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Abstract: Compressive sensing (CS) is a novel sampling paradigm that samples signals in a much more 

efficient way than the established Nyquist Sampling Theorem. CS has recently gained a lot of attention due 

to its exploitation of signal sparsity. This paper gives a brief background on the origins of this idea, 

reviews the basic mathematical foundations of the sampling theory and compares the different 

reconstruction schemes. In our work, a signal is generated and sampled using the CS method. Then the 

original signal is reconstructed using three different reconstruction schemes namely Greedy Iterative (GI), 

Convex Relaxation (CR), and Iterative Thresholding (IT). The accuracy and the time taken for these three 
schemes are calculated and compared. It was found that Greedy Iterative took the least time for 

reconstruction with a lower error rate amongst the three schemes. 
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1. INTRODUCTION 

As the modern technology progresses, there is a problem of ever-increasing amounts of data.  
By now, everyone is aware that most of the data received can be thrown away without almost no 

perceptual loss. So, can‟t we just directly measure the part that won‟t end up being thrown away? 

The traditional way of sampling i.e. the Nyquist-Shannon sampling theorem states that to restore a 
signal exactly and uniquely, you need to have sampled with at least twice its frequency. This is 

true for perfectly band-limited signals. But most real world signals are not perfectly band-limited. 

When represented in terms of appropriate basis functions, such as trigonometric functions or 
wavelets, many signals have relatively few non- zero coefficients. In short, they are sparse [1].  

Compressive Sensing takes advantage of this sparsity in signals to directly acquire just the 

important information about them and not acquire that part of the data that would eventually just 

be „thrown away‟. The crucial observation is that one can design efficient sensing or sampling 
protocols that capture the useful information content embedded in a sparse signal and condense it 

into a small amount of data. These protocols are non-adaptive and simply require correlating the 

signal with a small number of fixed waveforms that are incoherent with the sparsifying basis. 
What is most remarkable about these sampling protocols is that they allow a sensor to very 

efficiently capture the information in a sparse signal without trying to comprehend that signal.  

2. COMPRESSIVE SENSING 

In the traditional signal processing techniques, we uniformly sample data at Nyquist rate, prior to 

transmission, to generate „n‟ samples. These samples are then compressed to „m‟ samples; 

discarding „n-m‟ samples which leads to wastage of both time and effort. It is also expensive 
computationally as it needs more storage space that may later be unused. Our goal is to ensure 

that the number of samples (i.e. „m‟) captured is far less when compared to the traditional method 

(i.e. „n‟) and to show that signal reconstruction is as effective thereby reducing cost, effort and 
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time needed to implement it. Compressive Sensing theory asserts that one can recover certain 

signals and images from far fewer samples or measurements than traditional methods use. To 
make this possible, CS relies on two principles: sparsity, which pertains to the signals of interest, 

and incoherence, which pertains to the sensing modality [2].  

2.1 Sparsity 

Natural signals such as sound, image or seismic data can be stored in compressed form, in terms 

of their projection on suitable basis Ψ. When basis is chosen properly, a large number of 

projection coefficients are zero or small enough to be ignored. If a signal has only „s‟ non-zero 
coefficients, it is said to be s-Sparse. If a large number of projection coefficients are small enough 

to be ignored, then signal is said to be compressible. Sparsity expresses the idea that the 

“information rate” of a continuous time signal may be much smaller than suggested by its 

bandwidth, or that a discrete-time signal depends on a number of degrees of freedom, which is 
comparably much smaller than its (finite) length. 

2.2 Incoherence 

Incoherence extends the duality between time and frequency and expresses the idea that objects 

having a sparse representation in Ψ must be spread out in the domain in which they are acquired, 

just as a Dirac or a spike in the time domain is spread out in the frequency domain. Put 

differently, incoherence says that unlike the signal of interest, the sampling/sensing waveforms 

have an extremely dense representation in Ψ. Coherence measures the maximum correlation 

between any two elements of two different matrices. These two matrices might represent two 

different basis representation domains. 

