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Abstract: Floating point numbers are one possible way of representing real numbers in binary format; the 

IEEE 754 standard presents two different floating point formats, Binary interchange format and Decimal 

interchange format. Multiplying floating point numbers is a critical requirement for DSP applications 

involving large dynamic range. Floating-point implementation on FPGAs has been the interest of many 

researchers. FPGAs are increasingly being used in the high performance and scientific computing 

community to implement floating-point based hardware accelerators. FPGAs are generally slower than 

their application specific integrated circuit (ASIC) counterparts, as they can't handle as complex a design, 

and draw more power. However, they have several advantages such as a shorter time to market, ability to 

re-program in the field to fix bugs, and lower nonrecurring engineering cost costs. Vendors can sell 

cheaper, less flexible versions of their FPGAs which cannot be modified after the design is committed. The 

development of these designs is made on regular FPGAs and then migrated into a fixed version that more 

resembles an ASIC. In this project we aim to implement double precision floating point multiplier in VHDL. 

Keywords: Floating Point Multiplier, FPGA, VHDL.

1. INTRODUCTION 

Double precision floating point numbers are 64-bit binary numbers. The 64-bits are divided into 3 

parts- sign, exponent and mantissa. The 52 least significant bits (LSBs) are used to represent the 

mantissa of the number. The next 11-bits are used to represent the exponent of the number. The 

most significant bit (MSB) of the number is used as a sign bit to represent the sign of the number. 

 Sign bit „0‟ indicates positive number. 

 Sign bit „1‟ indicates negative number. 

2. FLOATING POINT MULTIPLIER 

Multiplication of two floating point numbers is a complex task and is carried out in a series of 

steps. Since a floating point number consists of 3 parts- sign, exponent and mantissa, calculations 

for all the parts are carried out separately. 

2.1. Calculation of Sign 

The sign bit of the resultant is obtained by carrying out the EXOR operation of the sign bits of the 

two operands. Sign bit „0‟ represents a positive sign and sign bit „1‟ represents a negative sign. 

2.2. Calculation of Exponent 
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The exponents of both the operands are represented in the IEEE 754 format, i.e., a bias of 1023 is 

added to both the exponents. To calculate the exponent of the resultant the bias of 1023 must be 

removed from the exponents. After removal of bias from the exponents, both are added to give the 

resultant exponent. This resultant exponent is in unbiased form. So to represent it in IEEE 754 

format, it should be converted to the biased form by adding bias of 1023 to it. 

2.3. Calculation of Mantissa 

Mantissa calculation is the most complex part of floating point multiplication. A 64-bit number 

contains 52-bit mantissa. The resultant mantissa is calculated by multiplying the mantissas of both 

the operands. But before the multiplication is carried out, the mantissas of both the operands need 

to be normalized. Normalization is done in order to ensure that either of the numbers to be 

multiplied is not zero. If any one of the numbers is zero than the resultant will be zero. If both the 

numbers are zero than the resultant will be undefined or Not a Number (NaN). Normalization is 

done by adding a „1‟ as the MSB of the mantissa. By adding a „1‟ as MSB, the possibility of the 

number being a zero is eliminated. After normalization, the number of bits in the mantissa is 

increased by one, so the normalized mantissa contains 53-bits. The next step after normalization is 

multiplication of the normalized mantissas. Two 53-bits mantissas are multiplied and Mantissa 

calculation is the most complex part of floating point multiplication. A 64-bit number contains 52-

bit mantissa. The resultant mantissa is calculated by multiplying the mantissas of both the 

operands. But before the multiplication is carried out, the mantissas of both the operands need to 

be normalized. Normalization is done in order to ensure that either of the numbers to be 

multiplied is not zero. If any one of the numbers is zero than the resultant will be zero. If both the 

numbers are zero than the resultant will be undefined or Not a Number (NaN). Normalization is 

done by adding a „1‟ as the MSB of the mantissa. By adding a „1‟ as MSB, the possibility of the 

