International Journal of Medicinal Plants and Natural Products (IJMPNP)

Volume 4, Issue 2, 2018, PP 13-24 ISSN No. (Online) 2454-7999

DOI: http://dx.doi.org/10.20431/2454-7999.0402003

www.arcjournals.org

GC-MS Analysis of Bioactive Compounds from Whole Plant Chloroform Extract of Ageratum conyzoides

Ahamefula Anselm Ahuchaogu^{1*}, Godwin .I. Ogbuehi¹, A I. Obike¹, Chisom Sampson Egedeuzu¹, Okoronkwo Joseph Chukwu², John Bull Onyekachi Echeme²

¹Department of pure and Industrial Chemistry, Abia State University, Uturu, Nigeria.
²Department of Chemistry, Michael Okpara University of Agriculture, Umudike, Umuahia, Abia State, Nigeria

*Corresponding Author: Ahamefula Anselm Ahuchaogu, Department of pure and Industrial Chemistry, Abia State University, Uturu, Nigeria

Abstract: Most of the drug industries depend on medicinal plants for the production of pharmaceutical compounds, most herbal medicines and their derivatives products were often prepared from crude extracts from plants; which comprise a complex mixture of different phytochemical constituents (plant secondary metabolites). The aim of the work is to identify the bioactive compounds present in the chloroform extract of Ageratum convzoides whole plant using Gas Chromatography and Mass spectroscopy. The GC-MS revealed seventy one phytochemicals ranging from high and low molecular weight chemical entities with varying quantities present. The major compounds present include 9,12-Octadecadienoic acid (12.48%), cis-4-Acetoxytrans-1-(m-methoxyphenyl)cyclohexanecarbonitrile (11.52%), Octadecanoic acid (4.97%), Tetratetracontane (1.35%), 1H-Indole-3-carboxaldehyde (3.68%), 5-methoxy-19-Hydroxy-3-alpha,5-cyclo-5alpha-androstan-17-one (1.44%), cis-4,4-Dimethylbicyclo(6.3.0) undecane-2,6-dione (1.89%), 2-Heptenoic acid (1.23%), Kaur-16-ene (1.04%), Bicyclo [11.3.0] hexadecane-2,14-dione (0.45%), 3,3,6,6-Tetramethyl-1,2,3,4,5,6,7,8octahydroacridine (1.61%). The minor ones such as Benzenemethanol, 4-(1,1-dimethylethyl)- (0.28%), Benzaldehyde, 2-hydroxy-4-methoxy-(0.22%), 2,3,4,7-Tetrahydro-1H-indene (0.18%), 7-Oxabicyclo [4.1.0] heptanes (0.16%), 2-Undecanone, 6,10-dimethyl- (0.96%), Diazoacetic acid, 2-isopropyl-5-methylcyclohexyl ester (0.54%), Bicyclo[11.3.0]hexadecane-2,14-dione (0.45%), are also present. These chemical compounds are considered biologically and pharmacologically important.

Keywords: Ageratum conyzoides, herbal medicine, Osu angweri ngwa, GC-MS analysis, bioactive compounds

1. Introduction

Medicinal plants are sources of herbal and synthetic drugs, a lot of medicine if not all, have bioactive constitutes which are responsible for biological and pharmacological activities they exhibit.

Most of the activities can be attributed to secondary metabolites (phytochemical constituents) that are bioactive and present in the plant. Secondary metabolites are organic compounds that are not directly involved in the normal growth development and reproduction of the plant [1] and through to result from the evolutionary defense put up by plants [2]. Examples include alkaloids, tannins, terpenoids, flavonoids, saponins, phenolics, coumarins, glycosides and steroids.

They are of paramount importance in the treatment of diseases for man. South Eastern Nigeria is endowed with many of such vegetative plants and they are used as food and in herbal medicine to cure diseases and heal injuries; this implies that treatment of diseases in this region is not limited to synthetic drugs, as most people still depend on botanical preparations as medicine. These are always available in form of infusions, decoctions, macerations and concoctions. Most of these people even believe that herbal preparations are more effective than conventional synthetic drugs but are more effective than conventional synthetic drugs but are skeptical about is use since there is no clear cut dosage hence making it a major constraint

Ageratum conyzoides is among the medicinal plants that have effect against disease and may contain those biologically active compounds, which are effective against ailments. It belongs to the family and tribe of Asteraceae and Eupatoriae respectively. The plant is native to Central America, Caribbean, Florida (USA), South- East Asia, South China, India, West Africa (including Vigeria), Australia and South America [3,4]. The plan is traditionally called "Ufu Opioko" and "Otogo" by the Igedes in Benue

State, Nigeria [5]; in South Western Nigeria, it is known as "Imi esu" [6]; in South Western Nigeria, it is known as "Imi esu" [7]; while in the South East part of Nigeria, billygoat weed is called "Akwukwo nwa osi n'aka" or "Osu angweri ngwa". *Ageratum* conyzoides has been known since ancient times for its curative properties and has been utilized for the treatment of various ailments, such as typhoid, anaemia, malaria, headache, burns and wounds, analgesic, inflammation, asthma, spasmodic arthosis, dysnea, pneumonia and haemostatic effects, stomach ailments, gynecological diseases, leprosy and other skin diseases. [8,9]. A large percentage of the publications on the photochemistry has to do with the essential oil of this plant.

The oil content varies randomly from 0.11 to 0.58% for leaves and from 0.03 to 0.18% for the roots depending on times of the year [10]. From water distillation of the fresh flowers, the oil content was found to be 0.2%. The yield of oil from the petroleum ether extract of the seed was 26% [4].

A large number of constituents have been identified from the GC-MS analysis of the essential oil *of A. conyzoides*. The largest so Far, a total of 51 constituents have been reported from the analysis of an oil sample of the plant collected from a university environment in Nigeria. [11]. Group of compounds like monoterpenes, sesquiterpenes, triterpenes, sterols, chromene, chromone, benzofuran, coumarins, flavonoids, alkalodis, tannins, saponins, precocene I and II and other miscellaneous compounds have been identified in *Ageratum conyzoides*.