2.3 Restricted Isometry Property (RIP) 

Restricted Isometry Property has been the most widely used tool for analyzing the performance of 

CS recovery algorithms; a key notion that has proved to be very useful to study the general 

robustness of CS. 

Definition: 

For each integer s = 1,2,3…. define the isometric constant  of the matrix as the smallest 

number such that, 

 

holds for all s-sparse vectors. A vector is said to be s-sparse if it has at most s non-zero entries. 

Then, the matrix  is said to satisfy the s-restricted isometric property with restricted isometric 

constant .We will loosely say that a matrix obeys the RIP of order S if is not too close to 

one. When this property holds,  approximately preserves the Euclidean length of S-sparse 

signals, which in turn implies that S-sparse vectors cannot be in the null space of . The main 

point here is that RIP is sufficient to guarantee sparse reconstruction by L1-minimization. It is 

known that L1-minimization reconstructs every sparse signal precisely when the sensing matrix 

satisfies the null space property (NSP), and so one way to prove that RIP is sufficient is to show 

that RIP implies NSP. The following paper bypasses the NSP analysis by giving a direct result for 

RIP. 

3. LITERATURE SURVEY 

A literature survey has been done to know the various data compression techniques in vogue. 

Compression can be either lossy or lossless. Lossless compression reduces bits by identifying and 

eliminating statistical redundancy. No information is lost in lossless compression. Lossy 

compression reduces bits by identifying unnecessary information and removing it.  

The basic principle that lossless compression algorithms work on is that any non-random file will 

contain duplicated information that can be condensed using statistical modeling techniques that 

determine the probability of a character or phrase appearing. These statistical models can then be 

used to generate codes for specific characters or phrases based on their probability of occurring, 

and assigning the shortest codes to the most common data. 
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Given this vast amount of different techniques, there are different ways how to classify 
compression techniques: 

• With respect to the type of data to be compressed. 

• In relation with the target application area. 

• Based on the fundamental building blocks of the algorithms used. 

3.1. History 

Starting from 1838 where the Morse code was developed for telegraphy to Huffman‟s technique 

of dynamic updating of code words based on accurate data in 1970s, data compression has been 
an area of interest to most researchers. However in 1977, Abraham Lempel and Jacob Ziv 

published their groundbreaking LZ77 algorithm, the first algorithm to use a dictionary to 

compress data. More specifically, LZ77 used a dynamic dictionary oftentimes called a sliding 
window. Then during mid-1980s, the pioneering work done by Terry Welch led to innovation of 

Lempel–Ziv–Welch (LZW) algorithm, which later became the most popular algorithm for many 

general purpose compression systems. 

3.2. Nyquist Sampling Theorem 

In 1949, Shannon [1][2] presented his famous proof that any band-limited time-varying signal 

with „n‟ Hertz highest frequency component can be perfectly reconstructed by sampling the signal 

at regular intervals of at-least 1/2n seconds. In traditional signal processing techniques, we 
uniformly sample data at Nyquist rate, prior to transmission, to generate „n‟ samples. These 

samples are then compressed to „m‟ samples; discarding n-m samples. The sampling theorem 

specifies that to avoid losing information when capturing the signal, the sampling rate must be at 
least twice the signal bandwidth.  

