-Missikat and El Sella area, where 

the orebodies extended in its directon and dissected by the second NNW-SSe left lateral minor fault. 

However, to the north at G. Gattar area (Shalaby, 1996) the NNW-SSE shear zone is being dominate 

and characterized by existence of shear-related pull-apart tectonic regime which controlled the 

uranium mineralization (Fig. 26 a and b). 

 

Fig26a. Veiw showing for the NNW-SSE shear zone is being dominate and characterized by existence of shear-related 

pull-apart tectonic regime which controlled the uranium mineralization, NED, Egypt (Shalaby, 1996). 

 
Fig26b. Veiw showing G. Gattar U-prospect (Photo by G.M.Saleh). 



Uranium Mineralization in Shear Zones: An Overview

 

International Journal of Mining Science (IJMS)                                                                                   Page | 57 

3.2. Secondary in Metamorphic Rocks  

3.2.1. Abu Rusheid Brecciated Shear Zone, SED, Egypt.  

The LANDSAT-8 (7, 6, 1 as RGB) FCC image has been applied to discriminate different rock units in 

Abu Rusheid area including metagabbros, mélange-metasediments, cataclastics and granitic rocks 

(Fig. 27a). In this band combination image the metagabbros have dark brown color, while the 

mélange-metasediments appear in dark blue color. Abu Rusheid cataclastic rocks are classified into 

protomylonite, mylonite, ultramylonite and silicified ultramylonite. The occurrence of uranium 

resources in Abu Rusheid brecciated shear zone (hematite-rich breccia) is recorded here for the first 

time since two years ago by Abu Rusheid geologic member. Structural observations in WHC show 

that the culmination is bounded from east and west by two sub-parallel master left- lateral strike-slip 

shear zones; namely, Nugrus and El Gemal shear zones (Fig. 27b). The area is crossed by N–S to 

NNW-SSE trending extensional strike-slip fault shear zones with oblique left-lateral dislocation brittle 

features and ends on the Nugrus shear zone. In addition, the detailed field study recorded the 

development of ENE-WSW to E-W and/or NE-SW array of strike-slip faults with oblique to dip slip 

reactivation evidences. The senses of shearing as well as the orientation of these faults indicate that 

they represent subsidiary R- and P-shears to the NNW-SSE to NW-SE master shear zones (Figs. 27b 

and 27c). A detailed geological map for Abu Rusheid brecciated shear zone was constructed (Fig. 28a 

and 28b). The shear zone composed mainly of hematite-rich breccia with approximately 5 - 40 m in 

width, and extends about 1.0 km in NNW-SSE direction. It is overland by approximately 50 meters of 

Flat-lying ultramylonites followed by silicified ultramylonites. Rocks of the shear zone are fine-

medium to coarse grained and characterized by metasomatic alteration, but many of them were 

subjected to a high degree of erosion. They have different colours (black, whitish pink and red) 

depending on the degree of alterations, such as, kaolinization, pyritization, silicification, 

muscovitization, ferrugination, hematitization and advanced argillic altration which are highly 

predominated. The central core of the brecciated shear zone is highly in specific gravity and rich in 

hematite (7.5 in vol. % as FeOt) and banded muscovite flanked from the east and west by zones of 

intermingled hematite-rich breccia and ultramylonite. Post magmatic activity (basic dykes 0.5 - 1.0 m 

in width) in parallel trend to the Abu Rusheid shear zone is predominant. The brecciated shear zone 

(Figs. 29 and 30) is dissected by ENE-WSW right-hand strike-slip fault with a minor displacement (~5 

m). Iron oxides, zinc, clay minerals, copper, fluorite and manganese oxides are present as thin films along 

fracture planes clarify the pneumatomatolytic phase. Many vugs are formed in the shear zone  as  a  result  of 

leaching process (Fig. 31). 

 
Fig27a.  High resolution RGB (7, 6, 1) false color composite images (FCC) of LANDSAT-8 data enhanced by overlaid 

Panchromatic band (Band 8), Abu Rusheid area, SED, Egypt. 
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Fig27b. Simplified landsat image showing the regional structural elements of WHC, where the fracture pattern is 

controlled by the two sub-parallel left-lateral strike-slip shear zones and the development of their subsidiary R- and P-

shears Abu Rusheid area, SED, Egypt (after Saleh et al., 2012). 

 

Fig27c.  Simplified landsat image showing the structural pattern configuring the project area as well as the deduced 

paleostress tensor, where the fracture pattern is controlled by the two sub-parallel left-lateral strike-slip shear zones, 

Abu Rusheid area, SED, Egypt (after Saleh et al., 2012).  

 

Fig28a. Detailed geologic map of Abu Rusheid shear zones (after Ibrahim et al., 2002 and 2004). 
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Fig28b. Geologic map of shear zone (I) in Abu Rusheid area, South Eastern Desert, Egypt (after Ibrahim et al., 2004). 

 

 

Fig29. Veiw showing for the shear zone is dissected by ENE-WSW right-hand strike-slip fault with a minor 

displacement, Abu Rusheid area, SED, Egypt (Photo by G.M.Saleh). 

 

Fig30. Veiw showing for the shear zone is dissected by ENE-WSW right-hand strike-slip fault with a minor 

displacement, Abu Rusheid area, SED, Egypt (Photo by G.M.Saleh). 