2. MATERIALS AND METHODS

2.1. Sample Collection and Preparation

Fresh plant materials were collected from a nearby farmland within Michael Okpara University of Agriculture, Umudike in the month of March, 2018 and was taxonomically identified by Mr. I. Ndukwe in plant taxonomy section of the Forestry Department of Michael Okpara University of Agriculture Umudike, Nigeria. A voucher specimen (AC 7344) was deposited at Department of Botany School of biological sciences.

The Fresh leaves, stems and roots were harvested washed with tap water and rinsed with sterile distilled water, then dried under shade to prevent interference of UV-radiation from the sun. Dried plant materials were powdered using electric blender. The powdered materials were preserved in an air-tight container, ready for extraction.

2.2. Extraction of Plant Materials

The powdered plant sample (500g) was extracted with 2L of chloroform (8hrs/3 times/30 $^{\circ}$ c). The extract was concentrated under reduced pressure using Digital Heidolph Rotary evaporator (4000 series) and the supernatant plant extract (6.54g) was decanted after complete removal of the solvent. The extract was centrifuged at 10,000 ppm for 20 minutes and tract was then subjected to systematic GC – analysis.

2.3.GC - MS Analysis Conditions

The GC-MS analysis of the extract was carried out using a HP 7890 GC instrument integrated with an Agilent 5975C MSD mass spectrometer (Aligent, Santa Clara, CA, USA). The capillary column was an Agilent HP-5MS (30.m x 0.25mm i.d. x 0.25 NM film thickness), helium (Purity > 99.999%) was used as the carrier gas, and the flow rate was 1 ML/min. The injector temperature was 250°c, and the injection mode was splitless. The G.C oven temperature was held at 50°C for 5min, which was increased to 210°c at a rate of 3°C/min, maintained at 210°c for 3 min, and finally increased to 230°C at 150C/min. The mass spectrometer conditions were as follow: [12, 13, 14] ionization energy, 70 Ev; ion Source temperature, 230°C; quadrupole temperature, 150°C; quadrupole mass spectrometer scan range 30 – 500 atomic mass units (amu); solvent delay time 2.8min.

2.4. Components Identification

The components of the chloroform extract of *Ageratum conyzoides* was identified by matching the peaks with computer Wiley Ms. libraries and confirmed by comparing mass spectra of the peaks and those from literature [15].

3. RESULTS AND DISCUSSIONS

The chloroform extract of the whole plant of *Ageratum conyzoides* on GC-MS analysis showed seventy one peaks indicating the presence of seventy one compounds in the plant as shown in figure 1.

The molecular formula, the molecular weight, the retention time and the percentage constituents of the compounds are shown in Table 1.

The mass spectrometer analyzes the compounds eluted at different times help to identify the nature and structures of the compounds. The large compounds fragments into small compounds giving rise to appearance of peaks at different m/z ratios. These mass spectra are fingerprint of that compounds which can be identified from the data library. The GC-MS study of the chloroform extract of the whole plant of *Ageratum conyzoide* had shown the presence of lots of photochemical which strongly contribute to the medicinal activity of the whole plant. The identified major compounds possess some important biological potential for future drug development

Abundance

Figure 1. GC-MS Chromatogram of Ageratum conyzoides whole plant chloroform extract.

Table 1. GC – MS analysis of Ageratum conyzoides showing molecular formula, molecular weight, percentage content, retention time

SN	RT	COMPONENT	FORMULA	MW	%
1	4.806	7-Oxabicyclo[4.1.0]heptanes	$C_6H_{10}O$	98	0.16
2	4.895	Octanoic Acid	$C_8H_{16}O_2$	144	0.26
3	5.218	Azulene	$C_{10}H_{8}$	128	0.25
4	5.259	2,3,4,7-Tetrahydro-1H-indene	C_9H_{12}	120	0.18
5	5.409	Benzeneacetic acid	$C_8H_8O_2$	136	0.23
6	5.469	n-Decanoic acid	$C_{10}H_{20}O_2$	172	0.16
7	5.521	2-Decenal, (Z)-	$C_{10}H_{18}O$	154	0.28
8	5.686	Phenol, 2-methyl-5-(1-methylethyl)	$C_{10}H_{14}O$	150	0.36
9	5.754	Phenol, 2,3,5,6-tetramethyl-	$C_{10}H_{14}O$	150	0.27
10	5.866	2-Methoxy-4-vinylphenol	$C_9H_{10}O_2$	150	0.32
11	5.956	2-Acetylcyclopentanone	$C_7H_{10}O_2$	126	0.44
12	6.020	Benzaldehyde, 2-hydroxy-4-methoxy-	$C_8H_8O_3$	152	0.22
13	6.279	1,3-Propanediol, 2,2-diethyl-	C ₇ H ₁₆ O ₂	132	0.36
14	6.301	2-Cyclohexen-1-ol, 2-methyl-5-(1-methylethenyl)-, cis	$C_{10}H_{16}O$	152	0.27
15	6.357	2-Butenoic acid, 3-methyl-	$C_5H_8O_2$	100	0.19
16	6.395	Cyclohexanol, 1-(aminomethyl)-	C ₇ H ₁₅ NO	129	0.19
17	6.481	3-Furanmethanol	C ₅ H ₆ O ₂	98	0.21
18	6.537	1H-Pyrazole, 3-ethoxy-5-methyl-	$C_6H_{10}N_2O$	126	0.33