3.3. Compressive Sensing 

Compressive Sensing (CS) is an innovative process of acquiring and reconstructing a signal that is 

sparse or compressible. Around 2004 Emmanuel Candès, Terence Tao and David Donoho 
discovered important results on the minimum number of data needed to reconstruct an image even 

though the Nyquist–Shannon criterion would deem the number of data insufficient. Compressive 

sensing theory asserts that we can recover certain signals from fewer samples than required in 
Nyquist paradigm. This recovery is exact if signal being sensed has a low information rate (means 

it is sparse in original or some transform domain). Number of samples needed for exact recovery 

depends on particular reconstruction algorithm being used. If signal is not sparse, then recovered 

signal is best reconstruction obtainable from s largest coefficients of signal. CS operates very 
differently, and performs as “if it were possible to directly acquire just the important information 

about the object of interest. Capitalizing on this discovery, much of signal processing has moved 

from the analog to the digital domain and ridden the wave of Moore‟s law. Digitization has 
enabled the creation of sensing and processing systems that are more robust, flexible, cheaper and, 

consequently, more widely used than their analog counterparts. As a result of this success, the 

amount of data generated by sensing systems has grown from a trickle to a torrent. 

4. PROPOSED SYSTEM 

Any analog signal consists of components at various frequencies. The simplest case is the sine 

wave, in which all the signal energy is concentrated at one frequency. In practice, analog signals 
usually have complex waveforms, with components at many frequencies. The highest frequency 

component in an analog signal determines the bandwidth of that signal. Compressed Sensing or 

Compressive Sensing is about acquiring and recovering a sparse signal in the most efficient way 
possible (sub-sampling) with the help of an incoherent projecting basis. Unlike traditional 

sampling methods, Compressed Sensing provides a new framework for acquiring sparse signals in 

a multiplexed manner.  

The system consists of two main modules; one for sampling the input signal and another for 
reconstruction. The steps involved in the sampling module are as follows: 

1. The user chooses any one of the keys between 0 and 9, for which a signal is generated. 
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2. The sampling module then takes a certain number of samples of this signal. These samples are 

written into a file, which is then sent to the reconstruction module. 

The step involved in the reconstruction module is as follows: 

The reconstruction module attempts the recovery of the signal by using the samples sent to it 

using one of the 3 algorithms: Orthogonal Matching Pursuit, Approximate Message Passing and 
Basis Pursuit. 

The overall system architecture shown in Fig 4.1 describes how the system works. 

 

Fig4.1. System Architecture 

5. METHODOLOGY 

The process consists of three steps as stated earlier. The first step is the generation of an analog 
signal. The user is asked to enter a key between 0 and 9. Each input is associated with two 

frequencies. The signal generated comprises of two sinusoids. The signal „f‟ is generated in our 

simulation by using  

f = (sin (2*pi*f1*t) + sin (2*pi*f2*t))/2 

Where f1 and f2 are the two component frequencies obtained from Table 5.1. 

Table5.1. 

Input 0 1 2 3 4 5 6 7 8 9 

f1(Hz) 941 697 697 697 770 770 770 852 852 852 

f2(Hz) 1336 1209 1336 1477 1209 1336 1477 1209 1336 1477 

The next step is to sample the given analog signal. Any raw signal can be represented as 

f = Ψ c  

The signal is then sampled at known time intervals determined by the sampling frequency (Fs) 
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which is fixed. These samples are obtained by applying a matrix known as the sampling matrix 
(Φ) to the signal of interest(c). This signal of interest contains all the major coefficients of the 

given signal, i.e., the non-sparse components. This is an n×1 vector. Vector „c„ is obtained by 

applying the basis matrix (Ψ) to the vector „f‟. Here, the basis function has been chosen to be the 

Discrete Cosine Transform (DCT). DCT was chosen as the basis function because it requires 
lesser terms to represent a typical signal in comparison with other basis functions such as Fast 

Fourier Transform, Fourier Transform etc. Sampling process can denoted as  

b = Φc  

Where „b‟ is the set of samples obtained.  

The final step is the reconstruction of the original signal from the samples obtained [3].  

To reconstruct the signal, we must try to recover the coefficients by solving  

Ax = b  

where A = ΦΨ.  Once we have the coefficients, we can recover the signal itself by computing  

f = Ψx  

Since this is a compression technique, „A‟ is rectangular, with many more columns than rows. 
Computing the coefficients „x‟ involves solving an underdetermined system of simultaneous 

linear equations, Ax = b.   