Uranium Mineralization in Shear Zones: An Overview

 

International Journal of Mining Science (IJMS)                                                                                   Page | 60 

 

Fig31. Polished  slab  of  Abu  Rusheid  brecciated  shear  zone   showing hematite-rich breccia and rounded to 

ellipsoidal vugs, W. Abu Rusheid area, SED, Egypt. (photo by G.M.Saleh). 

 

Fig32. Photomicrograph showing rounded to ellipsoidal vugs are filled by calcite and secondary uranium 

minerals (radial autunite) in corona textures, Abu Rusheid shear zone, SED, Egypt. C.N. ×40 

These rounded to ellipsoidal vugs are filled by calcite, adularia and secondary uranium minerals in 

corona textures (Fig. 32). The zone of silicification is continuous and usually follows the hematitized 

shear zone. The U-mineralizations in the shear brecciated zone samples are represented by 

uranophane, coffinite, autunite and gummite (Hassan, M.A., Saleh G. M., Personal Communication), 

and El-Assay, I.E., Personal Communication), and kasolite together with columbite, sphalerite, 

arsenopyrite, xenotime, zincite, millerite, willemite, siderite, pyrite and fluorite. These minerals are 

identified by scan-electron microscope (SEM) and recorded in the brecciated shear zone recently by 

the Abu Rusheid Project.  

The presence of the mineral paragenesis listed above together with the various alterations in the 

cataclastic rocks indicate that these rocks were subjected to the effect of both mineralizing acidic and 

alkaline solutions. These mineralizing solutions soaked the rock through fault and foliation planes. The 

brecciated shear zone may be considered as a potential for several rare metals. The presence of other 

rare elements of economic significance should also be investigated, e.g. Zn, Li, Ga, V and REEs, in the 

brecciated shear zone as well as silver and arsenopyrite in the overlie silicified ultramylonites. 

More detailed spectrometric survey has been carried out in the NNW-SSE brecciated shear zone at the 

central part of the mapped area . The topography of the shear zone increases from north to south. In general, 

the radioelement concentrations increase at the northern part of the shear zone, especially at the intersection 

with the E-W Khour Abalea. This fault zone has been subjected to severe alteration, which is responsible 

for the high potassium metasomatism, especially at the northern part of the shear zone that reach up to 10 % 

. The eU content ranges from 162 to 1400 ppm, whereas eTh content ranges from 115 to 357 ppm and 

eU/eTh ratio (1.4 to 3.6) are related remobilization and migration of uranium. Uchem./Uradio. Ratio various 

from the cataclastic host rocks (< 0.1) to the discontinuous brecciated shear zone (> 1.6) reflecting the 
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migration of uranium along the foliations and banding planes from the cataclastic rocks through the 

channelway of brecciated shear zone. Also, eTh contents along the cataclastic rocks are heterogeneous 

(larger of smaller than eU) but along the shear zone, eTh usually less than eU contents and sometimes 

under limit of detection. Also, the field and laboratory examination for each uranium mineralizations in 

shear zones were summarized in Table (6). 

Table6. Classification of U-mineralization in the Egyptian Shear Zones (by G.M. Saleh). 

 

RECOMMENDATIONS 

According to the study of uranium mineralization in the shear zones in Egypt, the following 

conclusions can be outlined:- 

1. Abu Rusheid discontinuous shear zone type approaches the first priority U-mineralization and 

polymetallic zone (REEs, V, Ga, Y, Pb, Zn, Li and Cu). The presence of the mineral paragenesis 

with the various alterations in the cataclastic rocks indicate these rocks were subjected at least to 

the effect of mineralizing acidic and alkaline solutions. A progress geophysical work and core 

drilling are recommended along these shear zone to complete the subsurface studies.  

Detailed field studies revealed the description of the relations between the lamprophyre dykes and the 

adjacent host rocks. (after Ibrahim et al., 2004). 

a. The Shear zone I having the NNW-SSE direction is found in the cataclastic rocks and biotite granites. 

The lamprophyre dyke is extruding in the Shear zone along the zone. This Shear zone varies in thickness 

from 0.5m to 1m and up to 800m long. The alteration is represented by the sericitization and argilization, as 

well as hematitization. Visible uranium, manganese and white zinc minerals are distinctive in the Shear 

zone I lamprophyre. 

b. The Shear zone II runs NNW through the low-relief cataclastic rocks, and extends into the two mica 

granites. It is found far about 200m from W. Abu Rusheid and parallel to the first Shear zone. The 

lamprophyre dyke occurs in the center of the Shear zone NNW-SSE direction, with width ranging from 2 to 

5m. Visible uranium minerals are observed. 

c. The Shear zone III is found mainly at the contact between the cataclastic rocks and the two mica granitic 

rocks in the north of Shear zones I and II. This Shear zone seems as longitudinal trench of V- shape in the 

ENE-WSW direction. The rocks of Shear zone are characterized by different colours (black, whitish, pink 

and red) depending on the degree of alterations such as kaolinization and silicification. 

2. El Sella continuous shear zone type approaches the second priority U-mineralization, which 

recorded as the first typical occurrence in Egypt as peraluminous two mica monzogranite.  

3. El-Missikat-El Erediya shear zone  type approaches the third priority U-mineralization indicate 

that they were formed through the alteration the original granite (metaluminous to slightly 

peraluminous) rather than by hydrothermal injection. In this case the hydrothermal origin of these 

mineralizations may be excluded in this granite and in the similar prospect areas such as G. Gattar. 
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