1. 1. 1. 1. 1. 1. 1. 1.	19	6.627	Phenol, 2-methoxy-4-(1-propenyl)-, (E)	$C_{10}H_{12}O_2$	164	0.25
21						
methylethyl)-			· · · · · · · · · · · · · · · · · · ·			
22 7.100 Dodecanoic acid 0.49romo- 0.41 1.800 1.94 0.30 0.22 7.178 α-Calacorene 0.184 0.20 0.22 7.178 α-Calacorene 0.184 0.20 0.22 0.725 0.7231 2H-1-Benzopyran-2-one, 6-hydroxy-7-methoxy-4-methyl- 0.11H ₁₀ O ₄ 206 1.07 0.26 7.295 Ctradecane 0.14B 1.98 0.48 0.26 1.07 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.29 0.24 0.25 0	21	0.770		C121120C	100	0.17
23	22	6916		C ₆ H ₁₁ BrO ₂	194	0.30
24						
25						
26 7.295 Tetradecane						
7.332 N.N-Diethyl-p-nitroaniline C10H14N2O2 194 0.56			i i i i i i i i i i i i i i i i i i i			
28						
29						
30				1		
31 7.564 Cyclohexanol, 5-methyl-2-(1-methylethyl)-, (1α,2α,5β)- C ₁₀ H ₁₈ O ₃ 210 0.59 32 7.617 Methyl 7-(2-furyl)heptanoate C ₁₂ H ₁₈ O ₃ 210 0.59 34 7.711 Pyrimidine, 4-(2-hydroxy-5-methoxyphenyl)- C ₁₁ H ₁₀ N ₂ O ₂ 202 0.54 35 7.791 Methyl diphenylphosphinite C ₁₃ H ₁₃ OP 216 0.34 0.7791 Limonene oxide, cis- C ₁₀ H ₁₀ O 216 0.34 0.7791 C ₁₀ H ₁₀ O ₁ O ₂ 0.32 0.34 0.797 C ₁₀ H ₁₀ O 0.32 0.32 0.34 0.797 C ₁₀ H ₁₀ O 0.52 0.32 0.34						
32 7.617 Methyl 7-(2-furyhbeptanoate C ₁₂ H ₁₈ O ₃ 210 0.24 0.35 0.10-Dimethyl-2,6-dimethylenebicyclo[7.2.0]undecan-5β-ol C ₁₃ H ₁₈ O ₂ 200 0.50 0.50 0.34 7.711 Pyrimidine, 4-(2-hydroxy-5-methoxyphenyl)- C ₁₃ H ₁₈ OP 216 0.24 0.24 0.25 0						
33 7.688 10,10-Dimethyl-2,6-dimethylenebicyclo[7.2.0]undecan-5β-ol C1,5H24O 220 0.50 34 7.711 Pyrimidine, 4-(2-hydroxy-5-methoxyphenyl) C1,1H10N202 202 0.43 35 7.759 Methyl diphenylphosphinite C1,3H136O 216 0.24 36 7.797 Limonene oxide, cis- C1,0H16O 152 0.32 37 7.902 2-Methyl-3-(3-methyl-but-2-enyl)-2-(4-methyl-pent-3-enyl)- oxetane C1,5H24O 220 0.16 38 7.936 Longipinocarveol, trans- C1,5H24O 220 0.16 39 8.052 Tetradecanoic acid C1,4H26O 220 0.16 40 8.097 6-Amino-2,4-dimethyl-5-methoxyquinoline C1,2H18V2O 202 0.51 41 8.187 Carbonic acid, octadecyl 2,2,2-trichloroethyl ester C2,1H3vG103 444 0.36 42 8.220 Heptadecane C7,7H36 240 0.80 43 8.307 Norfenefrine C2,0H38 278 1.36 44 8.389 1,19-Eicosadiene C2,0H38 278 1.36 45 8.419 2-Undecanoic, 6,10-dimethyl- C1,3H26O 198 0.96 46 8.490 Pentadecanoic acid C1,1H36O 242 1.31 47 8.543 Benzementhanol, 4-(1,1-dimethylethyl)- C1,1H36O 296 0.81 49 8.663 4-Allyl-5-pyridin-3-yl-2,4-dihydro-[1,2,4]triazole-3-thione C1,0H36O 296 0.81 49 8.663 4-Allyl-5-pyridin-3-yl-2,4-dihydro-[1,2,4]triazole-3-thione C1,0H3O 270 0.31 50 8.753 Pentadecanoic acid 1-methyl- methyl ester C1,0H3O 270 0.31 51 8.783 7,9-Di-terl-butyl-1-0 xaspiro(4,5)deca-6,9-diene-2,8-dione C1,0H3O 270 0.31 52 9.041 n-Hexadecanoic acid 1-methyl- methyl ester C1,0H3O 270 0.31 53 9.278 Methyl 2-hydroxy-pentadecanoate C1,0H3O 270 0.31 52 9.389 1-4-Methanonaphthalen-9-ol, 1,2,3,4-tetrahydro-, stereoisomer C1,0H3O 270 0.37 53 9.289 1-4-Methanonaphthalen-9-ol, 1,2,3,4-tetrahydro-, stereoisomer C1,0H3O 270 0.37 54 9.341 Heptadecanoic acid C2,0H3O 270 0.37 55 9.398 1-4-Methyl-8-hexadecyn-1-ol C2,0H3O 270 0.37 56 9.428 1-4-Baccene C2,0H3O 270 0.37 57 9.619 Saur-16-ene C2,0H3O 270 280 1248 58 9.720 9						
34						
35			· · · · · · · · · · · · · · · · · · ·			
36						