5.1. Orthogonal Matching Pursuit Reconstruction Scheme 

Greedy algorithms are well known in computer science literature due to their simplicity while 

obtaining good, and in some cases, optimal, results. A greedy algorithm is an algorithm that 

follows the problem solving heuristic of making the locally optimal choice at each stage with the 
hope of finding a global optimum. In many problems, a greedy strategy does not in general 

produce an optimal solution, but nonetheless a greedy heuristic may yield locally optimal 

solutions that approximate a global optimal solution in a reasonable time. Another effective 

reconstruction scheme is a variant of Greedy Iterative method called as the Orthogonal Matching 
Pursuit (OMP). It constructs an approximation by going through iteration process [4]. In each 

iteration, the locally optimum solution is determined by finding the column vector of A which is 

most correlated with the residual vector r. Initially the residual vector is equal to the vector that is 
to be approximated i.e. r = b and it is adjusted at each iteration to take into account the previously 

chosen vector. OMP is a stepwise forward selection algorithm and is easy to implement. A key 

component of OMP is the stopping rule, which depends on the noise structure. In the noiseless 

case the stopping rule is that the residual becomes zero i.e. ri = 0. 

5.1.1. Algorithm 

1. Start by setting the residual  the time t=0 and index set   

2. Let  gives the solution of max  where  are the row vectors of A. 

3. Update the set  

4. Solve the least-squares problem: 

 

5. Calculate the new residual  using c 

 

6. Set  

7. Check stopping criterion (residual=0). If the criterion has not been satisfied then return to step 

2. 
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5.2. Basis Pursuit Reconstruction Scheme 

The key to the almost magical reconstruction process is to impose a nonlinear regularization 
involving the L1 norm. This is a variant of the Convex Relaxation reconstruction scheme [4]. To 

have theoretical guarantees for the convex relaxation method, one needs to show that the sparse 

approximation problem is equivalent to its convex relaxation. Known theoretical guarantees work 
only for random measurements.  

In principle, computing this reconstruction should involve counting non-zeros with L0. This is a 

combinatorial problem whose computational complexity makes it impractical. However, L0 can 
be replaced by L1 as the two problems have the same solution. The L1 computation is practical 

because it can be posed as a linear programming problem and solved with the traditional simplex 

algorithm or modern interior point methods. We use the Primal-Dual Interior Point Algorithm to 

solve the Basis Pursuit Problem. 

5.2.1. Primal Dual Interior Point Algorithm 

Primal problem: 

 (P) minimize  

       subject to :    (m equalities ,n variables) 

Dual problem: 

 (D) maximize  

       subject to :  

The summary of the derivation is given in the next section. 

5.2.2. Derivation summary: 

Step1: Remove the inequalities from (P) using a barrier term 

              (PB)  minimize   

               subject to:  

                              where  is a positive barrier parameter. 

Step2: State the Lagrange function 

        The Lagrange function is: 

 

        Where y contains the Lagrange multipliers. 

Step3: State the Lagrange optimality conditions 

       The optimality conditions are: 

                                         

 

                                    Where  

                                    Let  hence  

       Equivalent optimality conditions: 

                           (O)    
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Step4: Solving the optimality conditions 

       The nonlinear optimality conditions are solved using Newton‟s method: 

, 

 

                                    Where is the step size, solves f(x)=0. 

  Define: 

, . 

                                        Where  

       Given  

      Then one step of Newton‟s method applied to 

 

       is given by : 

 

, 

       Where =0.01 

5.2.3. Algorithm 

1. Choose  such that . 

2. Choose γ, θ ∈ (0, 1), ε >0 

3. k := 0 

4. while max (|| || ,|| || ,( ) ≥  

5. :=  ( /n 

6. Solve: 

  , 

            , 

. 

7. Compute: 

    

8.  