number being a zero is eliminated. After normalization, the number of bits in the mantissa is 

increased by one, so the normalized mantissa contains 53-bits. The next step after normalization is 

multiplication of the normalized mantissas. Two 53-bits mantissas are multiplied and a resultant 

of 106-bits is obtained. There are several different algorithms which can be used to carry out the 

multiplication of the mantissas. As the size of the mantissa is very large it is convenient to use an 

algorithm rather than multiplying directly. This 106-bits resultant cannot be stored directly into 

the output because of its size. The output mantissa must contain only 52-bits. To obtain 52-bits 

mantissa, normalization of the 106-bits resultant is carried out. In normalized form the MSB of 

the number must be 1. Therefore all the „0‟ bits before the first „1‟ bit are discarded. Now the 

mantissa is in normalized form with a „1‟ as MSB. Now to extract the final 52-bits, de-

normalization is carried out. This is done because the mantissa that is finally stored in IEEE 754 

format is not in the normalized form as the integer part of the output is by default 1. So the first 

bit of the number, i.e. 1, is discarded and the next 52 bits are stored as the mantissa of the output, 

also discarding the remaining least significant bits. 

Normalized floating point numbers have the form of Z= (-1S) * 2 (E - Bias) * (1.M). To multiply 

two floating point numbers the following is done [1]:  

1. Multiplying the significand; i.e. (1.M1*1.M2) 

2. Placing the decimal point in the result 

3. Adding the exponents; i.e. (E1 + E2 – Bias) 

4. Obtaining the sign; i.e. s1 xor s2 
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5. Normalizing the result; i.e. obtaining 1 at the MSB of the results‟ significant 

6. Rounding the result to fit in the available bits 

7. Checking for underflow/overflow occurrence 

In this paper a floating point multiplier in which rounding support isn‟t implemented. Rounding 

support can be added as a separate unit that can be accessed by the multiplier or by a floating 

point adder, thus accommodating for more precision if the multiplier is connected directly to an 

adder in a MAC unit. Figure 1 shows the multiplier structure; Exponents addition, Significant and 

multiplication, and Result‟s sign calculation are independent and are done in parallel. The 

significand multiplication is done on two 24 bit numbers and results in a 48 bit product, which we 

will call the intermediate product (IP). The IP is represented as (47 downto 0) and the decimal 

point is located between bits 46 and 45 in the IP [1]. 

 

Figure1. Floating Point Multiplier 

The FPMAC does not support denormalized numbers, infinity, or not-a-number (NaN). If f is the 

mantissa and exp is the biased exponent; the value of an IEEE-754 compliant FP number is (-1) 

sign × (1.f) × 2exp. The 1 is not represented in the format, but exists internally in the FPMAC‟s 

computation logic. Thus, the bitwidth of the mantissa within the FPMAC is actually 24 bits. The 

FPMAC, shown in Fig. 4, has 11 pipeline stages [3]. The notable features of this architecture are 

the “Base-32” conversion and de-conversion (Stages 6 and 11) and the accumulator (Stage 8). The 

48-bit mantissa multiplier outputs produced in Stage 5, and retained in carry-save form, are 

converted to a non-traditional FP. The mantissa is truncated to 24 bits, 22 to the right of the 

decimal point and 2 to the left. The truncated mantissas are shifted left, as specified by the 5 least 

significant bits of the exponent, expanding them from 24 to 55 bits: 33 bits to the left of the 

decimal and 22 bits to the right. Afterwards, only the three most significant bits of the exponent 

are needed. The value of the FP number in this format is (-1) sign × f* × 2(32 × exp*), where f* is 

the shifted mantissa and exp* is the truncated exponent. The Base-32 representation eliminates 

shifters used for mantissa alignment, which are replaced with less costly conditional constant 

shifters. The outputs of the sign inversion stage are the incoming exponent (E7) and mantissa (C7 
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and S7). The accumulated result is a feedback exponent (E8) and mantissa (C8 and S8). The 

updated exponent and mantissa are also stored to E8, C8 and S8. The incoming and feedback 

mantissas are shifted by the difference between the incoming and feedback exponents. The 

exponents must be equalized before mantissa addition. The Base-32 representation ensures that all 

shifts are by 0 or 32 bits [3].  