7.902 2-Methyl-3-(3-methyl-but-2-enyl)-2-(4-methyl-pent-3-enyl)- oxetane C15H24O 220 0.16 38 7.936 Longipinocarveol, trans- C15H24O 220 0.16 39 8.052 Tetradecanoic acid C14H28O 228 1.35 40 8.097 6-Amino-2,4-dimethyl-5-methoxyquinoline C12H14N2O 202 0.51 41 8.187 Carbonic acid, octadecyl 2,2,2-trichloroethyl ester C21H39ClsO3 444 0.36 42 8.220 Heptadecane C17H36 240 0.80 43 8.307 Norfenefrine C8H11NO2 153 0.44 44 8.389 1,19-Eicosadiene C20H38 278 1.36 45 8.419 2-Undecanone, 6,10-dimethyl- C13H26O 198 0.96 46 8.490 Pentadecanoic acid C1,1-dimethylethyl- C1,1H36O 242 1.31 47 8.543 Benzenemethanol, 4-(1,1-dimethylethyl)- C1,1H46O 164 0.28 48 8.577 3,7,11,15-Tetramethyl-2-hexadecen-1-ol C20Ha0O 296 0.81 49 8.663 4-Allyl-5-pyridin-3-yl-2,4-dihydro- 1,2,4 triazole-3-thione C1,1H34O2 270 0.43 50 8.753 Pentadecanoic acid 14-methyl- methyl ester C1,7H34O2 270 0.31 51 8.783 79-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione C1,7H34O2 270 0.31 52 9.041 n-Hexadecanoic acid C1,6H32O2 2256 30.69 53 9.278 Methyl 2-hydroxy-pentadecanoate C1,6H32O2 270 0.37 55 9.398 1,4-Methanonaphthalen-9-ol, 1,2,3,4-tetrahydro-, stereoisomer C1,1H34O2 270 0.07 55 9.428 1-Hexadecene C2,0H32 272 0.44 56 9.428 1-Hexadecanoic acid C1,2						
Negative New York New York						
38	37	7.502		01311200	222	0.10
8.052 Tetradecanoic acid C ₁₄ H ₂₈ O ₂ 228 1.35	38	7.936		C ₁₅ H ₂₄ O	220	0.16
40 8.097 6-Amino-2,4-dimethyl-5-methoxyquinoline C ₁₂ H ₁₄ N ₂ O 202 0.51 41 8.187 Carbonic acid, octadecyl 2,2,2-trichloroethyl ester C ₂₁ H ₃₉ Cl ₃ O ₃ 444 0.36 42 8.220 Heptadecane C ₁₇ H ₃₆ 240 0.80 43 8.397 Norfenefrine C ₈ H ₁₁ NO ₂ 153 0.44 44 8.389 1,19-Eicosadiene C ₂₀ H ₃₈ 278 1.36 45 8.419 2-Undecanone, 6,10-dimethyl- C ₁₃ H ₂₆ O 198 0.96 46 8.490 Pentadecanoic acid C ₁₅ H ₃₀ O 242 1.31 47 8.543 Benzenemethanol, 4-(1,1-dimethylethyl)- C ₁₁ H ₁₆ O 164 0.28 48 8.577 3,7,11,15-Tetramethyl-2-he xadecen-1-ol C ₂₀ H ₄₀ O 296 0.81 49 8.663 4-Allyl-5-pyridin-3-yl-2,4-dihydro-[1,2,4]triazole-3-thione C ₁₇ H ₃₄ O ₂ 270 0.43 50 8.753 Pentadecanoic acid, 14-methyl-, methyl ester C ₁₇ H ₃₄ O ₂ 270 0.43 51 8.783 7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione C ₁₇ H ₂₄ O ₃ 276 0.31 52 9.041 n-Hexadecanoic acid C ₁₆ H ₃₂ O 276 0.31 53 9.278 Methyl 2-hydroxy-pentadecanoate C ₁₆ H ₃₂ O 270 0.30 54 9.341 Heptadecanoic acid C ₁₇ H ₃₄ O 270 0.47 55 9.398 1,4-Methanonaphthalen-9-ol, 1,2,3,4-tetrahydro-, stereoisomer C ₁₁ H ₁₂ O 160 0.47 56 9.428 1-Hexadecene C ₂₀ H ₃₂ 272 0.44 58 9.720 9,12-Octadecadienoic acid (Z,Z)- C ₁₈ H ₃₀ O ₂ 284 4.97 60 9.889 Tetratetracontane C ₁₄ H ₃₆ O ₂ 284 4.97 60 9.889 Tetratetracontane C ₁₇ H ₃₆ O ₂ 252 0.43 61 10.050 (R)-(-)-14-Methyl-8-hexadecyn-1-ol C ₁₇ H ₃₂ O 252 0.43 62 10.099 Bicyclo[5.2.0]nonane, 4-methylene-2,8-trimethyl-2-vinyl- C ₁₅ H ₂₄ 204 0.60 64 10.590 Diazoacetic acid, 2-isopropyl-5-methyleyclohexyl ester C ₁₂ H ₂₀ N ₂ O ₂ 224 0.54 65 10.631 Kaur-16-ene C ₂₀ H ₃₂ 272 0.44 66 10.698 Bicyclo[13.0]hexadecane-2,14-dione C ₁₆ H ₂₆ O ₂ 250 0.45 67 10.740 3,3,6,6-Tetramethyl-1,2,3,4,5,6,7,8-octahydroacrid			~ .			
8.187						
42 8.220 Heptadecane C ₁₇ H ₃₆ 240 0.80 43 8.307 Norfenefrine C ₈ H ₁₁ NO ₂ 153 0.44 44 8.389 1,19-Eicosadiene C ₂₀ H ₃₈ 278 1.36 45 8.491 2-Undecanone, 6,10-dimethyl- C ₁₃ H ₂₆ O 198 0.96 46 8.490 Pentadecanoic acid C ₁₅ H ₃₀ O 242 1.31 47 8.543 Benzenemethanol, 4-(1,1-dimethylethyl)- C ₁₁ H ₁₆ O 164 0.28 48 8.577 3,7,11,15-Tetra methyl-2-he xadecen-1-ol C ₂₀ H ₄₀ O 296 0.81 49 8.663 4-Allyl-5-pyridin-3-yl-2,4-dihydro-[1,2,4]triazole-3-thione C ₁₀ H ₁₀ O 296 0.81 50 8.753 Pentadecanoic acid C ₁₀ H ₁₀ O 296 0.81 51 8.873 7.9-Di-tert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione C ₁₇ H ₃₄ O ₂ 270 0.43 52 9.041 n-Hexadecanoic acid C ₁₆ H ₃₂ O ₂ 256 30.69 53 9.278<			• • • •			