9.  k := k+ 1 

10. end while 

5.3. Approximate Message Passing Reconstruction Scheme 

Another class of algorithms with low computational complexity is the Iterative Thresholding 

scheme [5]. Approximate Message Passing (AMP) [6] [7] is a variant of this scheme. AMP 

reconstructs the signal as effectively as L1 while running much faster. The idea behind these  
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Fig5.2. Compressed sensing reconstruction algorithms and their classification  

algorithms is that when a signal is represented in terms of a suitable basis, smaller coefficients are 

set to zeroes while the larger coefficients above a given threshold are possibly shrunk. In every 

iteration, a residual is calculated along with a new threshold. With every step, these values change 

and the algorithm breaks when the stopping condition is reached. As in the case of OMP, the 
stopping rule is dependent on the noise structure. For the noiseless case, the stopping rule is that 

the residual reaches zero. 

5.3.1. Algorithm 

. 

, here the last term is called the Onsager Reaction 

Term. 
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. 

Where,  

– Current estimate 

P – Measurement matrix 

P *- Transpose of A 

- Current residual 

b- Vector of interest (m x 1) 

t- Iteration counter 

 Scalar threshold function 

- Threshold  

- Under sampling rate 

Here, 

 = m/n 

 = 0.001, initially 

 , 

For a vector u=(u(1),u(2)…u(n)), 

 , 

              

6. RESULTS  

Snapshots of the original signal and reconstructed signals are given below. The error rates of the 

three reconstruction schemes used are also provided for comparison.  

6.1. Original Signal 

 

Fig5.1. Top: Random samples of the original signal generated Bottom: The inverse discrete cosine 

transform of the signal 
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The above figure gives the following details: 

1. The graph at the top represents input analog signal with the black dots representing the samples 

that are taken into consideration. 

2. The bottom graph represents the inverse direct cosine transform (IDCT) of the input signal 

which are represented as two sinusoids. 

6.2. OMP Solution 

 

Fig5.2. Top: OMP solution of the original signal Bottom: Reconstructed signal using OMP 

6.3. Basis Pursuit Solution 

 

Fig. 5.3 

Top: L1 solution of the original signal 

Bottom: Reconstructed signal using Basis Pursuit 

 



A Lightweight Randomized Low Sampling Compression Technique Verified by GI with Merits over 

CR and IT Reconstruction Schemes 

 

International Journal of Innovative Research in Electronics and Communications (IJIREC) Page 32 

6.4. AMP Solution 

 

Fig. 5.4 

Top: AMP solution of the original signal  

Bottom: Reconstructed signal using AMP 

6.5. Comparison of Error Rates 

 

Fig. 5.5 Comparison of Error Rates 

The error rate was calculated using the following formula: 

Error rate =  

           where, x is the solution obtained 

             f is the original signal  

         n is the number of samples     
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Average error rate for 

. Orthogonal Matching Pursuit (OMP) is 0.4443  

. Basis Pursuit (BP) is 0.4736  

. Approximate Message Passing (AMP) is 0.4739 

7. CONCLUSION 

The traditional sample first-then compress method collects a huge number of samples from the 

input signal at first but later discards most of the samples. This is due to the fact that the 

information is contained in fairly few samples. The information rate is found to be far lower than 
the number of samples collected. It is a well established fact that all real world signals are sparse 

in some domain (time or frequency). Compressive Sensing exploits this property of real world 

signals. It does so by collecting few samples in the beginning itself. In this work, the technique of 
compressive sensing is used where an analog signal is sampled at the client side and reconstructed 

at the server side. The reconstruction was done using the following three techniques:  Orthogonal 

Matching Pursuit, Basis Pursuit and Approximate Message Passing. A comparison was done 
between the above mentioned algorithms with respect to the following parameters: a) Time taken 

for signal reconstruction and b) the Error Rate. It was found that OMP algorithm took the least 

time for reconstruction and had least error rate among the three reconstruction schemes. The 

system was tested on Windows platform and was found to be performing acceptably. 
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