The flow graph of overall algorithm for floating point multiplier including rounding is shown in 

figure 2 [2]. 

 

Figure2. Flow Graph of Floating Point Multiplier 

3. DADDA ALGORITHM 

Dadda proposed a sequence of matrix heights that are predetermined to give the minimum number 

of reduction stages. To reduce the N by N partial product matrix, dada multiplier develops a 

sequence of matrix heights that are found by working back from the final two-row matrix. In 

order to realize the minimum number of reduction stages, the height of each intermediate matrix 

is limited to the least integer that is no more than 1.5 times the height of its successor. The process 

of reduction for a dadda multiplier [4] is developed using the following recursive algorithm.  

1. Let d1=2 and dj+1 = [1.5*dj], where dj is the matrix height for the jth stage from the end. 

Find the smallest j such that at least one column of the original partial product matrix has 

more than dj bits. 

2. In the jth stage from the end, employ (3, 2) and (2, 2) counter to obtain a reduced matrix 

with no more than dj bits in any column.  

3. Let j = j-1 and repeat step 2 until a matrix with only two rows is generated.  
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Fig3. Example of Dadda reduction on 8x8 multiplier 

Basic principle known from manual multiplication 

This method of reduction, because it attempts to compress each column, is called a column 

compression technique. Another advantage of utilizing Dadda multipliers is that it utilizes the 

minimum number of (3, 2) counters. For Dadda multipliers there are N2 bits in the original partial 

product matrix and 4.N-3 bits in the final two row matrix. Since each (3, 2) counter takes three 

inputs and produces two outputs, the number of bits in the matrix is reduced by one with each 

applied (3, 2) counter therefore, the total number of (3,2) counters is #(3, 2) = N2 – 4.N+3 the 

length of the carry propagation adder is CPA length = 2.N–2. The 8 by 8 multiplier takes 4 

reduction stages, with matrix height 6, 4, 3 and 2. The reduction uses 35 (3, 2) counters, 7 (2, 2) 

counters, reduction uses 35 (3, 2) counters, 7 (2, 2) counters, and a 14-bit carry propagate adder. 

The total delay for the generation of the final product is the sum of one AND gate delay, one (3, 2) 

counter delay for each of the four reduction stages, and the delay through the final 14-bit carry 

propagate adder arrive later, which effectively reduces the worst case delay of carry propagate 

adder. The decimal point is between bits 45 and 46 in the significant IR. Critical path is used to 

determine the time taken by the Dadda multiplier. The critical path starts at the AND gate of the 

first partial products passes through the full adder of the each stage, then passes through all the 

vector merging adders. The stages are less in this multiplier compared to the carry save multiplier 

and therefore it has high speed [4]. As per my project concert I have 52 bit mantissa, so the output 

result of multiplier contain 104 bit. The   stages required are total 9 reduction stages are required 

and which are reduces the rows in the order or 42, 28, 19, 13, 9, 6, 3 and 2. We required total 2499 

(3, 2) counter and also 51 (2, 2) counter.  The CPA length is 102.   

 Methodology 

 Theoretical design of floating point multiplier 

 Design of floating point multiplier in VHDL 

 Simulation and Synthesis of circuit 

 Verification using test benches 

 Comparison of obtained results with available literature 

 Modification if required to improve results 

 Thesis writing 
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4. RESULTS 

SIGN BIT 

 

EXPONENT BLOCK 

 

5. CONCLUSION 

Double precision floating point multiplier implemented in VHDL may be used applications such 

as digital signal processors, general purpose processors and controllers and hardware accelerators. 

Tools 

Xilinx Synthesis Tool Web Pack ISE 10.1i 
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