43 8.307 Norfenefrine C ₈ H ₁₁ NO ₂ 153 0.44 44 8.389 1,19-Eicosadiene C ₂₀ H ₃₈ 278 1.36 45 8.419 2-Undecanone, 6,10-dimethyl- C ₁₃ H ₂₆ O 198 0.96 46 8.490 Pentadecanoic acid C ₁₅ H ₃₀ O ₂ 242 1.31 47 8.543 Benzenemethanol, 4-(1,1-dimethylethyl)- C ₁₁ H ₁₆ O 164 0.28 48 8.577 3,7,11,15-Tetramethyl-2-he xadecen-1-ol C ₂₀ H ₄₀ O 296 0.81 49 8.663 4-Allyl-5-pyridin-3-yl-2,4-dihydro-[1,2,4]triazole-3-thione C ₁₀ H ₁₀ N ₄ S 218 0.54 50 8.753 Pentadecanoic acid, 14-methyl-, methyl ester C ₁₇ H ₂₄ O ₂ 270 0.43 51 8.783 7,9-Di-tert-butyl-1-0 xaspiro(4,5)deca-6,9-diene-2,8-dione C ₁₇ H ₂₄ O ₃ 276 0.31 52 9.941 Heptadecanoic acid C ₁₆ H ₃₂ O ₂ 256 30.69 53 9.278 Methyl 2-hydroxy-pentadecanoate C ₁₆ H ₃₂ O ₂ 270 1.07 <td></td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td></td> <td></td>			· · · · · · · · · · · · · · · · · · ·			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	43		*			
45 8.419 2-Undecanone, 6,10-dimethyl- C ₁₃ H ₂₆ O 198 0.96 46 8.490 Pentadecanoic acid C ₁₅ H ₃₀ O ₂ 242 1.31 47 8.543 Benzenemethanol, 4-(1,1-dimethylethyl)- C ₁₁ H ₁₆ O 164 0.28 48 8.577 3,7,11,15-Tetramethyl-2-hexadecen-1-ol C ₂₀ H ₄₀ O 296 0.81 49 8.663 4-Allyl-5-pyridin-3-yl-2,4-dihydro-[1,2,4]triazole-3-thione C ₁₀ H ₁₀ N ₄ S 218 0.54 50 8.753 Pentadecanoic acid, 14-methyl-, methyl ester C ₁₇ H ₃₄ O ₂ 270 0.43 51 8.783 7,9-Di-tert-butyl-1-0 xaspiro(4,5)deca-6,9-diene-2,8-dione C ₁₇ H ₂₄ O ₃ 276 0.31 52 9.041 n-Hexadecanoic acid C ₁₆ H ₃₂ O ₂ 256 30.69 53 9.278 Methyl 2-hydroxy-pentadecanoate C ₁₆ H ₃₂ O ₂ 270 0.30 54 9.341 Heptadecanoic acid C ₁₇ H ₃₄ O ₂ 270 1.07 55 9.398 IEwadecene C ₁₆ H ₃₂ O ₂ 270 1						
46 8.490 Pentadecanoic acid C15H30O2 242 1.31 47 8.543 Benzenemethanol, 4-(1,1-dimethylethyl)- C11H16O 164 0.28 48 8.577 3,7,11,15-Tetramethyl-2-he xadecen-1-ol C20H40O 296 0.81 49 8.663 4-Allyl-5-pyridin-3-yl-2,4-dihydro-[1,2,4]triazole-3-thione C10H10N4S 218 0.54 50 8.753 Pentadecanoic acid 14-methyl-, methyl ester C17H34O2 270 0.43 51 8.783 7,9-Di-tert-butyl-1-o xaspiro(4,5)deca-6,9-diene-2,8-dione C17H24O3 276 0.31 52 9.041 n-Hexadecanoic acid C16H32O2 256 30.69 53 9.278 Methyl 2-hydroxy-pentadecanoate C16H32O3 272 0.30 54 9.341 Heptadecanoic acid C17H34O2 270 1.07 55 9.398 1,4-Methanonaphthalen-9-ol, 1,2,3,4-tetrahydro-, stereoisomer C11H12O 160 0.47 56 9.428 1-Hexadecene C20H32 272 0.44			1			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			·			
49 8.663 4-Allyl-5-pyridin-3-yl-2,4-dihydro-[1,2,4]triazole-3-thione C ₁₀ H ₁₀ N ₄ S 218 0.54 50 8.753 Pentadecanoic acid, 14-methyl-, methyl ester C ₁₇ H ₃₄ O ₂ 270 0.43 51 8.783 7,9-Di-tert-butyl-1-o xaspiro(4,5)deca-6,9-diene-2,8-dione C ₁₇ H ₂₄ O ₃ 276 0.31 52 9.041 n-Hexadecanoic acid C ₁₆ H ₃₂ O ₂ 256 30.69 53 9.278 Methyl 2-hydroxy-pentadecanoate C ₁₆ H ₃₂ O ₃ 272 0.30 54 9.341 Heptadecanoic acid C ₁₇ H ₃₄ O ₂ 270 1.07 55 9.398 1,4-Methanonaphthalen-9-ol, 1,2,3,4-tetrahydro-, stereoisomer C ₁₁ H ₁₂ O 160 0.47 56 9.428 1-Hexadecene C ₂₀ H ₃₂ 272 0.44 58 9.720 9,12-Octadecadienoic acid (Z,Z)- C ₁₈ H ₃₂ O ₂ 280 12.48 59 9.806 Octadecanoic acid C ₁₈ H ₃₂ O ₂ 284 4.97 60 9.889 Tetratetracontane C ₄ H ₉ O 618	47	8.543	Benzenemethanol, 4-(1,1-dimethylethyl)-	C ₁₁ H ₁₆ O	164	0.28
49 8.663 4-Allyl-5-pyridin-3-yl-2,4-dihydro-[1,2,4]triazole-3-thione C ₁₀ H ₁₀ N ₄ S 218 0.54 50 8.753 Pentadecanoic acid, 14-methyl-, methyl ester C ₁₇ H ₃₄ O ₂ 270 0.43 51 8.783 7,9-Di-tert-butyl-1-o xaspiro(4,5)deca-6,9-diene-2,8-dione C ₁₇ H ₂₄ O ₃ 276 0.31 52 9.041 n-Hexadecanoic acid C ₁₆ H ₃₂ O ₂ 256 30.69 53 9.278 Methyl 2-hydroxy-pentadecanoate C ₁₆ H ₃₂ O ₃ 272 0.30 54 9.341 Heptadecanoic acid C ₁₇ H ₃₄ O ₂ 270 1.07 55 9.398 1,4-Methanonaphthalen-9-ol, 1,2,3,4-tetrahydro-, stereoisomer C ₁₁ H ₁₂ O 160 0.47 56 9.428 1-Hexadecene C ₂₀ H ₃₂ 272 0.44 58 9.720 9,12-Octadecadienoic acid (Z,Z)- C ₁₈ H ₃₂ O ₂ 280 12.48 59 9.806 Octadecanoic acid C ₁₈ H ₃₂ O ₂ 284 4.97 60 9.889 Tetratetracontane C ₄ H ₉ O 618	48		3,7,11,15-Tetra methyl-2-he xadecen-1-ol		296	0.81
50 8.753 Pentadecanoic acid, 14-methyl-, methyl ester C ₁₇ H ₃₄ O ₂ 270 0.43 51 8.783 7,9-Di-tert-butyl-1-o xaspiro(4,5)deca-6,9-diene-2,8-dione C ₁₇ H ₂₄ O ₃ 276 0.31 52 9.041 n-Hexadecanoic acid C ₁₆ H ₃₂ O ₂ 256 30.69 53 9.278 Methyl 2-hydroxy-pentadecanoate C ₁₆ H ₃₂ O ₃ 272 0.30 54 9.341 Heptadecanoic acid C ₁₇ H ₃₄ O ₂ 270 1.07 55 9.398 1,4-Methanonaphthalen-9-ol, 1,2,3,4-tetrahydro-, stereoisomer C ₁₁ H ₁₂ O 160 0.47 56 9.428 1-Hexadecene C ₂₀ H ₃₂ 224 1.32 57 9.619 Kaur-16-ene C ₂₀ H ₃₂ 272 0.44 58 9.720 9,12-Octadecadienoic acid (Z,Z)- C ₁₈ H ₃₂ O ₂ 280 12.48 59 9.806 Octadecanoic acid C ₁₈ H ₃₂ O ₂ 284 4.97 60 9.889 Tetrateracontane C ₄ H ₉ O 618 1.19 61	49	8.663	*		218	0.54
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50		Pentadecanoic acid, 14-methyl-, methyl ester	$C_{17}H_{34}O_2$	270	0.43
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	51	8.783	7,9-Di-tert-butyl-1-o xaspiro(4,5)deca-6,9-diene-2,8-dione	C ₁₇ H ₂₄ O ₃	276	0.31
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	52	9.041	n-Hexadecanoic acid		256	30.69
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	53	9.278	Methyl 2-hydroxy-pentadecanoate		272	0.30
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	54	9.341			270	1.07
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	55	9.398			160	0.47
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	56	9.428	-		224	1.32
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	57		Kaur-16-ene		272	0.44
59 9.806 Octadecanoic acid C ₁₈ H ₃₆ O ₂ 284 4.97 60 9.889 Tetratetracontane C ₄₄ H ₉ O 618 1.19 61 10.050 (R)-(-)-14-Methyl-8-he xadecyn-1-ol C ₁₇ H ₃₂ O 252 0.43 62 10.099 Bicyclo[5.2.0]nonane, 4-methylene-2,8,8-trimethyl-2-vinyl- C ₁₅ H ₂₄ 204 0.39 63 10.312 Bicyclo[5.2.0]nonane, 4-methylene-2,8,8-trimethyl-2-vinyl- C ₁₅ H ₂₄ 204 0.60 64 10.590 Diazoacetic acid, 2-isopropyl-5-methylcyclohexyl ester C ₁₂ H ₂₀ N ₂ O ₂ 224 0.54 65 10.631 Kaur-16-ene C ₂₀ H ₃₂ 272 1.04 66 10.698 Bicyclo[11.3.0]he xadecane-2,14-dione C ₁₆ H ₂₆ O ₂ 250 0.45 67 10.740 3,3,6,6-Tetramethyl-1,2,3,4,5,6,7,8-octahydroacridine C ₁₇ H ₂₅ N 243 1.61 68 11.283 19-Hydroxy-3alpha,5-cyclo-5alpha-androstan-17-one C ₁₉ H ₂₈ O ₂ 288 1.44 69 16.063 cis-4,4-Dimethylbicyclo(6.3.0)undecane-2,6-dione </td <td>58</td> <td></td> <td>9,12-Octadecadienoic acid (Z,Z)-</td> <td></td> <td>280</td> <td></td>	58		9,12-Octadecadienoic acid (Z,Z)-		280	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
61 10.050 (R)-(-)-14-Methyl-8-he xadecyn-1-o1 C ₁₇ H ₃₂ O 252 0.43 62 10.099 Bicyclo[5.2.0]nonane, 4-methylene-2,8,8-trimethyl-2-vinyl- C ₁₅ H ₂₄ 204 0.39 63 10.312 Bicyclo[5.2.0]nonane, 4-methylene-2,8,8-trimethyl-2-vinyl- C ₁₅ H ₂₄ 204 0.60 64 10.590 Diazoacetic acid, 2-isopropyl-5-methylcyclohexyl ester C ₁₂ H ₂₀ N ₂ O ₂ 224 0.54 65 10.631 Kaur-16-ene C ₂₀ H ₃₂ 272 1.04 66 10.698 Bicyclo[11.3.0]he xadecane-2,14-dione C ₁₆ H ₂₆ O ₂ 250 0.45 67 10.740 3,3,6,6-Tetramethyl-1,2,3,4,5,6,7,8-octahydroacridine C ₁₇ H ₂₅ N 243 1.61 68 11.283 19-Hydroxy-3alpha,5-cyclo-5alpha-androstan-17-one C ₁₉ H ₂₈ O ₂ 288 1.44 69 16.063 cis-4,4-Dimethylbicyclo(6.3.0)undecane-2,6-dione C ₁₃ H ₂₀ O ₂ 208 1.89 70 16.647 2-Heptenoic acid, 4-cyclopropyl-5-methylene-, methyl ester, (E)- C ₁₂ H ₁₈ O ₂ 194 1.23 71	60	9.889	Tetratetracontane		618	1.19
62 10.099 Bicyclo[5.2.0]nonane, 4-methylene-2,8,8-trimethyl-2-vinyl- C15H24 204 0.39 63 10.312 Bicyclo[5.2.0]nonane, 4-methylene-2,8,8-trimethyl-2-vinyl- C15H24 204 0.60 64 10.590 Diazoacetic acid, 2-isopropyl-5-methylcyclohexyl ester C12H20N2O2 224 0.54 65 10.631 Kaur-16-ene C20H32 272 1.04 66 10.698 Bicyclo[11.3.0]he xadecane-2,14-dione C16H26O2 250 0.45 67 10.740 3,3,6,6-Tetramethyl-1,2,3,4,5,6,7,8-octahydroacridine C17H25N 243 1.61 68 11.283 19-Hydroxy-3alpha,5-cyclo-5alpha-androstan-17-one C19H28O2 288 1.44 69 16.063 cis-4,4-Dimethylbicyclo(6.3.0)undecane-2,6-dione C13H20O2 208 1.89 70 16.647 2-Heptenoic acid, 4-cyclopropyl-5-methylene-, methyl ester, (E)- C12H18O2 194 1.23 71 18.882 cis-4-Acetoxy-trans-1-(m-methoxyphenyl) C16H19NO3 273 11.52						
63 10.312 Bicyclo[5.2.0]nonane, 4-methylene-2,8,8-trimethyl-2-vinyl- C ₁₅ H ₂₄ 204 0.60 64 10.590 Diazoacetic acid, 2-isopropyl-5-methylcyclohexyl ester C ₁₂ H ₂₀ N ₂ O ₂ 224 0.54 65 10.631 Kaur-16-ene C ₂₀ H ₃₂ 272 1.04 66 10.698 Bicyclo[11.3.0]he xadecane-2,14-dione C ₁₆ H ₂₆ O ₂ 250 0.45 67 10.740 3,3,6,6-Tetramethyl-1,2,3,4,5,6,7,8-octahydroacridine C ₁₇ H ₂₅ N 243 1.61 68 11.283 19-Hydroxy-3alpha,5-cyclo-5alpha-androstan-17-one C ₁₉ H ₂₈ O ₂ 288 1.44 69 16.063 cis-4,4-Dimethylbicyclo(6.3.0)undecane-2,6-dione C ₁₃ H ₂₀ O ₂ 208 1.89 70 16.647 2-Heptenoic acid, 4-cyclopropyl-5-methylene-, methyl ester, (E)- C ₁₂ H ₁₈ O ₂ 194 1.23 71 18.882 cis-4-Acetoxy-trans-1-(m-methoxyphenyl) C ₁₆ H ₁₉ NO ₃ 273 11.52						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			· · · · · · · · · · · · · · · · · · ·			
65 10.631 Kaur-16-ene C ₂₀ H ₃₂ 272 1.04 66 10.698 Bicyclo[11.3.0]he xadecane-2,14-dione C ₁₆ H ₂₆ O ₂ 250 0.45 67 10.740 3,3,6,6-Tetra methyl-1,2,3,4,5,6,7,8-octahydroacridine C ₁₇ H ₂₅ N 243 1.61 68 11.283 19-Hydroxy-3alpha,5-cyclo-5alpha-androstan-17-one C ₁₉ H ₂₈ O ₂ 288 1.44 69 16.063 cis-4,4-Dimethylbicyclo(6.3.0)undecane-2,6-dione C ₁₃ H ₂₀ O ₂ 208 1.89 70 16.647 2-Heptenoic acid, 4-cyclopropyl-5-methylene-, methyl ester, (E)- C ₁₂ H ₁₈ O ₂ 194 1.23 71 18.882 cis-4-Acetoxy-trans-1-(m-methoxyphenyl) C ₁₆ H ₁₉ NO ₃ 273 11.52						
66 10.698 Bicyclo[11.3.0]he xadecane-2,14-dione C ₁₆ H ₂₆ O ₂ 250 0.45 67 10.740 3,3,6,6-Tetra methyl-1,2,3,4,5,6,7,8-octahydroacridine C ₁₇ H ₂₅ N 243 1.61 68 11.283 19-Hydroxy-3alpha,5-cyclo-5alpha-androstan-17-one C ₁₉ H ₂₈ O ₂ 288 1.44 69 16.063 cis-4,4-Dimethylbicyclo(6.3.0)undecane-2,6-dione C ₁₃ H ₂₀ O ₂ 208 1.89 70 16.647 2-Heptenoic acid, 4-cyclopropyl-5-methylene-, methyl ester, (E)- C ₁₂ H ₁₈ O ₂ 194 1.23 71 18.882 cis-4-Acetoxy-trans-1-(m-methoxyphenyl) C ₁₆ H ₁₉ NO ₃ 273 11.52	65					
67 10.740 3,3,6,6-Tetra methyl-1,2,3,4,5,6,7,8-octahydroacridine C ₁₇ H ₂₅ N 243 1.61 68 11.283 19-Hydroxy-3alpha,5-cyclo-5alpha-androstan-17-one C ₁₉ H ₂₈ O ₂ 288 1.44 69 16.063 cis-4,4-Dimethylbicyclo(6.3.0)undecane-2,6-dione C ₁₃ H ₂₀ O ₂ 208 1.89 70 16.647 2-Heptenoic acid, 4-cyclopropyl-5-methylene-, methyl ester, (E)- C ₁₂ H ₁₈ O ₂ 194 1.23 71 18.882 cis-4-Acetoxy-trans-1-(m-methoxyphenyl) C ₁₆ H ₁₉ NO ₃ 273 11.52	66					
68 11.283 19-Hydroxy-3alpha,5-cyclo-5alpha-androstan-17-one C ₁₉ H ₂₈ O ₂ 288 1.44 69 16.063 cis-4,4-Dimethylbicyclo(6.3.0)undecane-2,6-dione C ₁₃ H ₂₀ O ₂ 208 1.89 70 16.647 2-Heptenoic acid, 4-cyclopropyl-5-methylene-, methyl ester, (E)- C ₁₂ H ₁₈ O ₂ 194 1.23 71 18.882 cis-4-Acetoxy-trans-1-(m-methoxyphenyl) C ₁₆ H ₁₉ NO ₃ 273 11.52			·			
69 16.063 cis-4,4-Dimethylbicyclo(6.3.0)undecane-2,6-dione C ₁₃ H ₂₀ O ₂ 208 1.89 70 16.647 2-Heptenoic acid, 4-cyclopropyl-5-methylene-, methyl ester, (E)- C ₁₂ H ₁₈ O ₂ 194 1.23 71 18.882 cis-4-Acetoxy-trans-1-(m-methoxyphenyl) C ₁₆ H ₁₉ NO ₃ 273 11.52						
70 16.647 2-Heptenoic acid, 4-cyclopropyl-5-methylene-, methyl ester, (E)- C ₁₂ H ₁₈ O ₂ 194 1.23 71 18.882 cis-4-Acetoxy-trans-1-(m-methoxyphenyl) C ₁₆ H ₁₉ NO ₃ 273 11.52			· · · · · ·			
71 18.882 cis-4-Acetoxy-trans-1-(m-methoxyphenyl) C ₁₆ H ₁₉ NO ₃ 273 11.52	70	16.647	· · ·		194	1.23
	71	18.882			273	11.52

Figure 2. GC-MS of Mass Spectra Ageratum conyzoides whole plant chloroform extract

4. CONCLUSION

This present study revealed the presence of seventy one components in *Ageratum conyzoides* through GC-MS analysis. The plant specie used in this study has been discovered to possess promising medicinal potentials. This study has suggests that chloroform extract contain more of the phytochemicals. The presence of bioactive components justifies the use of the plant for various ailments by traditional practioners. In view of the medicinal importance associated with the phytocompounds found in this plant, further investigation should be carried out in order to purify, characterize the structure of these bioactive compounds and enhance their potentials as drugs.

REFERENCES

- [1] Macia, M.J., Garcia, E. and Vidaure, P.J. (2005). An ethno botanical survey of medicinal plants commercialized in the markets of La Paz and El Alto, Bolivia. *Journal of Ethnopharmalogy*; 97(2): 337-35.
- [2] Kong, C.H. (2006). Allelochemicals from *Ageratum conyzoides L.* and *Oryza Satiiva L.* and their effects on related pathogens. *Allelopathy J.*; 14: 5-13.
- [3] Okunade, A.L. (2002). Review: Ageratum conyzoides L (Asteracease)". Fitoterapia; 73: 1-16.
- [4] Igoli, J.O., Ogaji, O.G., Tor-Anyin, T.A. and Igoli, N.P. (2005). Traditional medicine practice among the Igede people of Nigeria (part II). *Afri. J. Trad. Comp. Alt. Med.*; 2:134-152.
- [5] Oladejo, O.W., Imosemi, I.O., Osuagwu, F.C., Oluwadara, O.O., Aiku, A., Adewoyin, O., Ekpo, O.E., Oyedele, O.O. and Akang, E.E.U. (2003). Enhancement of Cutaneous Wound Healing by Methanoic Extracts of *Argeratum conyzoides* in the Wister Rat. *African Journal of Biomedical Research*; 6(1): 27-31.
- [6] Aja, P.M., Enechi, O.C., Ozougwu, V.E., Onya-Mmaghiri, E.A., Agu, K.A., Ali-Ikechukwu, A. and Nweke, O.L. (2016). Phytochemical Composition, Gas Chromatography-Mass Spectrometric (GC-MS) Analysis and Anti-Bacterial Activity of Ethanol Leaf Extract of *Ageratum conyzoides*. *African Journal of Basic & Applied Science*; 8(1): 34-40.
- [7] Raheala, J., Muhammad, S., Amer, J. and Muhammad, A. (2008). Microscopic Evaluation of the Antimicrobial Activity of Seed Extracts of *Moringa oleifera*. *Pakistan Journal of Botany*; 40(4): 1349-1358.
- [8] Wandji, J., Bissangou, M.F., Ouambra, J.M., Silou, T., Abena, A. and Keita, A. (1996). Invasive Alien Plants: An Ecological Appraisal for the Indian Subcontinent. *Fitoterapia*; 67: 427.
- [9] Ekundaya, O., Laasko, I. and Hiltunen, R. (1988). Composition of Ginger (*Zingiber officinale Roscoe*) Volatile OilS from Nigeria. *Flav. Fragr J.*; 3: 85-90.
- [10] Lv, S.D.; WU, Y.S.; Li, G.W..; Xu, Y.Q; Liu, L.; and Meng, Q.X. (2014). Comparative Analysis of pu-erh Tea and Fuzliuan Teas by fully Automatic Headspace solid-phase micro extraction coupled with Gas Chromatography-Mass Spectrometry and Chemometric Methods. *Journal of Agricultural and Food Chemistry*; 62: 1810-1818.
- [11] Boutekedirect, C., Bentahar, F., Elabbes, R. and Bessiere, J.M. (2003). Extraction of Rosemary Essential oil by Steam Distillation and Hydrodistillation. *Flavour and Fragrance Journal*; 18: 481-484.
- [12] Bourgou, S., Tammar, S., Nidhal, S., Khawla, M., and Kamel, M. (2015). Phenolic Composition, Essential oil, and Antioxidant Activity in the Aerial Part of Artemisia Herba-Alba from Several Provenances: A Comparative Study. *International Journal of Food Properties*; 19 (3): 549-563.
- [13] Igwe, O.U. and Okwu, D.E. (2013). GC-MS Evaluation of Bioactive Compounds and Antibacterial Activity of the Oil Fraction of the Stem Bark of *Brachystegia eurycoma*. *Int. J. Chem Sc.*; 11(1): 357-371.

Citation: A. Ahuchaogu et al., "GC-MS Analysis of Bioactive Compounds from Whole Plant Chloroform Extract of Ageratum conyzoides", International Journal of Medicinal Plants and Natural Products (IJMPNP), vol. 4, no. 2, pp. 13-24, 2018. http://dx.doi.org/10.20431/2454-7999.0402003

Copyright: © 2018 Authors. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.